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Controlled contractive sets for low-complexity constrained control

Sarmad Munir,1 Morten Hovd,1 Guillaume Sandou,2 and Sorin Olaru 2

Abstract— Explicit constrained control is relatively simple
when a controlled contractive set is available. However, the
complexity of the explicit controller will depend on the com-
plexity of the controlled contractive set. The ability to design a
low complexity controlled contractive set is therefore desirable.
Most methods for finding controlled contractive sets either
assume the use of a constant linear state feedback, or is based on
reachable set computations. In the first case, the assumption of a
constant linear state feedback is restrictive (as MPC controllers
for linear systems are typically piecewise affine), and in the
second case the complexity of the controlled contractive set
may be very high.

Initial results on the construction of low complexity con-
trolled contractive sets without assuming linear state feedback
were reported at the IFAC World Congress in 2014. The present
paper addresses shortcomings in the previous results, including
the ability to handle identical modes in series (corresponding
to a non-diagonalizable A matrix) and oscillatory modes. The
paper suggests a method to find a flexible complexity controlled
contractive set.

I. INTRODUCTION

Model Predictive Control (MPC) has been used in industry
for decades. There is a wide application of MPC in industries
nowadays [1]. From slow speed chemical processes to fast
systems in automotive sector, MPC is highly useful [2]. MPC
uses the system model information to obtain control law.
It allows operating of a system for long periods without
expert intervention [3]. Standard MPC is based on online
solutions of optimization problems. Due to its computational
complexity, its application is limited to the systems with
slow dynamics which are not safety critical [4]. Explicit
MPC provides an answer to these limitations of standard
MPC, by formulating the MPC problem as multi-parametric
problem. Instead of solving problem online, it can be solved
offline and optimal control law can be given as piecewise
affine (PWA) functions of the present state [5]. Therefore the
online MPC computation is transformed to simple evaluation
of a PWA function [6]. This allows implementation of simple
hardware with fast sampling rate. However, as the problem
size increases, number of the regions of the explicit solution
and the memory required for storing the explicit solution
increases rapidly. This limits the use of explicit MPC to a
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system with modest number of states and short prediction
horizons. Thus, the complexity reduction in explicit Model
Predictive Control becomes next big challenge.

There has been significant research going on to find ap-
proximate solutions in order to simplify explicit solutions. A
simpler solution by directly approximating the control law is
formulated in [7]. Vertex Control approaches can be utilized
for simpler controller designs. In the vertex control approach,
an admissible input corresponding to vertices is used for
controller design [8]. A common way to do this would be
to calculate the feasible region for an MPC formulation
with guaranteed stability. However, the calculation of feasible
regions for MPC may also be computationally complex [9].

A simpler approach is using explicit constrained control
with the help of controlled contractive set. In this case,
complexity of the Explicit MPC depends on the contractive
set complexity. Therefore, finding a low complexity con-
tractive set is essential for complexity reduction in Explicit
MPC. The procedure in [10] converges to the maximal
controlled contractive set with a specified contraction factor.
However, the complexity of the resulting set may be very
high. In [4], a non-iterative procedure for obtaining low-
complexity contractive set is proposed and it is shown how
the contractive set can be used for designing a controller for
a system with state and input constraints. It also proposed
an approach to handle oscillatory modes given sufficient
contractive dynamics. However, the approach is not generally
applicable to systems with oscillatory modes, and is not
applicable to identical modes in series. Furthermore, the
contractive set obtained in [4] is of fixed complexity, without
any means of trading off complexity versus the size of the
contractive set. The main purpose of this paper is to describe
a flexible approach to obtain a low complexity contractive
sets enabling the design of low complexity explicit con-
strained control, which also handles identical and oscillatory
modes in series and allows a trade-off between the size of
the controlled contractive set and the complexity of the set.

Section 2 describes how to find a contractive set using an
optimization based approach. In section 3, different solutions
are merged together in order to find a larger contractive set.
In section 4, two methods are introduced to simplify complex
contractive sets, first method introduces circumscribed ellip-
soid technique to simplify the contractive set while second
method directly removes hyperplanes in order to obtain a low
complexity contractive set. In section 5, polytopic contractive
sets are considered for controller design, as polytopic con-
tractive sets are natural starting points for designing explicit
constrained controllers. Section 6 provides examples of these
approaches and conclusion is drawn in section 7.



II. OPTIMIZATION BASED CALCULATION FOR
CONTROLLED CONTRACTIVE SETS

Consider the discrete-time system

xk+1 = Axk +Buk (1)

with state and input constraints given by X = {x|Hxx ≤
hx} and U = {u|Huu ≤ hu} respectively.
Definition 1. A closed set P ∈ X with the origin in

its interior is called controlled γ-contractive iff, for a given
γ ∈ [0, 1) and for all x ∈ P there exists an u ∈ U such that
Axk +Buk ∈ γP .

The contractive set P for system 1 can be given as P =
{x ∈ Rn|Fxk ≤ f}. It is contractive if ∀xk ∈ P ∃ uk such
that

F (Axk +Buk) ≤ γf (2)

In the following an optimization based approach to find a
large contractive set will be described. The approach is based
on maximizing the volume of an ellipsoid inscribed in the
contractive set. Finding the inscribed ellipsoid of maximum
volume will be addressed in the next subsection. For the
volume of the inscribed ellipsoid to be bounded, the set P
itself needs to be bounded, and additional considerations are
necessary to ensure that the set is also controlled contractive
with the required contraction factor. These issues will be
addressed in subsequent subsections.

A. Maximum Volume Ellipsoid inscribed in a set

Consider the set P described by m linear inequalities as
P = {x ∈ Rn|Fixk ≤ fi,∀i = 1...m} and the ellipsoid
ε given as ε = {Cy + d|‖y‖ ≤ 1}, where C = CT > 0.
According to [17], the volume of ellipsoid ε is proportional
to det(C). The maximum volume ellipsoid ε inscribed in P
can be obtained by solving the optimization problem:

maxC,d,F,f log(det(C)) (3)

subject to
C = CT > 0 (4)[

(fi − Fid)I CFTi
FiC fi − Fid

]
� 0∀i = 1, ...m (5)

Alternatively, one may maximize the radius z of a ball B
having the center at c inscribed inside the polytope P .

B = {x ∈ Rn ‖ c− x ‖2≤ z} (6)

Where z and c are known as Chebyshev radius and
Chebyshev center respectively.

To make sure that the ball is entirely inside P , we ensure
that the distance from center c of circle to any hyperplane
is greater than or equal to Chebyshev radius z for each
constraint {Fixk ≤ fi,∀i = 1, ...m}. Therefore it imposes
following constraints:

‖Fic− fi‖ ≥‖ Fi ‖2 z (7)

As c satisfies inequalities Fic ≤ fi, therefore we have

Fic+ ‖Fi‖z ≤ fi (8)

Thus, by maximizing Chebyshev radius z, the largest
possible ball within a contractive set can be found.

Using ball B instead of ellipsoid ε is simpler but contrac-
tive set obtained by inscribing the maximum volume ellipsoid
ε, can be much larger than the one obtained by inscribing
largest ball B. From here on, we shall consider a maximum
volume ellipsoid inscribed in P .

B. Boundedness Constraints

We find maximum volume ellipsoid ε inscribed in P
from (3). But this does not guarantee that contractive set
obtained by such formulation will be bounded as well. If
the volume of the inscribed ellipsoid is finite (the maxdet
problem is well posed), the set P is also bounded. However,
we want to impose conditions to make sure that this is the
case. To ensure boundedness for contractive set we introduce
bounding constraints on set P so that when P is bounded
by a set H, the inequalities defining H are redundant when
inequalities defining P are added. H should contain the state
constraints and added lax constraints, if the state constraints
set X is not bounded. Let H be defined as:

H = {x ∈ Rn|Hxk ≤ h} (9)

Then from [13] we know that P is contained in H (and
hence is bounded), if and only if there exists a matrix M
with non-negative elements such that

MF = H (10)

and
Mf ≤ h (11)

We can find such M which bounds set P by solving above
mentioned problem.

C. Contractive Constraints

The set P is contractive if it fulfills Definition 1. We want
to find P = {x ∈ Rn|Fxk ≤ f} with maximum guaranteed
contraction factor such that eq. (2) is satisfied. Maximum
contraction factor for a given F and f can be found by
solving following bi-level optimization problem:

maxxγ
∗ (12a)

subject to
Hxk ≤ h (12b)

Fxk ≤ f (12c)

γ∗ = minu,γγ (12d)

subject to

F (Axk +Buk) ≤ γf (12e)

Huu ≤ hu (12f)

Here the solution of the lower level problem imposes con-
straints on upper level problem. By replacing the lower-level



problem by the corresponding KKT conditions [11], one
obtains:

maxx,u,γγ
∗ (13a)

subject to
Hxk ≤ h (13b)

Fxk ≤ f (13c)

F (Axk +Buk)− γf ≤ 0 (13d)

Huu ≤ hu (13e)

λa(F (Axk +Buk)− γf) ≤ 0 (13f)

λb(Huu− hu) ≤ 0 (13g)

∇u,γL(u, γ, λ) ≤ 0 (13h)

where the Lagrangian function L is given by

L = γ∗ + λTa (FAx+ FBu− γhx) + λTb (Huu− hu) (14)

Here λa and λb are Lagrangian multipliers for the in-
equality constraints. Equations (13f) and (13g) induces non-
linearity in the system. We use binary variables sε{0, 1}
to remove this non-linearity as explained in [12] to obtain
following single level optimization problem:

maxx,u,γ,λ,sγ
∗ (15a)

subject to
Hxk ≤ h (15b)

Fxk ≤ f (15c)

λa ≥ 0 (15d)

λb ≥ 0 (15e)

λa ≤Mλ
a s (15f)

λb ≤Mλ
b s (15g)

F (Axk +Buk)− γf ≤ 0 (15h)

λ(F (Axk +Buk)− γf) ≥ −Mu
a (1− s) (15i)

Huu ≤ hu (15j)

Huu− hu ≥ −Mu
b (1− s) (15k)

∇u,γL(u, γ) = 0 (15l)

Here Mλ
a ,Mλ

b ,Mu
a and Mu

b are diagonal matrices with
appropriate dimensions and sufficiently large elements on
the main diagonal. If a candidate contractive set is given,
its maximum contraction factor can be found using the
formulation described above.

D. Problem Formulation

Previous subsections imposed the constraints on P . We
want to maximize volume of an ellipsoid ε so that it is
inscribed in contractive set P such that boundedness and
contractive constraints are satisfied. Thus we have a follow-
ing optimization problem to obtain P:

maxC,d,F,f log(det(C)) (16a)

subject to
C = CT > 0 (16b)[

(fi − Fid)I CFTi
FiC fi − Fid

]
� 0∀i = 1, ...m (16c)

MF = H (16d)

Mf ≤ h (16e)

maxx,u,γ,λ,sγ
∗ (16f)

subject to

Hxk ≤ h (16g)

Fxk ≤ f (16h)

λa ≥ 0 (16i)

λb ≥ 0 (16j)

λa ≤Mλ
a s (16k)

λb ≤Mλ
b s (16l)

F (Axk +Buk)− γf ≤ 0 (16m)

λ(F (Axk +Buk)− γf) ≥ −Mu
a (1− s) (16n)

Huu ≤ hu (16o)

Huu− hu ≥ −Mu
b (1− s) (16p)

∇u,γL(u, γ) = 0 (16q)

The problem formulated above can be used to find the
maximum volume ellipsoid ε and the corresponding con-
tractive set P = {x ∈ Rn|Fxk ≤ f} inside which the
ellipsoid ε resides. The advantage of this method is that the
complexity of contractive set is flexible. There is a trade-
off between complexity of the contractive set reduced and
volume of the set. The complexity of the contractive set can
be selected according to the specific application. Note that
problem formulated above can be simplified by removing
parameter f by normalizing set P such that P = {x ∈
Rn|Fxk ≤ 1}. If the problem formulation is symmetric,
this can be exploited to further simplify the computations.
Example VI-A shows the effectiveness of this algorithm by
comparing the results with the method described in [10].
The contractive sets obtained of different complexities for
the system with identical modes are shown in example VI-
B.



E. Solving the Formulated Problem

For the optimization problem in eq (16), the possible
simplifications mentioned in the previous subsection notwith-
standing, is a large optimization problem with highly non-
convex constraints. Solving this problem to a (provable)
global optimality is therefore very difficult and computation-
ally costly. Luckily, for this problem a solution need not be
globally optimal in order to be useful. In this work, Particle
Swarm Optimization (PSO) is used to find good solutions to
the problem in eq (16).

PSO technique described in [15] is used to solve problem
formulated in previous subsection. It is a population based
stochastic method. Particles, candidate solution, are moved
around search space with certain position and velocity. Each
particle is moved towards best position in search space, so
we move the particle swarm towards best solutions. Particle
Swarm Optimization is an unconstrained optimization. In or-
der to apply PSO, eq (16) is converted into an unconstrained
problem by appending suitable penalty functions accounting
for constraint violations to the optimization criterion.

While exploring the search space, the PSO typically finds
multiple feasible solutions. Such solutions can be merged to
obtain an enlarged contractive set, as explained in the next
section.

III. MERGING OF CONTRACTIVE SETS

Definition 2: The convex hull of a family of sets S is
the smallest convex set containing the entire family of sets
S.

The volume of the contractive set can be increased by
finding the convex hull of different solutions obtained by
the Particle Swarm Optimization. Unfortunately, it will not
only increase the volume of the contractive set but will also
increase the complexity of set.
Theorem 1: The convex hull of the contractive sets S1

and S2 with contraction factors γ1 and γ2 respectively, is γ
contractive, where γ = max(γ1, γ2).
Proof : Let x1(k) and x2(k) be points on the contractive

sets P1 and P2 respectively whose convex hull is denoted by
P0. Assume that contraction factors for P1 and P2 are γ1 and
γ2 respectively. Then for x1(k)∃u1(k) ∈ U |x1(k+1) ∈ γ1P1

and x2(k)∃u2 ∈ U |x2(k + 1) ∈ γ2P2. Let x0(k) be point
obtained outside P1 and P2 but inside the convex hull. Then,
x0(k) can be expressed as:

x0(k) = α1x1(k) + α2x2(k) (17)

where α1, α2 ≥ 0, α1 + α2 ≤ 1 Convex hull is contractive
if and only if there exist {u0(k) ∈ U |x0(k + 1) ∈ γP0}.
Applying the input,

u0(k) = α1u1(k) + α2u2(k) (18)

the system dynamics (1) results in

x0(k+1) = A(α1x1(k)+α2x2(k))+B(α1u1(k)+α2u2(k))
(19a)

x0(k+1) = α1(Ax1(k)+Bu1(k))+α2(Ax2(k)+Bu2(k))
(19b)

x0(k + 1) = α1x1(k + 1) + α2x2(k + 1) (19c)

As x1(k + 1) ∈ γ1P1 and x2(k + 1) ∈ γ2P2, therefore

x0(k + 1) ∈ γ(α1P1 ⊕ α2P2) ∈ γP0 (20)

IV. SIMPLIFICATION OF CONTRACTIVE SETS

Assume that the contractive set obtained after taking the
convex hull of different solutions provided by the PSO is Pc
with m hyperplanes and nv number of vertices. We want to
minimize the number of hyperplanes so that the complexity
of the formulated contractive set is reduced. As such a
convex hull for higher dimensional systems can be complex,
we’d like to reduce its complexity. Naturally, this complexity
reduction should be obtained without reducing the volume of
the contractive set substantially, and without increasing the
contraction factor much. We introduce two methods to obtain
the simplified contractive sets. The first method obtains the
new set of vertices by using a circumscribed ellipsoid while
the second method removes the hyperplanes so that the set Pc
remains contractive with required contraction factor within
state constraints.

A. Circumscribed Ellipsoid

In this method we find a minimum volume ellipsoid
εc = {‖Cx + d‖ ≤ 1} with center at d circumscribing
the contractive set Pc. The ellipsoid εc can be found by
minimizing the volume of ellipsoid containing all vertices of
Pc, this results in a maxdet problem as follows:

minC,d − log(det(C)) (21a)

subject to
C = CT > 0 (21b)

‖CVi + d‖ ≤ 1 (21c)

Where Vi is a vertex of Pc, and nv is the number of
vertices of Pc. Once the circumscribed ellipsoid is found,
we look at which points from Vi lie on the ellipsoidal
boundary. Let us assume vertices VE lie on the boundary
of the ellipsoid such that {VE ∈ Vi,∀i = 1, ..nv}. Then
we rotate the ellipsoid such that point pf in Vi, which
was farthest from ellipsoidal boundary lies on new rotated
ellipsoid. This adds the vertex which will give the largest
increment in the volume. We find a normal plane to vector
passing through pf and center of ellipsoid. There can be
many directions in which such a plane can lie. We take
projection εp of the ellipsoid εc and points Vi on the plane
and then check which new point is farthest from εp. We add
that point to current point pf and continue with projections.
This procedure is repeated for n − 1 times to obtain n − 1
points. Normal to these n− 1 points will give us a specific
direction for rotation of ellipsoid (orientation of plane). We
add two points on the new plane far away from original
points and find a new minimum volume ellipsoid inscribing
all the points. It makes sure that the point pf lies on boundary
of the new ellipsoid. In this way, the ellipsoid will be rotated
to find new set of vertices which originally belongs to Vi,
common points of the ellipsoid and the contractive set are



added to VE . We repeat the rotation procedure until we find
a large enough contractive set. VE forms the vertices of
new simplified contractive set. There is a trade-off between
volume of contractive set obtained and complexity reduced.

B. Removing a Hyperplane

The method described above finds a reduced complexity
contractive set. As the method focuses on vertex operation
for complexity reduction, there may arise a case when it
increases the complexity in terms of hyperplanes, in that case
the method described above should be discarded. Here, we
propose a method for simplification of a polytope by directly
operating on the hyperplanes. We remove the hyperplane if
contraction factor of the simplified set doesn’t exceed the
required contraction constraint. We select the hyperplane
Hi to be removed by checking which hyperplane has to
be pushed outwards least, in order to become redundant.
The hyperplane Hi can be removed if new vertices V
obtained by removing Hi are contractive and also fulfills
the state constraints. The procedure is repeated for all the
hyperplanes. As this method directly removes the hyper-
planes, it guarantees complexity reduction and increase in
volume of the contractive set. In worst case scenario, the
procedure will not have any impact on the set unlike method
described in previous sub-section. Results obtained with this
procedure along with the formulations of previous method
are illustrated in example VI-A.

V. DESIGNING A CONTROLLER WITH GIVEN
CONTRACTIVE SET

Assume the low complexity controlled contractive set with
contraction factor γ is obtained by the methods mentioned
above. Then, the control formulation can be given as:

minuk
xTk+1Qxk+1 + uTkRuk (22a)

subject to
xk+1 = Axk +Buk (22b)

Huu ≤ hu (22c)

Fxk+1 ≤ γαf (22d)

where
α = max{Fixk,i/fi},∀i = 1, ...,m (22e)

The contractiveness ensures that the α will reduce by
factor γ at each time step, therefore the state trajectories will
converge to origin, which ensures stability of the system.
The explicit solution to (22) can be obtained by solving
it parametrically, with xk and α as the parameters. The
complexity of the explicit solution (in terms of the number
of critical regions obtained), is given by the number of
different combinations of constraints that may be active
at the optimum, when the parameters are allowed to vary
throughout the given parameter region. MPC formulations
with a long prediction horizon will have a high number of
constraints, and thus also typically a high number of possible
combinations of different constraints. The prediction horizon

for the formulation in (22) is 1, and thus the complexity of
the explicit solution can be expected to be low.

VI. EXAMPLES

A. Spring Mass Damper system

Consider the spring mass damper system example men-
tioned in [4] with state representation given as:

ẋ =

[
0 1
−7 −7

]
x+

[
0
1

]
u (23)

Fig. 1: Complexity Reduction of Contractive Set

System is discretized with sampling time of 0.01 sec,
input and state constraints are given as −10 ≤ u ≤ 10
and −10 ≤ xi ≤ 10,∀i = 1, 2 respectively. First we find
a contractive set by method proposed in section II. It comes
out to be a set with contraction factor γ = 0.9796, volume
of 32.7378 and 6 hyperplanes. Set in red obtained after 200
iterations of Dorea-Hennet procedure, has volume 71.7814
with 91 hyperplanes (Red set in figure 1). The contractive
set obtained by the method described in section III has
20 hyperplanes with volume of 40.9193 and contraction
factor 0.9774 (Yellow set in figure 1). By simplifying the
larger contractive set using method explained in section IV-
A, the set obtained has a volume of 38.2663 with 0.9771
contraction factor and 6 complexity (as shown in green in
figure 1). By implementing method described in section IV-
B, simplified contractive set obtained has 6 hyperplanes with
volume 42.4433 and contraction factor 0.9783 (blue set).

B. Identical Modes system

Consider a system with identical modes in series, i.e, non-
diagonalizable system matrix A given as:

xk+1 =

[
0.98 1
0 0.98

]
x+

[
0 0
0.6 0.9

]
u (24)

The contractive sets obtained for this system are shown in
figure 2. Contractive set obtained by the method explained
in [10] is shown in blue, while the green, red and yellow
sets are obtained using the optimization based approach in
this paper, when specifying different set complexities. It can
be clearly seen that by decreasing complexity of a set, we
also lose volume. Therefore, there is a trade-off between the
volume of the contractive set and its complexity.



Fig. 2: Flexible Complexity Contractive Sets

C. Higher dimensional system with the controller design

Consider the following system:

xk+1 =

 0.98 0 0
0.53 0.98 0
−0.65 0.52 0.98

xk +
0.1 0
0.2 0.1
0 0.3

uk
(25)

Input and state constraints are given as −1 ≤ ui ≤
1,∀i = 1, 2 and −1 ≤ xj ≤ 1,∀j = 1, ...3 respectively.
The contraction factor is chosen to be 0.9745. The explicit
solution for a MPC with prediction horizon of 10 has 862
regions, and the total volume of the feasible region is 6.77.
The contractive set for the system as explained in sections
II is obtained with complexity of 8 and volume 2.0828. The
controller is designed by method explained in section V. By
using the set obtained from section II formulations, number
of regions comes out to be 21. Clearly, the reduction in
volume is significant, but so is the reduction in complexity
for the explicit controller.

VII. CONCLUSION

A novel method for formulating controlled contractive
sets has been described in this paper. An optimization
based approach is used to find the contractive sets, subject
to boundedness and contractiveness constraints. Multiple
contractive sets can subsequently be merged to obtain a
larger contractive set. Two techniques have been discussed to
further simplify the set. The first technique utilizes circum-
scribed ellipsoid to find a reduced complexity contractive
set while second technique proposes an operation on the
hyperplanes to reduce the complexity. Finally, numerical
examples shows the efficiency of the proposed method.
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