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Abstract

The usual known methods for generating signals with given marginal probability and spectral proper-

ties cannot be applied to binary signals widely used in theoretical problems and communications systems.

To overcome this difficulty we first present some structural properties of power spectral densities, enabling

the precise definition of the concept of spectral properties. This allows us to introduce a new method

valid for symmetric binary random signals. This method uses some specific properties of filters with

random impulse responses. Results of computer simulations show clearly the good performance of this

method. Some extensions by using random thinning can further improve its performance.

Index Terms

Probability distribution, random coefficients, Bernoulli signals, non Gaussian signals and noise, signal

and noise modeling, statistical signal analysis.

I. INTRODUCTION

Binary signals are continuous or discrete time signals taking only two possible values. They play a

very important role in communication theory and are widely used in practical digital systems. Sequences

of values 0 or 1 are the best examples of discrete time (DT) binary signals. They are commonly used in
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Information Theory where the basic model of communication channel is the binary symmetric channel

and the input and output of which are binary signals. The same situation arises in computer science and

communication technology. In particular number of studies are devoted to channel equalization where

the analyzed signals are binary. This is also the case in various problems of detection and estimation

especially in radar or sonar systems. In this context the advantage of binary signals is the absence of

amplitude variation which introduces a better control of reverberation or clutter effects. Finally in passive

sonar the source detection with coincidence polarity correlation systems makes use of the covariance

function (CF) of binary signals, This is the origin of number of studies on the calculation of the CF of

clipped signals which are binary and symmetric. This justifies the interest of addressing the problem of

generating binary signals with given spectral properties.

In what follows, we shall only consider symmetric binary random signals characterized by the facts

that they take only the two values ±a, where a is a real amplitude, and that they are zero mean-valued.

This implies that they take the values ±a with the same probability 1/2, which in turns means that

their marginal probability distribution is a symmetric Bernoulli distribution. Note that the square of such

signals is constant and equal to a2, which then is also the value of the variance of these signals. In the

stationary case, which is assumed in all what follows except when it is otherwise indicated, the second

order properties of such signals are characterized by their covariance function γ(τ) in the continuous

time (CT) or γk in the discrete time (DT) case.

Let us present some additional comments about our statistical assumptions. The stationary assumption is

necessary as soon as we talk about spectral properties deduced from the CF. Indeed its definition requires

at least second-order stationarity. For the discussion that follows it is also important to assume that

the analyzed signals enjoy some ergodic properties. In short this means that ensemble averages which

are deduced from the statistical distribution of signals are equal to time averages which are obtained

in experimental or simulated measurements. We shall see below that all the signals introduced in our

analysis are more or less directly deduced from sequences of independent and identically distributed

(IID) random variables (RV). It is well known that such sequences satisfy the so called “strong mixing

condition” ensuring the validity of the strong law of great numbers, in such a way that they are weakly

and strongly ergodic. It is possible to verify that the signals presented in this paper are ergodic, but the

proof is technically rather complicated and does not belong to the main ideas presented below. Ergodicity

is here considered as a valid assumption. As a consequence of these statistical assumptions some signals

are excluded from the scope of our analysis. It is especially the case of periodic signals widely used in

many applications. Indeed they cannot be stationary because they are entirely determined as soon as they

are known on a finite time interval defining their period. In the DT case this means that such signals are
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completely described as vectors of finite dimension. Furthermore periodic signals have a line spectrum,

which excludes the existence of a power spectral density which is the main subject of what follows.

It is clear that a CT symmetric binary random signal (SBRS) is defined by its value at an arbitrary

time instant (origin of time) and by the sequence of points ti at which its sign changes. This set of times

constitute a random point process, and then to any point process it is possible to associate a corresponding

SBRS. When this process is a stationary Poisson process of density µ, the corresponding SBRS is the

random telegraph signal widely used in the literature (see p. 334 of [1]). It is a CT random signal with

the exponential CF γ(τ) = a2 exp(−2µ|τ |). It is, however, rather complicated to deduce the CF of a CT

SBRS from the statistical properties of the point process used for its construction. We then do not use

this approach in the following.

The problem addressed in this paper is the following: is it possible to construct a SBRS with given

covariance or given spectral properties, as specified below? This is a particular case of the known problem

of constructing a random signal with arbitrary marginal probability distribution and covariance function.

In Section II we shall present the most classical ideas leading to the possible solutions of this problem

and show that they cannot always be applied to SBRS either because they introduce assumptions that

are not satisfied by these signals or because they give solutions that do not satisfy some basic properties

that must be satisfied by any random signal. In Section III we motivate the concept of spectral properties

referred to in the title of this paper. We show in particular that it is possible to introduce in the set of

power spectral densities of unit power signals an equivalence relation which associates to any power

spectral density (PSD), sometimes simply called spectrum, a set of other spectra considered as spectrally

equivalent. This yields a partition of the set of PSDs into spectral equivalence classes and we show that

this equivalence relation can be expressed in terms of the structures of the signals. By using the random

filtering partially introduced in [2] we show in Section IV that for a given PSD Γ(ν) and its spectral

equivalence class introduced in Section III, it is always possible to construct at least one SBRS with a

PSD belonging to this equivalence class, that is, with the given spectral properties. We extend this result

under some conditions showing that it is always possible to construct a SBRS with a given PSD. Results

of some simulations and computer experiments are in very good agreement with the theoretical analysis.

Finally, we extend these results in the particular case of signals that are simultaneously symmetric binary

and moving average of order 1, usually noted MA(1), and this extension is illustrated by some computer

simulations.
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II. STATEMENT AND HISTORY OF THE PROBLEM

The most fundamental statistical properties describing a zero-mean stationary signal X(t) are its

marginal probability distribution and its CF. The first is the distribution of the random variable (RV)

X(t). For a stationary signal, this distribution is independent of time. Note immediately that these two

properties are coupled, in such a way that they cannot in general be defined independently. For example

both the CF and the marginal probability distribution determine the value of the variance of the signal.

The problem of generating a random signal with given marginal distribution and CF was first addressed

in [3], [4], [5] long time ago. The main idea was to process a Gaussian white noise by a sequence of

a linear filtering and an instantaneous nonlinearity. The covariance properties are specified by the input

linear filter while the marginal probability distribution determines the structure of the nonlinearity. It is

clear, however, that the two operations are in general coupled because the nonlinearity transforms the

CF, which implies that the structure of the linear filter cannot in general be determined without taking

into account the structure of the nonlinearity. As a consequence the method can fail because it can lead

to introduce CFs that are not non-negative definite (NND), a necessary property of such functions.

This especially appears in the case discussed in this paper where the marginal distribution of the signal

is a Bernoulli distribution. Indeed in order to transform a Gaussian signal into a SBRS the nonlinearity

which clearly seems appropriate is the perfect clipping. It transforms a signal X(t) into another one

Y (t) equal to 1 if X(t) > 0, to 0 if X(t) = 0, and to −1 otherwise. If X(t) is Gaussian and zero

mean valued this nonlinearity preserves the zero mean value and the output CF is given by the famous

expression γY (τ) = (2/π) arcsin[ρX(τ)], where ρX(τ) is the normalized CF of X(t) (see p. 141 of [1]).

By inverting this expression we get ρX(τ) = sin[(π/2)γY (τ)]. But for a given NND function γY (τ)

there is no reason for ρX(τ) = sin[(π/2)γY (τ)] to be NND, which makes impossible to generate the

corresponding signal X(t). An example of this situation is discussed in the last section.

A completely different solution of this problem was recently proposed in [6]. Its main advantage is

of decoupling the effects of the two constraints related to the probability distribution and the covariance

properties. Its major inconvenience however is the fact that this method requires that the marginal

probability density function (PDF) of the signal be symmetric and infinitely divisible. The first assumption

is obviously satisfied by symmetric SBRS but, on the other hand, that is not at all the case for the latter

assumption. This makes it impossible to use this method in the problem addressed in this paper. Finally

another approach for this problem was recently presented in the case of autoregressive and moving

average (ARMA) signals [2]. By using filters with random coefficients it is possible, under very general

conditions, to generate ARMA signals, i. e. signals with power spectrum having the structure of a rational
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fraction, with arbitrary probability distribution. It is this approach that will be extended without the ARMA

constraint and for SRBS.

According to the two more recent papers on this kind of problem it appears that there are not a

great number of references in the signal processing literature related to this subject. There are, however,

many references on similar problems in the statistical literature where Bernoulli distribution is of great

importance. The most significant references in our opinion are [7], [8] and the references therein. But

an important difference appears immediately. These papers are mainly devoted to the study of vectors of

finite dimension which is the standard situation in statistical problems, while spectral properties analyzed

in signal theory require the use of stationary signals or vectors of infinite dimension. This implies that

the use of linear or nonlinear filtering especially common in signal proceeding literature is rarely used

in pure statistical literature. This explains why most of the papers of this origin are not of a real interest

in the problem addressed in this paper.

III. CONCEPT OF SPECTRAL PROPERTIES

A. Definition of Minimum DSP

A DT random signal Xk is said to be of unit power (UP) if its variance σ2 satisfies σ2 = 1. This

is clearly the case of a SBRS taking only the values ±1. In this section we consider only UP signals.

This implies that their corresponding PSDs, or spectra, Γ(ν) are normalized, that is,
∫ 1/2
−1/2 Γ(ν)dν = 1.

Furthermore we assume in all what follows that the PSDs Γ(ν) used are bounded and continuous in the

interval [−1/2, 1/2]. This obviously excludes the case of PSDs containing spectral lines or random signals

(RS) with periodic components. Let µ be the minimum of the PSD Γ(ν) in the interval [−1/2, 1/2]. It

is clear that µ ≥ 0 because any PSD is a nonnegative function of ν. Furthermore µ ≤ 1 because Γ(ν) is

normalized as PSD of an UP signal. Thus, 0 ≤ µ ≤ 1. If µ = 0 we say that Γ(ν) is a minimum PSD.

If µ = 1 the PSD is equal to 1 and the corresponding signal is white. Let us introduce the PSD Γ̌(ν)

defined by

Γ̌(ν)
△
=

1

1− µ
[Γ(ν)− µ] . (1)

It is clear that this function is a normalized and minimum PSD. It is called the minimum PSD associated

with Γ(ν). Conversely we have

Γ(ν) = (1− µ)Γ̌(ν) + µ. (2)

B. Equivalence Class of Spectra

Let Γ̌(ν) be a given minimum PSD and Γµ(ν) the spectrum defined from Γ̌(ν) by (2) where µ ∈ [0, 1].

To the set of possible values of µ we can associate a set of spectra having the same minimum PSD.
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This set of spectra is clearly an equivalence class where the equivalence relation between two PSDs

means that they have the same minimum PSD Γ̌(ν). This equivalence class is denoted by CΓ̌ and called

an equivalence spectral class. The set of all these equivalence classes defines a partition of the set of

normalized PSDs.

It is clear that all these relations and concepts can be expressed in terms of the CF γk, the inverse

Fourier transform of Γ(ν). In the time domain the relation (2) becomes

γk = (1− µ) γ̌k + µδ[k], (3)

where δ[k] is the Kronecker delta symbol taking the value 1 for k = 0 and 0 otherwise. This exhibits

two of the main properties of the CFs γµ[k] associated with the spectra belonging to the equivalence

class CΓ̌: all these CFs satisfy γµ[0] = 1, which means that they are CFs of UP signals and for k ̸= 0

they are proportional. This will play an important role in the following analysis.

C. Spectral Properties of a Signal

By definition, all the elements of an equivalence class are equivalent and since this class is defined by

a specific minimum normalized PSD Γ̌(ν), we shall say that all these elements have the same spectral

properties. In other words finding a signal with specific spectral properties defined by Γ̌(ν) is equivalent

of finding an element of the equivalence class CΓ̌.

It is also interesting to write these relations in terms of the signals themselves. Let Xk be a UP SBRS

taking only the values ±1 such that its PSD ΓX(ν) belongs to CΓ̌. This means that (2) holds, where Γ

is replaced by ΓX . Let now Yk be defined by

Yk = BkXk + B̄kWk, (4)

where Bk is a sequence of IID Bernoulli RVs taking only the values 1 and 0 with the probabilities p and

q = 1−p respectively and B̄k = 1−Bk, and Wk is a white SBRS taking the values ±1 independent of Bk.

We further assume that Bk and Wk are independent of Xk. It results from these assumptions that Yk also

is a SBRS taking the values ±1 and that for i ̸= 0 the CFs of Yk and Xk are related by γY [i] = p2γX [i].

On the other hand the fact that Yk is UP implies γY [0] = 1. This yields γY [k] = p2γX [k] + (1− p2)δ[k],

where δ[k] is the Kronecker delta symbol taking the value 1 for k = 0 and 0 otherwise. After a Fourier

transformation we obtain

ΓY (ν) = p2ΓX(ν) + 1− p2. (5)

Since ΓX(ν) belongs to CΓ̌ it satisfies (2) where µ is replaced by µX , and using (5) yields

ΓY (ν) = p2(1− µX)Γ̌(ν) + 1− p2(1− µX), (6)
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which shows that ΓY (ν) also belongs to CΓ̌. Let µX and µY be the minimum values of ΓX and ΓY

respectively. We deduce either from (5) or (6) that

µY = 1− p2(1− µX), (7)

which shows that as p increases from 0 to 1, µY decreases from 1 to µX . As a result µY > µX , an

inequality useful in the following discussion.

If the PSD ΓX(ν) is minimum, which is specified by µX = 0, or, according to (2), if ΓX = Γ̌, it is then

possible to use (5) to reach all the elements of the equivalence class CΓ̌ by using (6) with µX = 0 and

the appropriate value p =
√
1− µY deduced from (7). This value used in (4) yields the corresponding

signal Yk. This shows that to each element of CΓ̌ we can associate a SBRS having this element as PSD,

which was the initial purpose of this paper.

On the other hand if ΓX(ν) is not minimum, which means that µX > 0, it is only possible with (6) to

reach a subset of CΓ̌. It is the set of PSDs ΓY (ν) given by (6) or PSDs of CΓ̌ such that their minimum

µY is given by (7). Their only constraint is that µY > µX and for any value µY satisfying this inequality

there exists a signal Yk deduced from Xk by (4) such that the appropriate value of p is given by (7) that

is, p =
√
(1− µY )/(1− µX).

The structure of (4) leads us to introduce in our discussion the concept of random filtering.

IV. BINARY SIGNALS WITH GIVEN SPECTRAL PROPERTIES BY RANDOM FILTERING

There is a case where the problem addressed in this paper has an evident and simple solution by using

linear filtering. This is in the case of Gaussian signals for which we can independently treat the problem

of the covariance generation and that of the probability distribution. This comes from the well-known

fact that a Gaussian signal remains Gaussian when it is processed by a linear filter and since all its

probability distribution is completely determined by its covariance it suffices to process a white Gaussian

noise with a linear filter to obtain a Gaussian signal, the second order properties of which being entirely

determined by the structure of this filter. Let us first briefly recall this classical procedure.

Consider a causal linear filter defined by its impulse response (IR) hk, k ≥ 0, or its frequency response

H(ν), the Fourier transform of hk. For the following discussion we introduce two parameters of this

filter defined by

S1
△
=

∞∑
k=0

|hk| ; S2
△
=

∞∑
k=0

h2k. (8)
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We assume that S1 < ∞ which is the necessary and sufficient condition for the filter to be stable in the

BIBO sense. Suppose now that the input is a zero mean Gaussian white noise Wk of unit power. The

corresponding output X̄k is given by

X̄k =
∞∑
l=0

hlWk−l . (9)

This is a zero-mean Gaussian signal with statistical properties entirely defined by its CF given by

γX̄ [g] =
∞∑
k=0

∞∑
l=0

hkhlδ[g − k + l], (10)

where g, last letter of lag, is an integer and δ[k] is the Kronecker delta signal defined before. In particular

the output power is given by

σ2
X̄ = γX̄ [0] =

∞∑
k=0

h2k = S2, (11)

and assuming that S2 in (8) is 1 yields that the output signal is an UP Gaussian signal.

Suppose now that Wk of (9) is a white UP SBRS. All the previous equations concerning the second

order properties remain the same. On the other hand there is no reason for the output X̄k to remain an UP

SBRS, because the sum of binary random variables is no longer binary. It is then necessary to introduce

another approach and the use of random filtering seems an interesting method. Random filtering appears

when the IR of the filter becomes random. Random filters are used in various fields of Signal Processing

[9], [10], [11]. The results presented in these papers, however, have no direct relationship with those used

for our specific problem.

The principle of filtering, however, is so important in the problems of signal processing that we

shall introduce a filtering procedure that preserves the probability distribution of the input while the

transformation of the CF is very similar to the one appearing in the standard linear filtering and given

by (10).

For this, consider the particular random IR defined as follows. Let Bk be a strictly white noise, that

is, a sequence of IID random variables. We assume furthermore that they are uniformly distributed in

the interval [0, S1], where S1 appears in (8). Consider also a partition of this interval in non-overlapping

intervals ∆l of measures δl = |hl|. The partition property is ensured because of (8). Let cl(x) be the

indicator function of the interval ∆l, which means that cl(x) = 1, if x ∈ ∆l and 0 otherwise. Finally let

ϵl = sign(hl), or ϵl = 1 if hl > 0 and −1 otherwise. The input-output relationship defining the random

filter used in this paper is

Xk =
∞∑
l=0

glkWk−l , (12)

where

glk = ϵlcl(Bk). (13)
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We assume also that the signals Bk and Wk are independent. Since the functions ci(x) are indicator

functions of subsets of a partition, they satisfy

ci(x)cj(x) = δ[i− j]ci(x), (14)

where δ is the Kronecker delta signal defined before. It results from this relation that the sum (or the

series) appearing in (12) contains in reality only one non-zero term. Indeed for each outcome bk of the

random variable Bk all the glk are zero except the one for which clk(bk) = 1. But the probability that

ci(Bk) = 1 is the probability that Bk belongs to the subset of [0, S1] defined by ci(x) = 1. Since Bk is

uniformly distributed in [0, S1], this probability is πi = |hi|/S1. As a result Xk defined by (12) takes the

values ϵiWk−i with the probability πi. This is the fundamental property of the filtering defined by (12).

Its first direct consequence is that, since the input Wk is binary symmetric, the output Xk enjoys the

same property. This follows directly from the previous remark that the only possible values of Xk are

ϵiWk−i and ϵi also takes only the values ±1. The symmetry comes from the fact that the expected value

of Xk is 0, as it appears directly in (12).

Note, however, that this result does not mean that the input Wk and the output Xk have the same

complete probability distributions. Indeed nothing is said about the joint probability distributions of the

values of the signal at different times. In reality we shall see below that the CFs of these signals are not

the same, which proves that the bivariate joint probability distributions are different.

The second direct consequence of (12) is that the CFs γX̄ [g] and γX [g] of X̄k and Xk respectively

are proportional for g ̸= 0.

The CF γX̄ [g] of X̄k is given by (10). Let us now calculate the CF γX [g] of Xk for g ̸= 0. Since, as

seen above, mX = 0, we have γX [g] = E[XkXk−g] and according to (12) we obtain

γX [g] =
∞∑

l1=0

∞∑
l2=0

ϵl1ϵl2E[cl1(Bk)cl2(Bk−g)]δ[g − l1 + l2], (15)

where the expectation is taken with respect to Bk and Bk−g which are independent. It results from the

definition of ck that E[cl(Bk)] = |hl|/S1, in such a way that

γX [g] = (1/S2
1)

∞∑
k=0

∞∑
l=0

hkhlδ[g − k + l], (16)

which, according to (10), yields γX [g] = (1/S2
1)γX̄ [g] for g ̸= 0.

We now shall show that the spectra of Xk and X̄k belong to the same spectral equivalence class. To

that end, note that for g = 0 we have γX [0] = γX̄ [0] = 1. For Xk this comes from the fact that it is

by construction a UP signal as indicated just above. For X̄k this results from (11) and the assumption

S2 = 1. This can be summarized in a single expression which is
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∀g, γX [g] = (1/S2
1)γX̄ [g] + cδ[g], (17)

where c = 1 − (1/S2
1)γX̄ [0] and δ[k] is the Kronecker delta symbol. Since γX̄ [0] = 1, as noted just

above, we get c = 1−1/S2
1 . Let us now show that S2

1 > 1. For this we start from (11) and we transform

this expression in terms of the frequency response H(ν) of the filter defined by hk. This yields

S2 =

∫ 1/2

−1/2
|H(ν)|2dν = 1. (18)

Since H(ν) =
∑

hk exp(−jωk), ω = 2πν, we deduce from (8) that |H(ν)| < S1, which yields S2
1 >

S2 = 1. Taking the Fourier transform of (17) yields the same relation in terms of PSDs, that is

ΓX(ν) = αΓX̄(ν) + 1− α, (19)

where α = 1/S2
1 and 0 < α < 1.

Comparing with (2), (5), or (6) we can say that the PSDs of Xk and X̄k belong to the same spectral

equivalence class, as defined in the previous section. Consequently we can say that Xk and X̄k have the

same spectral properties.

Let us review the steps of the procedure. Our purpose is to construct a UP SBRS with given spectral

properties. We start from a given PSD Γ(ν). Factorizing this function in the form |H(ν)|2 defines a linear

filter. Its impulse response hk can be deduced from H(ν). It is well known that this solution is not unique

because of the degrees of freedom concerning the phase of H(ν), which plays no role in the structure

of Γ(ν). However, there is a standard procedure used in prediction problems in which the factorization

problem has a unique solution when one introduces the condition that H(ν) is a filter that is causal

and such that its inverse is causal. The corresponding result is called the strong factorization of Γ(ν)

(see p. 222 of [1]). This form of factorization is not necessary in our problem. Its interest, however, is

that, because of its importance in prediction and estimation problems (Wiener filtering), there are a great

number of methods and algorithms for its realization. Having calculated the impulse response hk we can

construct the random filter used in (12). Its output is a unit power symmetric binary random signal and

according to (19) its PSD belongs to the same spectral equivalence class as Γ(ν). As a consequence the

RS Xk is a solution of the problem addressed at the beginning of this paper: it is binary symmetric and

has the desired spectral properties.

At this step of the reasoning we can address a more restrictive question : Is it possible to construct an

UP SBRS such that its PSD is not only in the equivalence class CΓ defined by Γ(ν) but is also equal to

Γ(ν) ? This is in fact the question addressed at the end of the previous section and we shall use more

precisely the results presented here.
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For this, let Γ̌(ν) be the minimum PSD of CΓ. The elements of this equivalence class are given by (2)

rewritten here

Γµ(ν) = (1− µ)Γ̌(ν) + µ, (20)

which shows that they depend only on the parameter µ, 0 < µ < 1. Then, our purpose is to find values

of µ such that Γµ(ν) is the PSD of an UP SBRS that can be constructed. For this purpose we begin by

calculating the factorization of Γ̌(ν) yielding as previously the coefficients hk used to define the random

filter generating the signal Xk by (12). The PSD of this signal is given by (19) taking here the form

ΓX(ν) = αΓ̌(ν) + 1− α, (21)

with α = 1/S2
1 . From this signal we calculate Yk defined by (4). Its PSD is given by (5) and is defined

by the parameter p appearing in the definition of this equation. Since the minimum value of Γ̌(ν) is zero

we deduce from (21) that µX = 1− α. Applying (7) yields

µY = 1− αp2, (22)

which implies that 1 − α < µY < 1. We deduce that for any µY satisfying these inequalities we can

calculate a value of p given by

p =
√
(1/α)(1− µY ) . (23)

This quantity is the probability of the Bernouli variable Bk used in (4) for computing Yk. This signal

satisfies the initial requirements: it is UPBS and its PSD is ΓY (ν) defined by

ΓY (ν) = (1− µY )Γ̌(ν) + µY . (24)

where Γ̌(ν) and µY , 1− α < µY < 1, are given in advance.

On the other hand it seems that there is no simple procedure to solve the same problem for the PSDs

of CΓ defined by (24) when µY < 1− α.

V. SIMULATIONS AND EXPERIMENTS

Let us first present the sequence of operations used in order to simulate the procedure of random

filtering presented above. Let Γ(ν) be a given PSD. The purpose is to generate a UP binary random

signal Xk that is stationary and such that its PSD belongs to the equivalence class defined by Γ(ν). For

this we use the following sequences of steps.

1. Factorization of the spectrum or search of the frequency response H(ν) of a causal linear filter

such that Γ(ν) = |H(ν)|2. This is a classical problem used for example in Wiener prediction where the
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filter must be not only causal but with minimum phase, condition not required in our problem. There are

number of possible algorithms for this purpose.

2. Calculation of the parameters of the random filtering. It is defined by the function glk given by

(13). In this equation ϵk = sign(hk), and Bk a strictly white noise with a marginal uniform distribution

in [0, S1] deduced from (8). There are number of possible computer methods to generate sequence of

values of such a signal.

3. The input of this system of random filtering is a signal Wk which is a sequence of IID binary RVs

taking the values ±1. This sequence is assumed to be independent of Bk. There are then two input signals

Bk and Wk and the output Xk is given by (12). This calculation is clearly the most complicated part

of the procedure. In the simulations presented below the calculation follows exactly the expression (12)

which is an extension of the classical convolution. But, as for the convolution, it is possible to introduce

fast algorithms not discussed since this work is more devoted to the principle of the method rather than

to its refinements. The signal Xk obtained with this method has the properties required at the beginning

of the procedure.

4. According to some properties of the PSD Γ(ν), it is possible to answer the question addressed at

the end of the previous section and to verify whether or not this method allows us to reach a signal Xk

whose the PSD is exactly Γ(ν).

We now present some experimental results on simulated data illustrating the previous theoretical

analysis. Suppose that the input signal Wk appearing in (9) and (12) is a strictly white SBRS, i. e.

a sequence of IID random variables with zero mean value and taking only the values ±1. Such a noise

can easily be simulated on a computer and a segment of its trajectory appears in Fig. 1. This figure

clearly shows that this signal is binary and takes only the values ±1. A statistical analysis of a set of

approximately 107 successive values of this signal confirms some of its expected properties. It appears

that its mean value is zero, which implies a symmetric probability distribution. Furthermore a second

order analysis shows that the values of this signal are uncorrelated, which shows that the signal is, as

expected, a white UP SBRS.

Consider now the minimum normalized PSD defined by

Γ̌Y (ν) =
1

10

sin2(10πν)

cos2(πν)
. (25)

It is easy to verify that its integral in the frequency domain |ν| ≤ 1/2 is 1, which justifies the term

normalized, and it is obvious that the minimum µ of this PSD is 0, which justifies the term minimum.

It is the PSD of the signal X̄k given by (9) when the input is an unit power white signal and when the

impulse response hk of the filter is hk = (1/
√
10)(−1)k for 0 ≤ k ≤ 9 and hk = 0 otherwise. The
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quantities S1 and S2 of (8) are equal to
√
10 and 1 respectively. This last value ensures that the output

is a UP signal.

A trajectory of this signal X̄k appears in Fig. 1 with the name Yk and exhibits the following main

properties. This signal takes only discrete values and applying (9) to an input taking only the values ±1

shows that the output of this filter takes only the values ±(1/
√
10)2k, 0 ≤ k ≤ 5. This appears on the

sequence SQ of 10 successive values of this simulated signal having the form

SQ = (1/
√
10)[4 −6 6 −8 10 6 −4 −2 0 2].

This clearly shows that the binary property of the input Wk is not preserved after the classical linear

filtering (convolution) defined by (9). Furthermore a statistical analysis of a long sequence of values of

this signal shows that, as expected, its mean value is 0 and its variance is 1. It belongs then to the class

of UP signals introduced above.

It remains for us to consider the case of the signal Xk defined by (12). A section of its trajectory

appears in Fig. 1. As expected, this signal is binary and takes only the values ±1. This obviously implies

that its variance is 1 which means that, like Xk, it is of unit power. A statistical analysis of a long

sequence shows that its mean value is 0, which implies that it is symmetric, and thus is, like the input

Wk, an UP SBRS. But their second-order statistical properties are different and we shall now verify that,

as expected, X̄k and Xk have the same spectral properties.

For this purpose it suffices to verify that, according to (16), their covariances are proportional for

g ̸= 0. Results of covariance measurements are presented in Table 1.

In line 1 we present the values of the normalized theoretical covariance function (CF) given by (10)

applied when Wk is white and when the filter is the one used in experiments reported in Fig. 1. This CF

is normalized because X̄k is an UP signal. As previously noted, this comes from the property S2 = 1

of the filter used in our experiments. These values appear for 0 ≤ g ≤ 12, but γX̄ [g] = 0 for g ≥ 10.

Lines 2 and 3 are experimental values obtained when the input white noise Wk is a SBRS as in the

experiments reported in Fig. 1. The results of lines 2 and 3 correspond to the signals X̄k (filter (9) or

convolution) and Xk of (12) respectively.

Comparison between lines 1 and 2 shows that the results are exactly the same which means that the

measured CF of the signal X̄k corresponds exactly to its theoretical value given by (10). On the other

hand the purpose or the results of line 3 is to verify that, according to (16), the CFs of X̄k and of Xk are

proportional for g ̸= 0. For the clarity, we note that (17) can be written γX [g] = αγX̄ [g] with α = 1/S2
1 .

It results from this that (1/α)γX [g] is theoretically equal to γX̄ [g] for g ̸= 0 and line 3 presents the results

of measurements of (1/α)γX [g], which simplifies the comparison with lines 1 and 2. We observe that
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the experimental results corresponds with a good precision to theoretical values. The small differences

between them comes from statistical errors due to the structure of the random filter (12) introducing

a randomness that was not present in the classical convolution. We have verified that these additional

statistical errors decrease after increasing of the duration of the covariance measurements.

In concluding this section we can say that most of the results obtained by the theoretical analysis are

in quite good agreement with those obtained by measurements on simulated data. This confirms that the

method of random filtering introduced above is a quite a good way to generate signals with specified

spectral properties.

TABLE 1. FIRST TWELVE VALUES OF

NORMALIZED COVARIANCE FUNCTIONS

γ[g] \ g 0 1 2 3 4 5 6

1 1 −0.9 0.8 −0.7 0.6 −0.5 0.4

2 1 −0.900 0.800 −0.700 0.600 −0.500 0.400

3 −0.900 0.806 −0.692 0.598 −0.500 0.402

γ[g] \ g 7 8 9 10 11 12

1 −0.3 0.2 −0.1 0 0 0

2 −0.300 0.200 −0.100 0.000 0.000 0.000

3 −0.302 0.197 −0.107 −0.003 −0.001 −0.003

VI. EXTENSION BY RANDOM THINNING

A. Statement of the Problem

In order to simplify the presentation, we shall restrict the following discussion to the very simple, but

nevertheless typical, problem of constructing a UP SBRS which is also MA(1) with a given CF. Let us

be reminded that the CF of a MA(1) signal of UP is defined by only one parameter and takes the general

form

γ[g] = δ[g] + γ{δ[g + 1] + δ[g − 1]}. (26)

The parameter γ however is not arbitrary but must satisfy the condition |γ| < 1/2 which is necessary

to ensure that γ[g] is non-negative definite. It is easy to verify that if this condition is not satisfied the

Fourier transform of γ[g] takes negative values and cannot be a PSD. Before describing the thinning

method we shall present the limitations of the other known solutions.
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B. Perfect clipping Method

This method was partially introduced in Section II where it was shown that it can in some cases be

useless because it leads to a CF that is not positive definite, yielding a PSD taking negative values. This

appears in particular when the Gaussian input Xk is a MA(1) signal. In this case the clipped signal Yk is

a UP SBRS and the relation between the CFs of X and Y is γY [g] = (2/π) arcsin{γX [g]}. This implies

that if X is a MA(1) signal, Y is also MA(1) and their covariance are given by (26) where γX and γY

are related by γY = (2/π) arcsin(γX). This yields γX = sin[(π/2)γY ]. But the values of γY satisfying

1/3 < γY < 1/2 imply γX > 1/2 which means, as indicated just before, that the corresponding CF is

not NND. This elementary example shows that this method cannot generate a SBRS with the CF of a

MA(1) signal defined by γY if 1/3 < γY < 1/2. This is the principal limitation of this procedure.

C. Random Filtering

It is well-known that a MA(1) signal can be generated by filtering a white noise in a RIF filter

the impulse response of which has only two non-zero coefficients h0 and h1. This greatly simplifies

the structure of the random filtering defined by (12). This expression is also limited to two terms and

becomes

Xk = BkWk + B̄kWk−1, (27)

where Wk is a white SBRS taking the values ±1 and Bk or B̄k have the same meaning as in (4). It is

clear that Xk is a SBRS taking the values ±1 and it results from our assumptions that its CF γX [g] is

zero if |g| > 1. It is then a MA(1) signal of unit power and with γX [1] = pq. But the maximum value

of pq when p ∈ [0, 1] is 1/4, which means that this procedure cannot generate symmetric binary MA(1)

signals with γX [1] > 1/4. This means that this procedure is worse than that of clipping of Gaussian

MA(1) signals. Let us show that it is possible to overcome this inconvenience by using an appropriate

method of thinning.

D. Random Thinning

Let us first introduce this procedure. For this consider the signal Xk defined by

Xk = BkXk−1 + B̄kWk , (28)

where Bk has the same definition as in (4) or in (27). It results from the ideas appearing in [2] that Xk

is a SBRS signal with unit power but is also AR(1). Its covariance function is γX [g] = p|g|, where p is

the probability that Bk = 1. To pass from this signal to another Yk which is quasi MA(1) we can use

the procedure of random thinning.
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The covariance between X1 and X2 is p while the covariance between X1 and XD is pD. If D is

sufficiently large we can regard these values as being uncorrelated. This leads us to suppress all the values

of X from X3 to XD−1 and to define Y so that Y1 = X1, Y2 = X2, Y3 = XD, and Y4 = XD+1. The

same procedure of thinning can be applied for the values of Xk corresponding to k posterior to D + 1

which yields a signal Yk. Its first fundamental property is that it is of course still a SBRS like Xk from

which it is constructed. Furthermore, the covariance between successive values are either 0 or p.

Since the covariance between successive values of Yk is either 0 or p with the same probability, its

value measured by time averaging is equal to p/2 and is approximatively zero for delays greater than 1.

This is why we use the term of quasi MA(1) signal, and also note that the quality of the approximation

improves with D.

It is clear on this model that obtaining a covariance between successive values of Yk equal to 1/2, which

is the maximum possible for an MA(1) signal, would require that p = 1. This is impossible because all

the RVs Bk would be equal to 1 and the model (28) would introduce a constant signal, which is without

interest.

It is however interesting to verify these properties in a computer experiment. It is easy to generate

trajectories of the signal Xk given by (28). The results are summarized in Table 2.

We realized by computer simulations various trajectories of the signals Xk and Yk by applying the

algorithms coming from their definition. For Xk it is sufficient to apply (28) and the only arbitrary

parameter of this algorithm is the probability p. For Yk it is also necessary to specify the value of the

delay D used for its definition. This is done by calculating the value pD which is the covariance between

the values of X for k and k +D in such a way that this covariance is smaller than the statistical error

appearing in covariance measurements. For the three values of p chosen in our experiments (0.6, 0.8, and

0.9) the associated values of D are such that pD are equal to 2× 10−7, 1.5× 10−6, and 2.5× 10−5. We

have thus verified that the resulting signals Xk and Yk take only the values ±1 with a zero mean value,

which means that they are effectively SBRS. The line “theory” indicates the value of the covariance

given by pg for g = 0, 1, and 2. The line Xk displays the first three values of its covariance and it is

the same presentation for the line Yk. It appears in almost perfect agreement between theoretical values

and measurements in the AR case or for Xk. For the line Yk we observe that the expected results are

obtained within the statistical precision of our measurements. The values of γg for g = 1 are effectively

the half of those obtained for Xk, while they are almost zero for g > 1. We have verified that in this case

the values of the CF of Yk are of the order of 10−6. It is clear that the precision of the measurements

depends of the number of values of Xk generated by (28) which is here of the order of 107. A greater

number of such values would yield a better precision.
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The main conclusion of these measurement is that the proposed method yields the possibility to generate

SBRS of unit power that are MA(1) and for which the only nonzero value to the covariance function

can take any value in the interval [0, 1/2[.

VII. CONCLUSION

The purpose of this paper was to introduce appropriate methods to generate binary symmetric random

signals with given spectral properties. After justifying the interest of binary signals due to their use either

in various problems of Information Theory or in number of digital communication or Signal Processing

systems, we have noticed that the standard methods already known for generating random signals with

given covariance properties and given marginal distribution are in general inefficient in the case of binary

signals because they can lead to covariance functions that are not non-negative, which implies that power

spectral densities (PSD or spectrum) take negative values. Since binary signals taking only the values ±1

are signals of unit power, we have first analyzed more precisely the structure of their PSD. In particular,

in order to define the concept of spectral properties of a signal, we have introduced an equivalence

relation between PSDs of signals with unit power leading to a partition of the space of PSDs in classes

of equivalence. This was the basis of the definition of spectral properties meaning that two signals have

the same spectral properties if their corresponding PSDs belong to the same class of equivalence. This

partition is not only a theoretical mean but we have also shown that it can be interpreted in terms of

signal processing by introducing a procedure allowing the generation of all the signals belonging to

the equivalence class defined by a given spectrum. For this purpose we have introduced a new kind of

signal filtering extending the classical concept of linear filter by using random impulse response. This

procedure of statistical filtering can also be realized by computer simulation and used in a computer

experiment yielding results confirming the validity of the method. This method was finally extended by

using a procedure of random thinning sometimes used in simulations of point processes and computer

experiments with MA(1) signals indicate very good performance of this method.

Appendix : List of acronyms used in the text

ARMA : Autoregressive and moving average,

CF : Covariance function,

CT : Continuous time,

DT : Discrete time,

IID : Independent and identically distributed,

MA(1) : Moving average of order 1,
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NND : Non-negative definite,

PDF : Probability density function,

PSD : Power spectral density,

RS : Random signal,

RV ; Random variable ;

SBRS : Symmetric binary random signal,

UP : Unit power.
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TABLE 2. COVARIANCE FUNCTIONS OF AR(1) AND MA(1) RANDOM BINARY SIGNALS

γ0 γ1 γ2

p = 0.6

TheoryAR 1 0.6 0.36

Xk 1.0000 0.6003 0.3600

Yk 1.0000 0.3003 0.0013

p = 0.8

TheoryAR 1 0.8 0.64

Xk 1.0000 0.8001 0.6403

Yk 1.0000 0.4016 0.0047

p = 0.9

TheoryAR 1 0.9 0.81

Xk 1.0000 0.9000 0.8100

Yk 1.0000 0.4523 510−5
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Fig. 1. Trajectories of simulated signals.
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