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Université Paris-Saclay), 3 rue Joliot Curie, 91192 Gif-sur-Yvette,

France, (e-mail: {Nicolo.Gionfra; Houria.Siguerdidjane;
Guillaume.Sandou}@centralesupelec.fr).

∗∗ EDF R&D, Department STEP, 6 quai Watier, 78401 Chatou,
France, (e-mail: damien.faille@edf.fr).

Abstract: The problem of controlling a wind farm for power optimization by minimizing the
wake interaction among wind turbines is addressed. We aim to evaluate the real gain in farm
power production when the dynamics of the controlled turbines are taken into account. The
proposed local control enables the turbines to track the required power references in the whole
operating envelope. Simulations are carried out based on a wind farm of 600 kW turbines and
they show the actual benefit of considering the wake effect in the optimization algorithm.
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1. INTRODUCTION

Technology and control methods for wind energy pro-
duction through the use of wind turbines have nowadays
reached a mature level of the state of the art. Variable-
speed-variable-pitch wind turbines allow a good degree
of adaptability to a wide range of wind conditions for
the maximum power capture. Nonetheless, new challenges,
as the ones posed by Europe 2020, and opportunities,
thanks to developments in the field of control and opti-
mization, have pushed the target further ahead towards
a better exploitation of the wind source. For this reason,
in recent years, we have witnessed a relevant increase in
the installation of wind farms composed of several wind
turbines, e.g. more than one hundred for some offshore
wind farms. This in turns suggested to take in consider-
ation aerodynamic interaction among the turbines when
the power maximization of large wind farms is concerned.
Indeed, when extracting kinetic energy from the wind, a
wind turbine causes a reduction of the wind speed in the
downstream wake. As a result a turbine, standing in the
wake of an upstream one, experiences a reduction of avail-
able wind power (see Gebraad et al. (2013)). Intuitively as
the number of wind turbines of a wind farm increases, the
wake effect becomes more important, so that considering it
when optimizing the wind production proves potential gain
with respect to classic individual turbine maximum power
point tracking (MPPT), (e.g. Park and Law (2015)). This
mainly justifies a growing interest in cooperative methods
to control wind turbines belonging to large wind farms.
One of the difficulties when dealing with wind farm power
maximization subject to wake interaction lies in the solu-
tion of the optimization problem itself. This is mainly due
to the lack of reliable models of the involved aerodynamic
phenomena and, even when the latter are available, simpli-
fication is needed to let practical implementation feasible.

Indeed, since a new optimization needs to be run each
time that wind conditions change, one important feature of
the optimization algorithm is fast convergence. As a result
two main approaches to the optimization problem have
been explored. On the one hand, model-free, data-driven
methods have been employed by Marden et al. (2013),
Gebraad et al. (2013), and Park and Law (2016), inspired
by game theory and decentralized approaches. On the
other hand, model-based optimization has been proposed,
as in (Tian et al. (2014)), and (Park and Law (2015)),
where a trade-off between model complexity and speed of
convergence to a solution has to be taken into account.
However, as stated by Marden et al. (2013), the afore-
mentioned optimization algorithms assume the existence
of local control strategies for individual wind turbines
that can stabilize around any feasible optimal set point,
solution of the wind farm optimization problem. Even if
proving a potential benefit in the amount of extracted wind
power, these assumptions are not necessarily realistic as
either the dynamics of the optimization variables and the
performance of the local controllers play an important role
in the actual gain. In this paper we address the problem
of maximizing a wind farm power production, based on
a static optimization at high level for optimal set points
generation and local control at low level to stabilize the
wind turbines around them. Nonetheless we mainly focus
on the local controller performance to demonstrate what
can actually be achieved by means of the proposed hierar-
chical architecture. In literature few works have analyzed
the effective gain of wind farm optimization under wake
effect when the dynamics of the controlled turbines are
considered. In (Heer et al. (2014)) a local controller based
on system linear approximation is employed and it shows a
1% energy gain with respect to classic greed control, where
farm optimization would not be performed.



The central aspect that motivated this work is that, when
cooperative optimization is employed, the optimal set
points delivered to each turbine in the wind farm can
deviate from the classic power references typically used
in greed control. As it is well known, the former consist in
the MPPT algorithm at low wind speed, and in stabilizing
the power at its nominal value at high wind speed (see
Ackermann (2005)). To do so, according to the current
value of wind speed, references for the turbine rotor angu-
lar speed and for the pitch angle are obtained via the static
aerodynamic relation between the mentioned variables and
the aerodynamic power. However, when the desired aero-
dynamic power is lower than its optimal value, different
set points for the rotor angular speed and the pitch angle
must be provided. This is the case when considering the
wake effect, as, to optimize the global power production,
upstream turbines would degrade their own power produc-
tion in order to increase the one of downstream turbines.
Even though different strategies have been proposed in
the literature for the choice of the local set points (e.g.
Yingcheng and Nengling (2011), Žertek et al. (2012)),
in the most cases the control architecture is based on
standard linear controllers such as PID (e.g. Ramtharan et
al. (2007)) and gain scheduling approaches (e.g. Wang and
Seiler (2014)). To the extent of our knowledge, nonlinear
techniques applied to the turbine control as in (Thomsen
(2006)), and (Boukhezzar and Siguerdidjane (2011)) are
conceived for well-defined operating modes, again either
MPPT or power limiting at high wind speed. As a con-
sequence their application for the entire turbine operating
envelope as well as their extension to the more general task
of tracking non conventional power references is not trivial.
In this paper we employ a nonlinear control for power
tracking, based on a combination of feedback linearization
(FL) technique and model predictive control (MPC). The
controller is applied to 600 kW turbines, and they are not
confined to work in a specific region, i.e. no assumptions
were made concerning the wind speed.
The rest of the paper is organized as follows. In Section 2
the wake and the wind turbine model are provided. The
main control problem and its objectives are stated in
Section 3. In Section 4 we present the proposed local
control architecture. We carry out simulations to test
performance at the wind farm scale in Section 5. The paper
ends with conclusions and future perspectives in Section 6.

2. WIND FARM MODELING

This section is composed of two main parts. In the first one
we consider an analytic representation of the wake model
and the global wind farm power function. The reason is
twofold. Firstly, this model will serve for the computation
of the optimal set points via a gradient-based optimization.
Secondly, we aim to use it for a dynamic simulation of the
wind farm. In the second part we derive the wind turbine
model. The composition of the two models let us describe
the global wind farm functioning.

2.1 Wake model and global power function

The wake model describes the aerodynamic coupling
among the wind turbines of a wind farm. In other words,
it is a mathematical representation of the phenomenon

according to which the wind blowing on the rotor disk of
a given turbine is influenced by the free stream wind u∞
blowing on the wind farm and by the operating conditions
of all the upstream turbines. For the sake of simplicity
we assume the wind speed u∞ uniform and its direction
ϑW constant. In addition, without loss of generality, we
consider the wind turbines oriented in the direction of
the free stream wind. This simplification is allowed mainly
because the slow yaw angle γ dynamics is decoupled from
the other turbine variables. It can be argued, though,
that the optimal choice of γ values in a wind farm lead
to a power production improvement, as shown by Park
and Law (2015). Nonetheless, consideration of γ for wind
farm optimization goes beyond the scope of this paper,
which is to evaluate the actual power gain when the system
dynamics is taken into account. For the same reason we
do not aim to evaluate the effectiveness of the proposed
approach with respect to less restrictive assumptions on
the wind source. If the latter are to considered the higher
level optimization should be complexified, and this is sub-
ject of future near work. As a consequence, for the stated
purpose of this work, the turbine operating conditions
having an impact on the wake effect can be represented
via the induction factor α , (u∞ − uR)/u∞, where uR is
the wind speed right behind the rotor disk of a turbine.
Variable α serves as an indicator of the extracted power
from u∞. Indeed, the latter has a theoretical value of

P ,
1
2ρπR

2u3
∞4α(1− α)2η (1)

where ρ is the air density, R the radius of the rotor
disk, η ∈ (0, 1) the efficiency, and Cp , 4α(1 − α)2

the theoretical power coefficient. From the latter one can
easily find the Betz limit Cp,Betz = 0.59 corresponding
to a value of αBetz = 1/3. Note that operating a turbine
at αBetz corresponds to extracting the maximum power,
i.e. MPPT. However, in real applications, Cp is typically
provided in turbine specifications as a look-up-table, so
that Cp,real ∼= Cpη. In the sequel we make use of a
continuous wake model presented by Park and Law (2015).
Here we employ a simplified version of the latter, since for
the choice we made, γ does not intervene in the model
equations. The reader may refer to the aforementioned
reference for a more complete description. According to
the model, a turbine i, in a wind farm of N turbines,
experiences a wind deficit with respect to u∞ such that
ui = u∞(1−δūi), where δūi is the result of multiple wakes
due to all the upstream turbines j with respect to turbine
i. A widely used method to take into account multiple
wakes is the conservation of kinetic energy (see Katic et
al. (1986)) given by

δūi =

√√√√ N∑
j=1|j 6=i

δū2
ijϕ(i, j, ϑW )

where ϕ(i, j, ϑW ) , 1
2(1+sign(y′i−y′j))abs(sign(y′i−y′j)) is

a simple way to determine whether a turbine j is upstream
with respect to the turbine i, (j → i), given a wind
direction ϑW , and y′i , xisin(ϑW ) + yicos(ϑW ) is the
rotated coordinate with respect to the original system of
coordinates shown in Fig. 1. The wind speed deficit due to
the single wake of j → i is a function of the wind direction,
wind farm geometry and induction factor αj of turbine j,



Fig. 1. Single wake and wind farm coordinates.

according to

δūij = 1
πR2

∫ 2π

0

∫ R

0
δuij(dij , rij , r′, θ′, αj)r′ dr′dθ′

where δuij , 2αj
(

R

R+ κdij

)2
exp

(
− r

R+ κdij

)2

and r =
√

(rij − r′cosθ′)2 + (r′sinθ′)2, being (r′, θ′) the
local polar coordinates on the rotor disk of turbine i,
and κ the wake expansion rate depending on the surface
roughness of the site. In addition dij , rij are uniquely
determined via the wind farm geometry and wind direction
as show in Fig. 1. Finally, if we define α , (α1, . . . , αN ),
the global wind farm mechanical power can be expressed
as the summation of individual powers, as

Ptot =
N∑
i=1

1
2ρπR

2u3
i (α, u∞, ϑW )Cp(αi)η (2)

2.2 Wind turbine model

The wind turbine model describes the conversion from
wind power to electric power. The wind kinetic energy
captured by the turbine is turned into mechanical energy
of the turbine rotor, turning at an angular speed ωr and
subject to a torque Tr. In terms of extracted power, it can
be described by the nonlinear function

Pr = ωrTr = 1
2ρπR

2v3Cp,real (λ, ϑ) (3)

where ϑ is the pitch angle, v is the equivalent wind speed
representing the wind field impact on the turbine, obtained
by filtering the time series of wind data as described by
Petru and Thiringer (2002), λ is the tip speed ratio given
by λ = ωrR

v . The main difference with respect to (1)
is concerned with Cp. If for wind farm modeling it is
convenient to describe the latter as a function of α, in
order to synthesize a local controller a relation between
Cp and the controlled variables ωr, and ϑ is needed. It is
then clear that (λ, ϑ) and α are related, so that by acting
on them we are able to control the value of α. In this work
we make use of the CART (Controls Advanced Research
Turbine) power coefficient, shown in (Boukhezzar and
Siguerdidjane (2011)), so that Cp,real ≡ Cp,CART . A drive
train turns the slow rotor speed into high speed on the
generator side, ωg. As in (Boukhezzar and Siguerdidjane
(2011)), and (Thomsen (2006)), we use a two-mass model
represented in Fig. 2, where Jr is the rotor inertia, Ks

is the spring constant, Ds is the damping coefficient, ng
the gear ratio and Jg the generator inertia. If we neglect
the generator loss, then the electric power delivered to the
grid is Pe = Tgωg, where Tg is the torque applied to the
generator. The implicit dynamic model is then obtained
by applying the Newton’s law. It follows the same system
of differential equations as in (Thomsen (2006))

Fig. 2. Two-mass model of the turbine mechanics.
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where the state δ was introduced to describe the twist of
the flexible drive train. Moreover the last two equations
in (4) depict the dynamic of the system actuators: respec-
tively the pitch angle and the generator torque actuator.
Their dynamics are supposed to behave as a first order sys-
tem. The controlled input of the system is u , [ϑr Tg,r]>,
its state vector is x , [ωr ωg δ ϑ Tg]>, and we
suppose to measure the vector y , [ωr ωg ϑ Tg]>, to
which we add a zero-mean Gaussian noise to model the
measurement noise. It is easy to see that the system is
affine in the control, i.e. of the form{

ẋ = f(x, v) + g(x)u
Pe = h(x)

where f(x, v), g(x) can be identified from equation (4)
and h(x) , Tgωg. Note that v acts as a disturbance and it
makes the system time-varying for v is a function of time.
The CART turbine parameters and physical limitations
are provided in (Boukhezzar and Siguerdidjane (2011)).

3. PROBLEM STATEMENT

3.1 Control objectives and optimization for the wind farm

The high level control is responsible for the generation of
the optimal power set points for a given value of u∞, and
ϑW . This means that the first control objective is to solve
the following optimization problem.

α∗ = arg max
(α1,...,αN )

Ptot(α, u∞, ϑW )

subject to
0 ≤ αi ≤ αBetz i = 1, . . . , N

(5)

Where the objective function in (5) is given by (2).
We remind that a choice of αi = αBetz corresponds to
the MPPT power reference to the turbine i. Note that,
according to the chosen wake model, the optimal global
wind farm power P ∗tot depends on parameters (u∞, ϑW ),
whereas the optimal value α∗ only depends on ϑW . This
basically means that the optimization needs to be run each
time that the wind direction changes.
In this paper we do not focus the attention on the wide
range of possibilities to solve the presented optimization



problem, for which some relevant references are given in
Section 1. Here we choose a gradient-based optimization
method as in Park and Law (2015). In particular we
employ available MATLAB R©software based on SQP.

3.2 Control objectives for an individual wind turbine

In standard conditions, when operating below the rated
power, a wind turbine is controlled to extract the maxi-
mum power from the wind. For a given effective wind speed
v, the former is given by

PMPPT,i = max
(ωr,i,ϑi)

Pr,i(ωr,i, ϑi, v) (6)

However, when optimization (5) is performed, α∗i is related
to the amount of power that the turbine i has to extract
from the wind in such a way that the optimal deloaded
power reference, for a given v, is

P ∗i = PMPPT,i
Cp(α∗i )η

Cp,CART (ωr,MPPT,i, ϑMPPTi, v)
being (ωr,MPPT,i, ϑMPPT,i) argument of optimization (6),
related to turbine i. Since P ∗i can assume values above the
turbine nominal power Pe,n, the overall power reference
for the generic turbine i is

∀t ≥ 0 : 0 ≤ P ∗e,i(t) ≤ min(P ∗i , Pe,n) (7)
In the sequel we drop the index i when referring to a single
turbine for ease of notation. Since according to (3), for a
given P ∗e < PMPPT , the choice of (ω∗r ,ϑ∗) that yields P ∗e is
not unique, there exist different strategies to deload a wind
turbine. They are typically based either on pitch control
or on speed control (see Yingcheng and Nengling (2011)).
The former consists in keeping ωr at its MPPT value, and
modifying the pitch angle. The latter involves operating
the turbine at increased rotor speed. This second approach
seems to be preferable. Indeed, if the wind turbine has
to be deloaded, part of the mechanical power Pr can be
used to increase the rotor speed. As a result, part of the
undelivered energy to the grid can be stored in the rotor
kinetic energy

∆Wk = 1
2Jr(ω

2
r,increased − ω2

r,opt) (8)

If then, temporary additional power needs to be delivered
to the grid the rotor has to slow down back to its MPPT
value and the surplus of kinetic energy can be released
to the grid. In this paper we make use of the strategy
proposed by Žertek et al. (2012) which allows the turbine
to work at an optimal operating point with respect to the
amount of kinetic energy of the rotating masses. When
deloading needs to be performed the set points of (ωr,ϑ)
are calculated using

(ω∗r , ϑ∗) = arg max
ωr,ϑ

ωr, subject to

P ∗e = Pr(ωr, ϑ, v)
ωr,min ≤ ωr ≤ ωr,n
ϑmin ≤ ϑ ≤ ϑmax

(9)

3.3 Problem formulation for an individual wind turbine

Consider the system described by equation (4). Given
an effective wind speed signal v(t) and a time-varying
reference trajectory of power P ∗e (t) verifying (7) and
such that it is an admissible steady state target for

system (4), i.e. ∀t ≥ 0 it always exists an admissible
solution (xs(t), us(t)) to the following set of equations.{

0 = f(xs(t), v(t)) + g(xs(t))us(t)
P ∗e (t) = h(xs(t))

(10)

We can define the control problem as that of finding the
input vector u(t) that minimizes the distance between the
system variables (x(t), u(t)) and the pair (xs(t), us(t)),
∀t ≥ 0. Note that (10) has to be solved together with
the solution of (9), thus yielding a unique solution. In
addition, in this paper, we make use of an observer to
determine, among other relevant variables of the system,
an estimation of the effective wind speed v, namely v̂,
blowing towards the turbine axial direction.

4. LOCAL CONTROL ARCHITECTURE

As it has been said, the proposed local controller is based
on the composition of two techniques which basically di-
vide its design in two phases: the FL and the MPC stage.
While MPC allows to deal with state and inputs con-
straints explicitly, FL enables solving an optimal control
problem with nonlinear constraints and whose underlying
dynamic system is made linear by the FL itself, (see
Nevistić and Morari (1995)).
In this section we state the main motivations that led us to
the choice of this particular architecture and we provide
a brief description of the proposed local controller. The
reader can refer to our previous work in (Gionfra et al.
(2016)) for details of its design.

4.1 Choice of FL+MPC architecture

For the choice made, the question arises: why not directly
employ nonlinear MPC (NMPC)? The FL+MPC archi-
tecture for the sake of wind turbine control is mainly
motivated by the following:
• Reduction of computational burden: FL together with

some approximations of the nonlinear constraints
yields a quadratic program (QP). Being the system
nonlinear, NMPC would lead to the employement
of non linear programming (NLP) techniques, which
generally imply a substantial increase of the compu-
tational burden, (see Nevistić and Morari (1995)).

• Reduction of system approximations: NLP tech-
niques, such as SQP, are based on local approxima-
tions on either the objective function and the problem
constraints. The chosen architecture only requires
approximations on the latter in order to reduce the
problem to a QP.

• Choice of MPC ingridients: being the system exactly
linearized, FL can simplify the choice of some MPC
ingridients, e.g. the terminal cost function. Also, the
solution of the QP is a global optimum and this fact
could help for the sake of stability analysis, as it
represents a usual assumption in the classic proof of
stability, (see Rawlings and Mayne (2009)).

4.2 Local Control Scheme

The overall local controller is composed as follows (see
Fig. 3). Being the wind speed value not directly avail-
able and the anemometer measurement poorly reliable,



Fig. 3. FL + MPC scheme.
as previously stated, we employ a Kalman filter for the
estimation of the effective wind speed and the system
state. For the sake of brevity we do not provide here the
filter equations. The reader may refer to (Boukhezzar and
Siguerdidjane (2011)) for the basic concept and imple-
mentation in the case of wind turbine control. As far as
the controller is concerned, a first FL stage is employed
to linearize system (4). As in Thomsen (2006), FL is
employed to target directly the system non linearity and
it makes use of a change of coordinates, which defines the
new system state variables

ξ , Tξ(x) = [x1 Lfx1 x2 x3 x5]>

and of the linearizing input

ϑr,FL , ϑr = 1
β(ξ, ϑ, v) (−α(ξ, ϑ, v, v̇) + vϑ)

where vϑ is left as degree of freedom as in classic FL
technique, β(ξ, ϑ, v) is such that β(ξ, ϑ, v)ϑr = LgLfx1u,
and α(ξ, ϑ, v, v̇) collects all non linearities in L2

fx1. The
feedback linearized system is then
ξ̇ = Aξ +B[vϑ Tg,r]>

=



0 1 0 0 0
a2,1 0 a2,3 a2,4 a2,5
Ds

ngJg
0 − Ds

n2
gJg
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ngJg
− 1
Jg

1 0 − 1
ng

0 0

0 0 0 0 − 1
τT


ξ +


0 0
1 0
0 0
0 0
0 1
τT


[
vϑ
Tg,r

]

(11)
MPC is used to control (11) subject to the system con-
straints, which, because of the FL stage, happen to be
nonlinear and state dependent. Eventually, the wind speed
estimation together with the desired power reference P ∗e is
used to determine the controller set points via

Aξs +B[vϑ,s Tg,r,s]> = 0
ξ3,sξ5,s = P ∗e
ξ1,s = ω∗r

where (ξs, vϑ,s, Tg,r,s) is the steady state solution for a
given P ∗e and ω∗r , (argument of (9)).

5. SIMULATION RESULTS

We are now ready to evaluate the wind farm performance.
For this simulation we consider a 25 turbine farm as shown
in Fig. 4, excited for 600 s by a uniform wind speed u∞,
whose direction is ϑW = 0◦ with respect to the chosen
reference coordinates. u∞, together with an estimation
of its effective value, are shown in Fig. 5. Such a real
wind data series is purposely chosen to possibly excite
the turbines in all the regions of functioning, i.e. power
optimization as well as power limiting. Static optimiza-
tion, via equation (5), states a theoretical gain of ∼ 9%

Fig. 4. Wind farm layout.

Fig. 5. Wind speed signals.

Fig. 6. Comparison of global mechanical power and energy.

with respect to the greed control, and provides the α∗

reference show in Fig. 4. Fig. 6 shows the system behavior
with respect to the global extracted mechanical power and
energy. In practice such a gain cannot be achieved at each
time step, as, for wind speed fluctuations, the proposed
local controllers are not able to perfectly track α∗, (e.g.
see Fig. 7). It is clear, then, how global performance is
highly influenced by the local controller one. Nonetheless
good results are achieved, yielding a mean gain of ∼ 4%. In
addition, thanks to the strategy of equation (9), a surplus
of kinetic energy with respect to classic MPPT functioning
is stored in the rotating masses according to equation (8),
and it is shown in the last plot of Fig. 6.
Eventually, to get insight into the wake interaction phe-
nomenon, we compared the behavior of turbines 3, 12,
and 24 of Fig. 4, in both the scenarios of greed and co-
operative optimization. Referring to Fig. 7, we see how in
the cooperative framework, upstream turbines track other
α values than the αBetz one. It corresponds a deloaded
power production of the individual turbines (see Fig. 8).



Fig. 7. Comparison of greed (1st top) and cooperative (2nd,
3rd, and 4th from top) induction factors of WTs 3, 12,
and 24.

Fig. 8. Comparison of greed (top) and cooperative (bottom)
powers of WTs 3, 12, and 24.

6. CONCLUSION

A hierarchical control for wind farm optimization under
the effect of wake interaction was presented. Even if it
exists a gap between theoretical static optimization and
actual attainable gain when system dynamics is consid-
ered, good performance is achieved, and it consolidates the
need for cooperative control of large wind farms. The over-
all optimization is highly influenced by the performance of
the local controller, which in this paper is obtained by
composition of FL and MPC techniques.
A main drawback of the presented architecture is the lack
of feedback on the high level optimization. Indeed, the
latter is only based on the measurement of the free stream
wind and on the wake model, i.e. it does not exploit real
time information of turbine state and wind inside the
wind farm. As a result the system behavior is sub optimal
with respect to the real achievable power production. An
interesting opportunity for research would be to employ
optimal distributed control in order to take the dynamics
of the system into account at the control synthesis step,
while eliminating the need for a supervisor controller.
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