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Abstract— This paper proposes a data driven approach for

dip voltage fault detection and identification using the grid 

current vector trajectory in the stationary reference frame. 

Three features are extracted for the different operating 

conditions to build the database and analysed using Linear 

Discriminant Analysis to identify the fault type and subtype. 

In the subspaces spanned by the factorial components the 

four faults and eight out of nine faults subtype are 

successfully identified and isolated with an error rate less 

than 5%. Simulation results prove the efficiency of the 

proposed algorithm.

Keywords— Dip Voltage, Grid current, fault detection, fault 

identification, Linear Discriminant Analysis.

I. INTRODUCTION 

Electricity is increasingly essential in all human 
activities from industrial to transportation applications. 
The electricity flows into a grid from sources to end 
users through lines, circuit breakers, transformers, etc.
The energy flow may be interrupted due to 
environmental disaster or inherent faults (faulty 
component). The energy unavailability can lead to
catastrophic consequences or important economic losses. 

The dip voltage is one of the crucial faults that can affect 
the electrical grid. Indeed, some equipment may trip 
when the voltage amplitude drops below 90% of the full 
scale for longer than one or two cycles [1]. The fault can 
be upstream or downstream the transformer of the power 
substation in the transmission line. 

Therefore the grid maintenance is of utmost importance 
to fulfill the requirements of availability, reliability, 
safety and maintainability. Continuous health monitoring 
is one of the means to operate the grid efficiently. One of 
its components is the Fault Detection and Diagnosis 
(FDD) module that is designed to detect, isolate and if 
required estimate the fault severity. An efficient FDD 
method must be sensitive only to fault, robust to 
perturbations and the unknown inputs, simple, easy to 
implement and cost effective (in terms of number of 

sensors or quantity of information and computational 
burden). 

There is an abundant literature on Fault Detection and 
Diagnosis (FDD) summarized in figure 1 [2]. Basically, 
there are four steps (modelling, pre-processing, features 
extraction and features analysis). 

Figure 1. Fault Detection and Diagnosis Approaches.

For voltage grid fault diagnosis, the model-based 
approach (methods are derived from the physical laws 
and using analytical relations under different 
assumptions [3] such as observers like Luenberger or 
Kalman estimator [4]) would be tedious because of the 
complexity of the model due to the grid dimensions, the 
number of parameters and the different configurations. 

For all the previous reasons, data driven approach is 
increasingly used. The idea is based on the analysis of 
the features extracted from pre-processed data in the 
time, frequency, time-frequency or time-scale domains.
The extracted residuals (features) can be analyzed using 
different tools (signal processing methods like Hilbert-
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Huang transform (HHT) [5-6], FFT, f-divergence [7])
depending on the desired performance, the user’s 
expertise, the data dimensions and properties, etc.

There is a growing trend for the integration of renewable 

energy sources as power generation units to satisfy to the 

worldwide environmental issues of carbon-free society. 

The Wind Turbine (WT) is one of the leading renewable 

energy conversion systems. According to the International 

Energy Agency, the onshore wind leads the global 

renewable growth, accounting for over one-third of the 

renewable capacity and generation increase [8]. The WT 

is a dynamic, nonlinear and complex system characterized 

by coupled phenomena (mechanical, electrical, magnetic, 

thermal, etc). 

The WT model and description can be found in [9]. The 

grid connected WT is displayed in figure 2.

Figure 2. Topology of the wind energy conversion system

The paper is composed of 3 sections. Section 2 describes 

the fault modelling and the different steps of the data 

driven fault diagnosis approach. In section 4, the results of 

the use case are presented and discussed. The conclusion 

closes the paper.

II. FAULT DETECTION AND ISOLATION

A. Fault description 

In this paper, the four principal dip voltage faults

are under study. They are classified to symmetrical fault 

(fault type A), asymmetrical fault (fault type B, C and E). 

The fault B is dip voltage in one phase while the other two 

phases remain unchanged (three possibilities). The fault 

type C is a dip voltage in two phases with angle deviation

while the third phase remains unchanged (three 

possibilities also). The Fault type E is a just dip voltage in 

two phases while the third remains unchanged (three 

possibilities also). All the possible configurations are 

described in Table I. In each case, the expression is given 

and its corresponding representation in the vector space is 

drawn both in healthy and faulty case. In the healthy case 

all the phases have the same amplitude EVi
. If the fault 

occurs in phase i, where d is the voltage dip 

amplitude. 
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B. Data-driven approach

Hereafter a data-driven approach is preferred because 

of its simplicity as it is only based on the measured line 

(grid) currents. Figure 3 displays the flowchart.

Figure 3. Flowchart of the Fault Detection and Diagnosis

1) Preprocessing and extraction of the features

The pre-processing consists of computing the Concordia 

Transform of the measured currents under the assumption 

that they are balanced. This is not conservative even if due 

to inherent imperfections, there is always a slight 

unbalance. The current vector trajectory in this stationary 

reference frame for the different situations (healthy and all 

the faulty cases) is computed. Three main characteristics 

(features) are extracted from the current trajectory:  

D1 represents the value of the current i when i is 

equal to 0. It is the intersection between the 

current trajectory and the vertical axis,

D2 represents the value of the current i when i is 

equal to 0,

The shift angle denoted between the major axis 

of the current trajectory and the horizontal axis 

1 2,OC OC .

Examples can be observed in Fig. 4 that displays the 

current trajectory in the considered frame both in the 

healthy and faulty cases. It shows the extracted features. 

phase a phase b

phase c

Figure 4

healthy and faulty cases 

For each cycle (20ms) we calculate the three features 

aforementioned for different operating conditions 

representing the healthy and faulty cases. Afterwards the 

information is arranged in a matrix X used as the database 

for the analysis. Fig. 5 summarizes the proposed 

procedure. 

Figure 5. Computation of the features

2) Analysis of the Features 

Once the aforementioned features are computed, they 

have to be analysed to make the diagnosis (fault detection 

and fault identification).

Because there are 4 fault types denoted A, B, C and E and 

6 sub-types (see Table I), the features’ analysis is 

conducted in two steps as shown in fig.6.
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Figure 6. Fault identification and isolation flowchart

Linear Discriminant Analysis (LDA) Method

Linear Discriminant Analysis (LDA) is a discriminant 

factorial analysis related to both multivariate analysis of 

variance and multiple regressions [10]. For this method, 

all the subjects (measurements) in the database are 

affected to a priori groups (healthy and faulty for 

example). The aim of this method is first descriptive and 

then decisive. In the descriptive part this method is used to 

reduce the dimensionality of a problem. In the decisive 

part, the discriminant procedure identifies a linear 

combination of quantitative predictor variables which best 

characterize the differences among the chosen a priori 

groups. For this procedure the differences between each 

group are maximized and the differences inside each 

group are minimized. With such a procedure, a linear 

decisive law corresponding to the obtained discrimination 

is produced. The efficiency of this law can be controlled 

by the one-leave-out cross validation method on the 

original data base. In most cases, the created law is used to 

classify or identify new cases as unknown test samples.

If we consider our original dataset X with n observations 

described by m features and displayed in K a priori groups 

(
kn denotes the observations belonging to the k

th
a priori 

group). As explained before, we are looking for the new 

representation space that best represents the K groups. We 

need to create new factorial axis Zh uncorrelated 2-by-2

for which the data belonging to the same group projected 

on these axes are as close as possible and the data 

belonging to different groups are as far as possible. For 

LDA, only K-1 factorial axis can be obtained where the 

different groups are best separated in the chosen groups.

If we denote the variance-covariance matrix by k

representing the data dispersion inside the k
th

group we 

can define the Intra-Group dispersion as: 

The distances between the groups will be defined by B the 

variance-covariance matrix Inter-Groups considering 

gravity centres for the database and for each group
k

:

T

k

k

kknB

Thus the total variance-covariance matrix R can be written 

as according to the Huyghens’ theorem. For 

computing the new factorial axis Zh we need to solve the 

equation uBuR 1 and calculate the eigenvectors u
with the eigenvalues .

The second part of LDA consists of trying to identify new 

unknown cases by classifying them in the chosen groups. 

For that purpose, the linear combination function 
kf of 

features which best separate the different classes is then 

used as a linear classifier function.

So, if we consider a new test case xa defined for the same 

initial variables, we can compute the distance ),( kaxd

between the new case and the centers of gravity of the 

groups:

)()(),( 1

ka

T

kaka xRxxd

The linear combination function of the features 
kf for 

each group used as a linear classifier is also called 

discriminant function:

a

T

akaak xRxxdxf 1),()(

The new sample xa will be affected to the k
th

group with 

the lowest linear result:

)(min)( akaa xfxfifkx

In this application, the discriminant function was 

computed but was not applied to unknown samples. 

III. RESULTS AND DISCUSSION

In order to evaluate the efficiency of the method, 

the algorithm is implemented in Matlab®. We inject a 

30% dip voltage in the electrical grid in arbitrary different 

time intervals. Consequently, the three phase voltages are 

affected according to the faulty phase(s) considered. Data 

are collected in databases for the 3 mentioned features (d1,

d2, ). 

For our analysis the number of samples according to the 

considered situation is displayed in Table II. 

TABLE II. Number of samples in the databases

Fault 

type

Fault 

subtype

Number of 

samples
Total

A - 40 40

B a b c 44 42 44 130

C ab bc ac 42 42 43 127

E ab bc ac 86 43 43 172

Using the LDA, we have first tried to discriminate the 4

fault types A, B, C, E whatever the fault subtypes. The 

database is then composed of 469 samples to be separated 

in 4 classes. So we have 3 factorial axes containing all the 



information to be separated. As the first two axes retain 

most of the information (99,97%), we present in Figure 7

the LDA result for the 4 fault types discrimination. 

Figure 7. Fault type discrimination with LDA

As it can be observed, the four fault types can be correctly 

separated whatever the fault subtype considered. This 

result is confirmed by the confusion matrix given in table 

III. 100% of the data corresponding to the fault type A, B

or E are correctly classified while 99,21% are considered 

to be well classified for the C fault type. In fact 0,78% of 

the data is classified as E fault type corresponding to only 

2 misclassified samples. This result is confirmed by the 

one-leave-out cross validation approach, which validates 

the created discrimination function. It could then be used 

for the discrimination of new test samples corresponding 

to the mentioned fault types without errors. 

TABLE III. Confusion Matrix for Fault type analysis

A posteriori

Fault 
type A

Fault 
type B

Fault 
type C

Fault 
type E

A
 p

ri
o

ri
 

Fault type 

A 100 0 0 0

Fault type 
B 0 100 0 0

Fault type 

C 0 0 99,21 0,78

Fault type 
E 0 0 0 100

As we can properly discriminate the fault type, we can 

consider each of these types in separate databases and try 

to discriminate the subtype for each of these faults. The 

result for the fault type B is displayed in Figure 8. In this 

case the 2 factorial axes represent 100% of the 

information. We obtain in this case a perfect separation 

between the subtypes a and b. Only one sample initially 

belonging to the subtype c is misclassified in the subtype 

b. 

Figure 7. Fault subtype discrimination for the fault type B with 

LDA

The corresponding confusion matrix summarizing the 

results is given in table IV. 

TABLE IV. Confusion Matrix for Fault type B and subtypes 

analysis

A posteriori

Fault sub 

type a

Fault sub 

type b

Fault sub 

type c

A
 p

ri
o

ri
 

Fault sub type 

a 100 0 0

Fault sub type 
b 0 100 0

Fault sub type 

c 0 2,27 97,73

The results obtained in this table IV are mainly confirmed 

by the one-leave-out cross validation technique. That 

confirms the very good separation result. 

The same analysis is done by considering the database of 

the fault type C and its subtypes ab, ac and bc. In this case 

the two factorial axes obtained with LDA are considered 

and represent 100% of the information in the database. 

Figure 8. Fault subtype discrimination for the fault type C with 

LDA

-130 -125 -120 -115 -110 -105 -100 -95
-4.5

-4

-3.5

-3

-2.5

-2

-1.5

-1

-0.5

0

1st Factorial Axis (99.83 %)

2
n
d
 F

a
c
to

ri
a
l A

x
is

 (
0
.1

4
 %

)

Fault type A

Fault type B

Fault type C

Fault type E

-50 -45 -40 -35 -30 -25 -20
18

20

22

24

26

28

30

1st Factorial Axis (84.40 %)

2
n
d
 F

a
c
to

ri
a
l A

x
is

 (
1
5
.6

0
 %

)

Fault type B

Fault subtype a

Fault subtype b

Fault subtype c

2 4 6 8 10 12 14 16 18 20 22
132

133

134

135

136

137

138

139

1st Factorial Axis (96.76 %)

2
n
d
 F

a
c
to

ri
a
l A

x
is

 (
3
.2

4
 %

)

Fault type C

Fault subtype ab

Fault subtype ac

Fault subtype bc



As shown in Figure 8, the discrimination is efficient. The 

confusion matrix in table V widely confirms this result.  

For this fault type only the subtype bc is perfectly 

separated. For the subtypes ab and ac, there are some

classification errors (2 for subtype ac and 4 for subtype 

ab). 

TABLE V. Confusion Matrix for Fault type C and subtypes 

analysis

A posteriori

Fault sub 

type ab

Fault 

sub type 
ac

Fault sub 

type bc

A
 p

ri
o

ri
 

Fault sub type 

ab 95,24 4,76 0

Fault sub type 
ac 4,65 95,35 0

Fault sub type 

bc 0 0 100

The good separation result results obtained and displayed 

in this table V are also confirmed by the leave one out 

cross validation technique. As for the previous case the 

two factorial axes obtained with LDA are considered and 

represent 100% of the information in the database.

The last analysis done here concerns the database of the 

fault type E and its subtypes ab, ac and bc. 

Figure 9. Fault subtype discrimination for the fault type E with 

LDA

The classification results obtained for this analysis are less 

good. For the subtypes ab and bc several overlappings are 

observed (see Figure 9). 

The confusion matrix in table VI confirms these results. In 

this last case, the linear classification is not sufficient for 

discriminating the subtypes with no errors.  

TABLE VI. Confusion Matrix for Fault type E and subtypes 

analysis

A posteriori

Fault sub 

type ab

Fault 

sub type 
ac

Fault sub 

type bc

A
 p

ri
o

ri
 

Fault sub type 

ab 68,60 1,16 30,23

Fault sub type 
ac 0 100 0

Fault sub type 

bc 41,86 0 58,14

IV. CONCLUSION 

This paper proposes a procedure for dip voltage fault 
detection and identification based on the grid current 
measurements. After the Concordia transformation, three 
features are extracted from the current vector trajectory 
analysis. Using the Linear Discriminant Analysis of these 
features, the four fault types and the 8 among the 9 fault 
subtypes have been identified and isolated with less than 
5% error. For the last fault subtype, the linear 
classification failed with an error rate of 40%.
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