
HAL Id: hal-01371499
https://centralesupelec.hal.science/hal-01371499v1

Submitted on 26 Sep 2016

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Toward an Accurate and Fast Hybrid Multi-Simulation
with the FMI-CS Standard

Jean-Philippe Tavella, Mathieu Caujolle, Stéphane Vialle, Cherifa Dad,
Charles Tan, Gilles Plessis, Mathieu Schumann, Arnaud Cuccuru, Sebastien

Revol

To cite this version:
Jean-Philippe Tavella, Mathieu Caujolle, Stéphane Vialle, Cherifa Dad, Charles Tan, et al.. Toward an
Accurate and Fast Hybrid Multi-Simulation with the FMI-CS Standard. 21 st International Conference
on: Emerging Technologies and Factory Automation (ETFA-2016), Sep 2016, Berlin, Germany. �hal-
01371499�

https://centralesupelec.hal.science/hal-01371499v1
https://hal.archives-ouvertes.fr


Toward an Accurate and Fast Hybrid
Multi-Simulation with the FMI-CS Standard

Jean-Philippe Tavella∗, Mathieu Caujolle∗, Stephane Vialle‡, Cherifa Dad‡, Charles Tan∗,
Gilles Plessis†, Mathieu Schumann†, Arnaud Cuccuru§, Sebastien Revol§

∗EDF Lab Saclay, 91120 Palaiseau, France
†EDF Lab Les Renardières, 77250 Ecuelles, France

‡UMI 2958 GeorgiaTech-CNRS, CentraleSupelec, University Paris-Saclay, 57070 Metz, France
§CEA, LIST, Laboratory of Model Driven Engineering for Embedded Systems, P.C. 174, Gif-sur-Yvette, 91191, France

Abstract—Multi-simulation in the context of future smart
electrical grids consists in associating components modeling
different physical domains, but also their local or global control.
Our DACCOSIM multi-simulation environment is based on the
version 2.0 of the FMI-CS (Functional Mock-up Interface for Co-
Simulation) standard maintained by the Modelica Association. It
has been specifically designed to run large-scale and complex
systems on a single PC or a cluster of multicore nodes. But
it is quite challenging to accurately simulate FMUs-composed
systems involving predictable and unpredictable events while
preserving the system overall performance. This paper presents
some additions to the FMI-CS standard aiming to improve the
accuracy and the performance of distributed multi-simulations
involving a mix of both time steps and various kinds of events.
The proposed FMI-CS primitives are explained, as well as the
Master Algorithm strategies to exploit them efficiently.

I. MOTIVATIONS AND RELATED WORKS

A smart power grid is an example of complex Cyber-
Physical Systems. For EDF (the major French utility com-
pany), it will extensively rely on new control functions (i) to
increase the grid efficiency, reliability, and safety, (ii) to enable
better integration of new assets (e.g. distributed generation and
alternative energy sources), (iii) to support market dynamics
and manage new interactions between established and new
energy players. We consider vital to develop agile modeling
and simulation in order to design and validate novel distributed
operating functions a long time before performing tests on
experimental sites, and to reuse models and tools often limited
to specific areas of expertise.

Heterogeneity of smart power grids led EDF to inves-
tigate coupling standards such as the Functional Mock-up
Interface (FMI) initiated by Daimler AG within the ITEA2
MODELISAR project and now maintained by the Modelica
Association1. More precisely, EDF chose the FMI-CS (FMI for
Co-Simulation) standard because this operation mode allows to
export models as active components called FMUs (Functional
Mock-up Units), each FMU being a self-contained archive file
including a model and a numerical solver with the additional
benefit of protecting the model intellectual property (IP).
Simulation of a smart power grid requires to associate event-
based and time stepped components to achieve hybrid multi-

1https://www.fmi-standard.org/downloads

simulations, but managing events with the current FMI-CS
standard is not straightforward.

EPOCHS [1] was an example of distributed multi-simulation
environment based on the well known HLA middleware
standard2. It mixed events and time steps, but delayed event
processing at the end of each computation time step (in sim-
ulated time) and lacked accuracy. At the opposite, GECO [2]
accurately processed all events in a global event queue without
introducing delay in the simulated time. But it did not support
distribution on several PCs, and so can not scale largely.
In 2013, some researchers started to mix distributed HLA
standard and FMI 1.x standards [3] but could not manage
events before the end of the time steps. In 2014 the C2WT
environment mixed again HLA and FMI standards [4], and
interconnected the telecom network simulator OMNET++ with
FMUs modeling continuous time systems, but it used only
constant time steps and its execution algorithm did not address
time step interruption for unexpected event processing.

In 2016, some members of our consortium proposed a
generic computation strategy and algorithm [5] to achieve
accurate event location while respecting the FMI-CS 2.0
standard. But despite optimization, the current FMI-CS fea-
tures can lead to numerous rollbacks and reruns of FMU
computations to process unexpected events. So, such a so-
lution could limit the performance and scalability achieved
on multi-core PC clusters by our pure FMI-based distributed
multi-simulations [6]. Moreover, discrete signals often used by
cyber-physical components in electrical grids cannot be well
addressed by this strategy.

This paper proposes new FMI-CS functionalities, in order
to improve both the accuracy of cyber-physical co-simulations
involving a mix of time steps and various kinds of event
signals, and their performance and scalability on distributed
architectures.

II. FMI-CS STANDARD AND DACCOSIM ENVIRONMENT

A. Functional Mockup Interface features and limits

In FMI-CS a component is a self-contained object that
includes the model description and a numerical solver provided

2http://standards.ieee.org/findstds/standard/1516-2000.html



Fig. 1. DACCOSIM distributed architecture

by the design environment where it was conceived. Co-
simulation can encompass a large number of active compo-
nents (FMUs) potentially developed from different tools. The
data exchange between these components is controlled by a
program called Master Algorithm (MA) whose behavior is not
specified by the FMI standard. The MA controls the time
progress of a system co-simulation with a sequence of step
by step calculations. During a computation step, each FMU
independently simulates a part of the system and, at the end
of the step, the outputs from some FMUs provide new input
values to some other FMUs.

However, our practice shows that all kind of signals are not
correctly handled by the current version 2.0 of the FMI-CS
standard, especially in an hybrid co-simulation context mixing
discrete and continuous components (see section III-B).

B. DACCOSIM, an FMI-based co-simulation software

DACCOSIM has been designed to achieve multi-
simulations of continuous time systems discretized with time
steps, and run solvers using constant or variable time steps,
the latter maintaining the requested accuracy with the mini-
mal amount of computations whatever the system dynamics.
DACCOSIM parallel and distributed runtime architecture
is performance- and scalability-oriented, and takes maximal
advantage of any cluster of multi-core nodes. Each simulation
executes a series of time steps composed of three stages: the
time step computations of the FMUs (independent compu-
tations), the communication of the computed FMUs outputs
values to the connected inputs (many small communications),
and the simulation control by the hierarchical control masters
(information gathering, next operations decision and order
broadcasting). DACCOSIM architecture distributes FMUs on
cluster nodes, encapsulates each FMU in a multithreaded
wrapper, and implements a hierarchical (and distributed)
control master to manage all threads and FMU operations
(Fig. 1). A unique global master controls local ones, and each
local master controls a set of FMUs on its node. All master
tasks run concurrently. Each multithreaded wrapper runs the
computation function of its FMU to achieve time step progress,
manages inter-FMUs and FMU-Master communications, and
stores simulation results on disk. It parallelizes and optimizes
the orchestration of these tasks to minimize the global execu-
tion time.

Fig. 2. Different kinds of almost everywhere differentiable signals

Fig. 3. Approximate event detection with FMI-CS 2.0 (bisectional algorithm)

The Java version of DACCOSIM relies on JavaFMI3 de-
veloped by SIANI institute (Las Palmas University), and is
available for both Windows and Linux operating systems,
either 32-bit or 64-bit.

III. FMI EVOLUTION TO CONSIDER VARIOUS SIGNALS

A. Almost everywhere differentiable signals

Fig. 2 illustrates the different kinds of almost everywhere
differentiable signals we need to consider in our cyber-physical
systems. Signal s1 is a continuous & piecewise differentiable
signal. It is present at each time ti ∈ R+, continuous on
R+, but not differentiable at all the points tjno having a null
ordinate. Signal s2 is a piecewise continuous & differentiable
signal. It is present at each time ti ∈ R+, but is neither
continuous nor differentiable at time t1 and t2. Signal s3 is a
piecewise constant signal. It is present at each time ti ∈ R+,
and is constant on disjoint and continuous time slots Ij so that⋃

j I
j = R+, with a discontinuity appearing at each time slot

switch tj . Signal s4 is a discrete event signal. It is present
for a set of definition D, being a discrete time set ti ∈ D,
with D ⊂ R+. This signal can be confused with the events it
generates.

Later in this article, we only focus on signals that are always
present all the time of the simulation (signal s1, s2 and s3 on
figure 2) as these cases correspond to the ones encountered in
cyber-physical systems like smart grids, smart buildings and
smart factories.

B. Proposal of FMI-CS standard evolution

The FMI-CS standard defines an application programming
interface (API) that components conforming to the standard
must implement. The environment interacts with the FMU
only by means of its API, which consists primarily of the

3https://bitbucket.org/siani/javafmi/wiki/Home



Fig. 4. Behavior of the new primitive fmi21DoStep(...)

Fig. 5. Getting next known event time with fmi21GetNextEventTime(...)

fmi2DoStep() primitive which attempts to perform a simulation
step on the FMU, given a specific time step. The problem
with the current version of the FMI-CS standard is that event
handling is not very accurate: when an event occurs during
a step calculation, the event is only reported at the end of
the current step. If the simulation step is too large, events
could even be missed. Different strategies can be considered
to approximately locate an event (progress with minimum step
size [7], bisectional method [5]). All of them require rollbacks
and decrease the overall computational performance (Fig. 3).

Specifically, events can be either state events or time events.
It is assumed here that state events are unpredictable break-
points (they cannot be predicted without exploring the future)
while time events are predictable break-points.

For unpredictable break-points, an evolution of the
fmi2DoStep(...) is proposed in the form of a new primitive
fmi21DoStep(stepSize, nextEventTime). It allows the FMU solver
to stop at the first unpredictable event with a new return
code fmi21Event and the time event is given by the returned
value nextEventTime (Fig. 4). If no event occurs, nextEventTime
is the computation step end time. So, the MA can go on
computing state variables without performing any rollback on
this component.

But when one FMU prematurely stops, the other
FMUs involved in the co-simulation will proceed with
their calculation causing a computation time waste. The
fmi21BreakPendingStep(earlierTime, stopTime) primitive we pro-
pose is meant to reduce this computational burden by inter-
rupting an FMU pending calculation before its normal end. A
pending step execution will be stopped by an asynchronous
call of the primitive at earlierTime if it is not yet reached, or
upon receipt in the opposite case returning the actual stop time
value stopTime. It will also ignore any earlierTime earlier than
its current start time.

For predictable break-points, a primitive named
fmi21GetNextEventTime(currentTime, stopTime, eventTime)
is proposed to report in advance the time event precise date
(Fig. 5). This time information could be exploited to optimize
the value of the next step size in view of the exact date of

the next predictable event.
To be complete, we propose four additional primitives

fmi21GetXXX() to get the value of variables according to their
type XXX (Boolean, Integer, Real or String) at a discontinuity
point. Prototyping of these primitives makes sense in particular
in the context of super-dense time system [8], but not only.
After a fmi21DoStep(), the FMU stops at t+i , allowing the new
fmi21GetXXX() to get the values of variables (at t+i ) after all the
events occurring at the same Newtonian time t, exactly as the
current fmi2GetXXX() do. But in addition and without changing
the reached Newtonian time all previous signal values are
also returned by the new primitive whatever the events that
happened between t−i and t+i . This mechanism respects the
constraint of a positive non zero step size for step computation
as required by the current FMI standard but contradicts a
recent proposal from UC Berkeley [9].

All these new primitives have been introduced by EDF
in June 2016 in the Working Group Clock and Hybrid Co-
simulation of the FMI project, now hosted by the Modelica
Association4, and discussions are ongoing.

IV. EXPECTED IMPACT ON MULTI-SIMULATION

A. Illustrative use-case presentation

The academic use case we intend to use in order to
implement and test the proposed FMI primitives is a barrel-
filler factory (Fig. 6). Involved models, detailed in [5], consist
of:
• A queue of barrels waiting on a conveyor to be filled.
• A tank storing the water to fill the barrels.
• A controller c1 managing the opening of the valve between

the tank and the barrel.
• A controller c2 regulating the whole filling process.
It mixes continuous dynamics (water flow from the tank) and
several types of non-continuous signals discussed in III-A,
such as piecewise continuous and differentiable signals (water
level in the tanks), piecewise constant and potentially discrete
events (command signals), see Fig. 7.

B. Expected impact on result accuracy

Results showed in Fig. 8 come from a DACCOSIM multi-
simulation. They highlight the current accuracy insufficiencies
of FMI-CS 2.0. Even when applying adaptive time step
strategies relying on rollbacks to ensure accurate simulation
and correct detection of events, the location of events can
only be approximated. Accuracy is limited by the minimum
time step size authorized by the masters. But, when using the
proposed fmi21DoStep(), the accuracy of the event time will no
longer be limited by the master algorithm control strategies,
it will only depend on the ability of the FMU internal solver
to manage these events.

The proposed fmi21GetXXXEvent() primitives complement
the fmi21DoStep() function by allowing to fetch the FMU output
values computed by the internal solver just before and after
a time event. Exact characterization of the FMU dynamics

4https://www.modelica.org/



Fig. 6. Use case mixing discrete and continuous components

Fig. 7. Example of signals considered in the use case

Fig. 8. DACCOSIM error on the gate output command (constant time step)

before and after an event can thus be achieved without having
to approximate them by performing small step computations.
Signals such as the barrel water volume or the abort signal
(Fig. 7-a and -d) will thus be accurately characterized.

Thanks to the proposed add-ons to the FMI-CS standard,
similar accuracy performance should be achieved within a
domain-specific simulation tool and within a FMI 2.0 based
generic multi-simulation tool such as DACCOSIM.

C. Expected impact on performances and parallelization

One of the major challenges when managing events with
the FMI standard in hybrid multi-simulations is avoiding CPU
time waste. The new FMI functions we propose (see section
III-B) will help to avoid some rollbacks and re-computations:
• With function fmi21GetNextEventTime() a control FMU will

be able to communicate the date of its next known time
event. Master algorithms, such as the one implemented in
DACCOSIM, should be able to exploit this information

when defining the size of the new computation step: its end
will be aligned with the exact event time if initially included
in the considered time step. So, at the end of the time step,
the event will be routed to other FMUs without any delay
nor rollback.

• With function fmi21DoStep(), an FMU will be able to stop
its computation just after it has generated a state event,
and with function fmi21BreakPendingStep() it will be able to
request all other FMUs they stop their computations as soon
as they reach this event time. Thus the new DACCOSIM
master algorithms will take advantage of this behavior and
ask only the fastest FMUs, i.e. those whose computation
process had already exceeded the earliest event time before
getting the corresponding break signal, to roll back and rerun
a computation up to the event time.

Fig. 9 illustrates this last mechanism, considering 3 FMUs
running their doStep() functions concurrently on different CPU
cores. FMU1 generates a state event at the simulated time
t′i+1 and signals to all others FMU to stop their computation
at t′i+1 (calling fmi21BreakPendingStep()). But FMU2 achieves
very light computations and has already reached the end of
the simulated time step (ti+1). Then, FMU2 will roll back
to ti and re-run its computation up to t′i+1. At the opposite,
FMU3 is more computation intensive and benefits from the
FMU2 break signal to stop its computation when reaching
t′i+1, avoiding unnecessary computations (up to ti+1), rollback
and re-computation (up to t′i+1). Finally, complete execution
time on a multi-core processor will be shorter when resizing
the ongoing FMU computations. The fmi21BreakPendingStep()
function is also under discussion in the Working Group Clock
and Hybrid Co-simulation of the FMI project.

Better support of events in FMI-CS will allow to introduce
more FMU components devoted to control. These components
consume very few CPU time (fast control algorithms) but
increase communications (reading many sensor outputs and
sending command signals). So, this evolution should impact
FMU distribution algorithms on PC clusters, which optimize
both load balancing and inter-node communications [6].

V. FUTURE WORKS ON SMART GRID SIMULATIONS

Until now the FMI-CS standard allowed us to compute
different kinds of Smart Grid simulation from building ther-
mics [6] to MV network voltage management based on state-
estimation. These simple use cases permitted us to identify the
limits of the current standard and design new ways to over-
come them. In fact, integrating the proposed primitives into
the standard will be required in order to enable efficient and
accurate large, multi-physics and control-centric simulations.

In a near future, complex Smart Grid use cases involving (i)
distribution networks to control Distribution System Operators
(DSO) assets with new smart functions to ensure the absence
of constraints on the power grid, (ii) buildings and their
energy systems with control over elements such as heating,
ventilation and air conditioning, and (iii) energy actors to
control the flexibility of buildings and electrical vehicles, will
be performed (Fig. 10). So, important work is going to be



Fig. 9. Parallel execution of FMUs with different CPU loads, on a multi-core processor

Fig. 10. Illustration of model interactions of Smart Grid use cases

carried on several topics, among which: implementation of
the proposed FMI-CS add-ons in control FMUs generated
by Papyrus (https://eclipse.org/papyrus/), upgrade of the JavaFMI
API3 to support these evolutions, adaptation of the control
logic of DACCOSIM Master Algorithms to exploit them, and
design of new cluster deployment strategies.

A preliminary version of this work has been presented
in May 2016 in the Annex 60 project, an international
project conducted under the umbrella of the International
Energy Agency (IEA) within the Energy in Buildings and
Communities (EBC) Programme. Annex 60 will develop and
demonstrate new generation computational tools for building
and community energy systems based on Modelica, FMI and
BIM standards, contributing to smart power grid design. Then,
a more complete version has been introduced in June 2016
in the Working Group Clock and Hybrid Co-simulation of
the FMI project, and discussions are ongoing to attempt to
improve the FMI-CS standard.

ACKNOWLEDGMENT

Authors thank Region Grand Est and RISEGrid institute for
their support to this research.

REFERENCES

[1] K. Hopkinson, X. Wang, R. Giovanini, J. Thorp, K. Birman, and D. Coury,
“EPOCHS: a platform for agent-based electric power and communication
simulation built from commercial off-the-shelf components,” IEEE Trans-
actions on Power Systems, vol. 21, no. 2, May 2006.

[2] H. Lin, S. S. Veda, S. K. Shukla, L. Mili, and J. S. Thorp, “GECO:
Global Event-Driven Co-Simulation Framework for Interconnected Power
System and Communication Network,” IEEE Trans. Smart Grid, vol. 3,
no. 3, pp. 1444–1456, 2012.

[3] M. U. Awais, P. Palensky, A. Elsheikh, E. Widi, and S. Matthias, “The
high level architecture RTI as a master to the functional mock-up interface
components,” in International Conference on Computing, Networking and
Communications (ICNC), San Diego, USA, Jan. 2013.

[4] H. Neema, J. Gohl, Z. Lattmann, J. Sztipanovits, G. Karsai, S. Neema,
T. Bapty, J. Batteh, H. Tummescheit, and C. Sureshkumar, “Model-
Based Integration Platform for FMI Co-Simulation and Heterogeneous
Simulations of Cyber-Physical Systems,” in 10th International Modelica
Conference. Modelica Association and Linkoping University Electronic
Press, 2014.

[5] B. Camus, V. Galtier, and M. Caujolle, “Hybrid Co-simulation of FMUs
using DEV&DESS in MECSYCO,” in Proceedings of the 2016 Spring
Simulation Multiconference (TMS/DEVS’15), 2016.

[6] C. Dad, S. Vialle, M. Caujolle, J-Ph. Tavella, and M. Ianotto, “Scaling of
Distributed Multi-Simulations on Multi-Core Clusters,” in Proceedings of
25th International Conference on Enabling Technologies: Infrastructure
for Collaborative Enterprises (WETICE 2016), Paris, June 13-15 2016.

[7] V. Galtier, S. Vialle, C. Dad, J-Ph. Tavella, J-Ph. Lam-Yee-Mui,
and G. Plessis, “FMI-Based Distributed Multi-Simulation with DAC-
COSIM,” in Proceedings of the 2015 Spring Simulation Multiconference
(TMS/DEVS’15), 2015.

[8] X. Liu, E. Matsikoudis, and E. A. Lee, “Modeling timed concurrent
systems,” in Proceedings of the 17th International Conference on Concur-
rency Theory (CONCUR), ser. LNCS, C. Baier and H. Hermanns, Eds.,
vol. 4137. Springer, 2006.

[9] F. Cremona, M. Lohstroh, S. Tripakis, C. Brooks, and E. A. Lee, “FIDE -
An FMI Integrated Development Environment,” in Symposium on Applied
Computing, April 2016.


