Data-driven approach for dip voltage fault detection and identification based on grid current vector trajectory analysis - CentraleSupélec
Communication Dans Un Congrès Année : 2016

Data-driven approach for dip voltage fault detection and identification based on grid current vector trajectory analysis

Amel Adouni
  • Fonction : Auteur
Claude Delpha
Lassad Sbita
  • Fonction : Auteur

Résumé

This paper proposes a data driven approach for dip voltage fault detection and identification using the grid current vector trajectory in the stationary reference frame. Three features are extracted for the different operating conditions to build the database and analysed using Linear Discriminant Analysis to identify the fault type and subtype. In the subspaces spanned by the factorial components the four faults and eight out of nine faults subtype are successfully identified and isolated with an error rate less than 5%. Simulation results prove the efficiency of the proposed algorithm.
Fichier principal
Vignette du fichier
PID4355077-12juillet2016.pdf (599.29 Ko) Télécharger le fichier
Origine Fichiers produits par l'(les) auteur(s)
Loading...

Dates et versions

hal-01390878 , version 1 (12-03-2020)

Identifiants

Citer

Amel Adouni, Claude Delpha, Demba Diallo, Lassad Sbita. Data-driven approach for dip voltage fault detection and identification based on grid current vector trajectory analysis. 42nd Annual Conference of the IEEE Industrial Electronics Society (IECON 2016), IEEE, Oct 2016, Florence, Italy. pp.6971 - 6976, ⟨10.1109/IECON.2016.7793167⟩. ⟨hal-01390878⟩
121 Consultations
153 Téléchargements

Altmetric

Partager

More