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Abstract

In Non-Destructive Testing, model selection is a common problem, e.g, to determine the number of defects present in the
inspected workpiece. Statistical model selection requires to approximate the marginal likelihood also called model evidence.
Its numerical approximation is usually computationally expensive. Nested Sampling (NS) offers a good compromise between
estimation accuracy and computational cost. But it requires to evaluate the forward model many times. Here, we first propose a
general framework where data-fitting surrogate models are used to accelerate the computation. Then, improvements benefiting from
surrogate modeling are introduced into the traditional NS algorithm to further reduce the computational cost. These improvements
include the use of a sparse grid surrogate model to deal with the “curse-of-dimensionality“ in large dimensional problems and
of the pre-estimated posterior space to save warming-up time. Based on eddy-current simulations, we show that this improved
model selection approach has high model selection ability and can jointly perform model selection and parameter inversion.

Index Terms

Nested Sampling, model selection, marginal likelihood, non-destructive testing, eddy-current, surrogate model.

I. INTRODUCTION

IN Non-Destructive Testing (NDT) including Eddy Current Testing (ECT), model selection and parameter inversion are com-

mon inverse problems in quantitative analysis. Parameter inversion is to estimate parameters of interest from measurements.

These parameters can be characteristics of the flaw [1], [2], properties of the inspected material [3], [4] or configurations

inspection set-ups [5], like lift-off, probe frequency, etc.

Yet, the unknown parameters are always subject to a given model. E.g., if we are interested in the size of the flaw, we often

assume that we already know the properties of the inspected material, the shape of the flaw and the inspection set-ups.

In contrast, model selection is about taking a decision between two (or several) competing models. Each model has unknown

parameters as well. Model selection is often used in predicting the source of measurements in NDT, e.g, in ECT flaw

characterization, to choose between an air bubble and a surface crack within the inspected piece. In general, model selection

is more difficult than parameter inversion.

To tackle the model selection, we need to choose a proper criterion from which decisions are made. Akaike Information

Criterion (AIC) [6], Bayesian Information Criterion (BIC) [7] and Bayes factor [8] are three commonly used criteria. Bayes

factor is defined by the ratio of posterior integral over all unknown parameters between two competing models. AIC and BIC

are approximations of the Bayes factor when the likelihood has an exponential form and plays a more significant role than the

prior in the posterior distribution, refer to [9] for more detail.

In other words, using AIC and BIC for model selection, decisions are based on the maximum likelihoods and the number of

unknown parameters. Bayes factor uses the total information from the posterior distribution. Especially when we have important

prior information, model selection based on Bayes factor is much more reliable, and we choose to use it as our criterion in

this work.

The next step, which is also the most difficult part, is to approximate the corresponding evidences. There exist several types

of algorithms to this effect: Reversible-jump Markov Chain Monte Carlo (RJ-MCMC) [10], Importance Sampling (IS) [11],

path sampling [12] and Nested Sampling (NS) [13]–[15]. All follow the same procedure: drawing a series of samples following

the posterior distribution for the considered model, making decision based on evidences approximated from these samples.

They differ from one another in how the samples are drawn. Depending on the complexity of posterior distribution and

the number of unknown parameters, they can be chosen accordingly. RJ-MCMC is efficient for single-modal and isotropic
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distributions with small number of unknown parameters while IS can be very efficient for specific types of distributions [16]. In

contrast, NS can manage complicated forward models and it can jointly solve the parameter inversion and the model selection

problems. The only constraint is that there should be a limited number of unknowns in competing models. For this reason,

we suggest to use NS algorithm for ECT applications, because, in ECT, the direct model is often non-linear, the number of

unknown parameters is usually limited, parameter inversion and model selection are both within the scope of investigation.

NS has been proposed by Skilling in [13] and improved in [14], [15], [17], [18]. The main idea of NS is to generate

samples with increasing likelihoods by exponentially narrowing down the sampling space. The core of a NS algorithm is to

get a random sample in the remaining prior volume with constraint on likelihood. In the original work of Skilling [13], a

Markov Chain Monte Carlo (MCMC) algorithm is advocated, yet it suffers from low acceptance rate. In [14], the authors

proposed an ellipsoidal approximation method to locate the remaining sampling area, but the acceptance rate is only improved

for single-modal distributions. In [15], the authors further introduced a multi-ellipsoidal approximation method, the acceptance

rate of which is much better for multimodal distributions.

None of these improvements was made for narrow posterior distributions. In practice, the posterior distribution is concentrated

only on a small part of the prior volume. Since the sampling space is narrowed exponentially from the prior space in a NS

algorithm, many iterations are wasted on warming-up. Our first contribution in this work is to propose an efficient NS algorithm

where the initial sampling space is narrowed via a pre-estimated posterior volume, the pre-estimation costs being negligible due

to use of a global surrogate model. Secondly, we improve the MultiNest algorithm proposed in [15] by using a Minimum-Volume

Enclosing Ellipsoid (MVEE) method to better approximate the remaining sampling volume.

To reduce the computational cost, surrogate forward models [19]–[24] have been used in Bayesian inversion approaches. A

surrogate model is made of a pre-trained database and a fast interpolator. The database contains a large number of input-output

pairs simulated by an accurate forward model. In the inversion, only the interpolator is called. Our last contribution in this

work is to use a sparse grid surrogate model [25] where the input nodes in the database are on fixed sparse grids, which

reduces the computational burden for large dimensional problems and allows, in natural manner, a parallel implementation.

The paper is organized as follows. In § II, we introduce the Bayesian framework for joint model selection and parameter

inversion based on a sparse grid surrogate model. We discuss in detail the improved algorithm called N-MultiNest in § III to

approximate the evidences as required in model selection. Simulations follow in § IV based on a ECT example.

II. FRAMEWORK OF BAYESIAN MODEL SELECTION

A. Bayesian model selection

For a model M, the relation between observations y and unknown parameters x can read as

y = f (x,M) + ε, (1)

where ε denotes the additive noise and x is the joint unknown parameters subject to model M. The most important element in

Eq. (1) is the forward model f(x,M) which describes the physical relation between unknown parameters x and observations

y. The complexity of parameter inversion or model selection depends on the complexity of this function, and this function

describes the complexity of the problem.

In model selection, we usually have a single set of measurements y yet several potential models. Model selection is to

determine from which model these measurements are derived. For simplicity, we focus on selection between two models, the

hurdles being the same for multiple model selection, and strategies proposed in § III being directly applicable.

Let us assume that we have two competing models M1 and M2. The simplest way to make a model selection choice is to

check the residual between simulated f(x,M) and measured y for each model. However, this will only work for models with

the same number of unknowns. Otherwise, the model with a larger number of unknowns has more freedom in dimension. It

is more probable to get a simulated f(x,M) closer to the measurement y. This means that we will always be biased in favor

of the model which has more unknown parameters. This is also the reason why Bayesian model selection often works on the

Bayes factor defined by

r(M1,M2) =
p(M1|y)

p(M2|y)
=

p(y|M1) p(M1)

p(y|M2) p(M2)
. (2)

If r(M1,M2) is larger than 1, we can conclude that the observations y are from the M1, otherwise from M2. In Eq. (2),

{p(y|Mi), i = 1, 2} are the model evidences while {p(Mi), i = 1, 2} are the model prior probabilities. The latter are chosen

between 0 and 1 based on the prior information and should verify p(M2) + p(M1) = 1. Whithout any prior information

p(M1) = p(M2) = 0.5 is a common choice and will be ours in the following. According to Bayes law, the Bayes factor in

Eq. (2) can be expressed as

r(M1,M2) =
p(y|M1)

p(y|M2)

=

∫

p(y|x1,M1) p(x1|M1) dx1
∫

p(y|x2,M2) p(x2|M2) dx2
, (3)



3

where {p(y|xi,Mi), i = 1, 2} are the likelihoods while {p(xi|Mi), i = 1, 2} are the parameter priors.

The importance of using the integral ratio in Eq. (3) to replace the evidence ratio is to render the calculation of this ratio

practically possible. This is because the model evidence p(y|M) is not tractable, but likelihood p(y|x,M) and parameter

prior p(x|M) are. In most applications, the additive noise ε can be approximated by an independent identically distributed

(i.i.d.) Gaussian model

ε ∼ N (0, σ2
y), (4)

σ2
y being the noise variance, usually known or pre-estimated easily. Based on this noise model, recalling the forward model

given in Eq. (1), it is not difficult to find out that the likelihood is fully computable given the model of concern M and the

corresponding parameter x. It has the following analytical expression for a model with M measurements:

p(y|x,M) = (2πσ2
y)

−M

2 exp

{

−
‖y − f(x,M)‖2

2σ2
y

}

. (5)

Regarding to the prior, the following uniform model can be used if no further information is available

p(x|M) =
χU(x)

volume(U)
, U = [a1, b1]× · · · × [aN , bN ] (6)

where U is the uniform parameter space with N denoting the number of unknown parameters. χU (x) is the indicator function

on U . All values of our interest for the i-th parameter xi in the vector x should be included in the corresponding range between

ai and bi.

B. Sparse-grid surrogate model

In the Bayesian framework, model selection decisions are made based on the Bayes ratio defined in Eq. (3). It can be

calculated by integrating the product of two tractable elements: likelihood and prior. Yet, if we look at the Gaussian likelihood

in Eq. (5), the forward model f(x,M) is present, so evaluation of the likelihood requires to tackle it. Considering that model

evidences are usually approximated by Monte Carlo simulation methods, thousands of likelihood evaluations might be required.

If the evaluation of f(x,M) is costly, it will be very hard to approximate the model evidence.

In ECT, there exist many modeling methods for f(x,M), such as the Method of Moments (MoM), the Finite Element

Method, etc. In inversion problems, be they parameter inversion or model selection, proper compromise is often needed between

modeling accuracy and computational cost. For a model selection, the computational cost is particularly crucial since it requires

at least one order-of-magnitude more of likelihood evaluations compared to parameter inversion. Data-fitting surrogate models

have been proposed [21], [23], [24] to reduce the computational cost in the inversion. Here, we use the same idea to overcome

the computational cost problem.

A data-fitting surrogate model usually includes two essential parts: database and interpolator. The database is made of many

pairs of {xj , f(xj ,M)} where f(xj ,M) is an accurate but relatively expensive model. In our case, a MoM is used [26]. The

database is trained once at the beginning for a given model and re-used for all other inverse problems.

In the later model selection, only interpolations are performed. Since the goal is to reduce the computational cost without

losing too much modeling accuracy, interpolation accuracy is considered in database training, i.e., it is based on the accuracy

requirement of the global approximation of the interpolation.

Let us use D to denote the database, then

D = {xj , f(xj ,M)}, j = 1, 2, · · · , J. (7)

J is the dimension of the total database, and the number of required forward evaluations as well.

In our situation, we use a surrogate model based on the sparse grid interpolation. This technique is presented in detail in

[27], and it has recently been applied in the context of ECT [25]. In the present work, the sparse grid database is trained on

the prior space U .

C. Model selection framework with surrogate forward model

Being different from the forward model used in the database training, we denote the data-fitting based surrogate model

as f̃(x,M,D). In the following likelihood evaluations, it is used to replace f(x,M) in Eq. (5). Then the Bayesian model

selection can be sketched as shown in Fig. 1 for a dual-model case.

In terms of computational cost, the two most expensive parts are database training and model evidence estimation. Compared

to the on-line interpolation called in model evidence estimation, the database can be trained off-line. Interpolation costs much

less time than accurate forward model evaluation. Consequently, on-line computational time can be reduced a lot.

The main interest of using surrogate model here is that we can treat the database training separately from the model evidence

estimation. Acceleration strategies can then be employed independently for these two expensive operations.
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Data-fitting surrogate model

Database training

D1 = {xj
1, f(x

j
1,M1)}, j = 1, · · · , J1

D2 = {xj
2, f(x

j
2,M2)}, j = 1, · · · , J2

f̃(x1,D1)

f̃(x2,D2)

Interpolation

NS evidence

estimation p(y|M2)
NS evidence

estimation p(y|M1)

Observations y

Model selection decision

r(M1,M2) =
p(y|M1)

p(y|M2)

yes, M1

>
No, M2

1

Model selection

Fig. 1. Sketch of Bayesian model selection based on data-fitting surrogate model for dual-model selection.

Algorithm 1 A general algorithm of nested sampling.

1: procedure NESTED SAMPLING

2: Set k = 1, Ẑ0 = 0 and u0 = 1
3: Initialize Na

∗ active samples {xm1 ,xm2 , · · · ,xmNa } randomly from the prior p(x|M)
4: Sort {xm1 ,xm2 , · · · ,xmNa} in ascending order of likelihoods p(y|xm1 ,M) < p(y|xm2 ,M) < · · · < p(y|xmNa ,M)

5: while
p(y|xmNa ,M) uk

Ẑk−1
> 10−3 do

6: Generate a random sample x(p) from the remaining prior volume so that p(y|x(p),M) > p(y|xm1 ,M)
7: Update model evidence Ẑk = Ẑk−1 +∆uk p(y|xm1 ,M)
8: Replace xm1 by x(p) in the active sample set and rearrange them in ascending order of likelihoods

9: Increase iteration k ++
10: end while

11: Make use of the active samples from the last iteration Ẑ = Ẑk +

Na
∑

n=1

∆uk+n p(y|xmn ,M)

12: return

13: end procedure

∗ Na is the the number of active samples, fixed initially based on the number of unknown parameters and the accuracy demand on evidence approximation.

III. EVIDENCE APPROXIMATION FOR NARROW POSTERIOR DISTRIBUTIONS

A. Principle of nested sampling

Seen from the framework sketched in Fig. 1, one of the most important tasks is to get the model evidence p(y|M) for all

models of concern. NS originally proposed in [13] is one of the efficient algorithms.

Let us recall the evidence estimation problem

Z = p(y|M) =

∫

p(y|x,M) p(x|M) dx. (8)

Since x ∈ R
N , it is a multi-dimensional integration problem.

The NS algorithm proposed by Skilling [13] first transforms this multi-dimensional integral into an one-dimensional integral,

then approximate it numerically by using a series of samples specifically generated for this objective. We rewrite in Algorithm 1

the classical NS algorithm proposed by Skilling. The series of samples used for evidence approximation are the collection of

samples x1 excluded from the active sample set at each iteration and all active samples at the last iteration.

For a better understanding of the NS algorithm, we summarize its principle in the following and more details being found

in [13].
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Let us define the prior volume by

u = ϕ(λ) =

∫

p(y|x′,M)>λ

p(x′|M) dx′, (9)

which is a scalar function on [0, 1]. Its relation with the likelihood is illustrated in Fig. 2. ϕ(λ) represents the volume of

parameter space by setting a threshold λ on the likelihood distribution. It equals to one when λ is set to zero and tends to

zero when λ is increased up to the maximal likelihood value.

0
normalized x1

1

p(y|x,M)
1

n
o
rm

al
iz

ed
x
2

u
1
u
2
. .

. u
k

ϕ (λ)

u

ϕ−1(u) = p(y|x,M)

10
u1u2ukuK

· · ·· · ·

Fig. 2. 2D illustration of the relation between the prior volume and the likelihood function.

By taking Eq. (9) into Eq. (8), the multi-dimensional integral for evidence calculation can be transformed into an one-

dimensional integral

Z =

∫

p(y|x,M)p(x|M) dx =

∫ 1

0

ϕ−1(u) du, (10)

where ϕ−1(u) denotes the inverse function of ϕ(λ).
If we have a series of samples {x1,x2, · · · ,xK} where the corresponding prior volumes are {u1, u2, · · · , uK} with uk =

ϕ
(

λ = p(y|xk,M)
)

, then the evidence in Eq. (10) can be approximated numerically by

Ẑ ≈
K
∑

k=1

∆ukϕ−1(uk) =

K
∑

k=1

∆ukp(y|xk,M). (11)

We see that the sample xk appears within the evidence approximation.

The way how samples are generated in NS algorithm ensures that the corresponding prior volume is narrowed down

exponentially, so we have

uk = exp

{

−
k

Na

}

, k = 1, 2, · · · ,K. (12)

Proofs can be found in [13]. For a trapezoidal approximation,

∆uk =











uk−1 − uk+1

2
, 1 ≤ k < K

uk−1

2
, k = K

(13)

The most difficult part in a NS algorithm is the step 5 in Algorithm 1, known as “sampling problem with constraint on

likelihood”. In [13], the use of an independant MCMC algorithm is proposed but it suffers from low acceptation rate and the

resulting samples are not totally independent. Many contributions [14], [17] have been made to improve this step, but none of

them is dedicated to narrow likelihood distributions. In the following sub-sections, we first introduce the sampling difficulties

for narrow likelihood distributions. Then, we address a practical strategy benefiting from the use of the data-fitting surrogate

model to overcome them.

B. Difficulties for narrow posterior distributions

The prior space is usually much larger than the posterior space, especially when using a data-fitting surrogate model. The

database must be trained on a large space including all possible values for the unknown parameters. This means that the

likelihood value is only important on a tiny part of the entire prior space. Unfortunately, a NS algorithm always starts from the

prior unit and narrows down exponentially. So it might take many iterations for a NS algorithm to reach down to the posterior

space. These iterations, called warm-ups, do not contribute to the evidence approximation but bring extra computational cost.

In order to quantify the narrowness of the posterior distribution, we introduce up as the normalized posterior volume

up =
volume

(

p(y|x,M) > ǫL
)

volume(U)
. (14)
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The normalization is with respect to the prior volume. Here, ǫL is a small positive value which thresholds “non-zero” likelihoods.

U is the same prior volume as used in Eq. (6). In a classical NS algorithm, a new sample is always drawn in the remaining

prior volume. For an exponentially decreasing speed given in Eq. (12), the equivalent number of warm-ups required to get a

sample within the posterior volume can be given approximately as follows

Nwarm-up = ⌊−Na ln (up)⌋ , (15)

Na being the number of active samples.

Tab. I shows several examples for Nwarm-up at different up and Na. The number of warm-up iterations increases rapidly with

the number of active samples Na and the decrease of up.

TABLE I
EXAMPLES OF WARM-UP ITERATIONS IN A NESTED SAMPLING ALGORITHM WITH Na ACTIVE SAMPLES FOR A POSTERIOR DISTRIBUTION WITH

NARROWNESS up .

Na = 100 Na = 200 Na = 500 Na = 1000
up = 0.1 230 460 1 151 2 302
up = 0.01 460 921 2 302 4 605
up = 0.001 690 1 381 3 453 6 907
up = 0.0001 920 1 842 4 605 9 210

For large dimensional problems, most of the volume will be concentrated near the outer surface of the prior space, and up

will be very small. Meanwhile, to guarantee approximation accuracy for the model evidence, a large number of active samples

must be used. So, we need to deal with small up, large Na. This means that a classical NS algorithm, single-nest or multi-nest,

wastes too much on warming-up.

C. N-MultiNest: Multi-nest sampling with narrowed searching space

In [17], the authors proposed an efficient multi-nest sampling algorithm for multimodal posterior distributions. Our work is

based on the same sampling algorithm but with narrowed searching space at the initialization. In order to distinguish from the

single-nest algorithm in [13], [14], we call the algorithm in [17] MultiNest, and ours with narrowed searching space N-MultiNest.

The narrowing is performed by approximating the posterior space using nodes existing in the metamodel database.

In our case, a data-fitting surrogate model is used instead of an expensive MoM forward model. In this surrogate model,

we have already previously trained a database D for which the corresponding likelihoods can be easily computed according

to Eq. (5).

Then, a thresholding method can be applied on these likelihood values to locate all important samples, where “important”

means that the corresponding likelihood is sufficienty large to make a significant contribution to the model evidence approxi-

mation in Eq. (11). From the important samples, we can approximate the posterior space up by the total intersection volume

of the enclosing multi-ellipsoids with the prior space. In the 2D case, this procedure of posterior space approximation can be

summarized by the scheme in Fig. 3.

The four essential steps marked by 1) - 4) in Fig. 3 are as follows:

1) Likelihood matching based on Eq. (5)

{xj , f(xj ,M)} →{xj , p(y|xj ,M)},

xj ∈ D, j = 1, 2, · · · , J, (16)

where J is the total number of nodes in metamodel database.

2) Thresholding of important samples

I = {xi1 ,xi2 , · · · ,xiNs},

p(y|xin ,M)

max
{

p(y|xj ,M), j = 1, 2, · · · , J
} < ǫL,

in = i1, i2, · · · , iNs
. (17)

I denotes the set of important samples and Ns is the number of important samples.

3) Locating the enclosing ellipsoid(s)

E ={E1, E2, · · · , ENe
}

= arg min
(Em1

,··· ,EmNe
)

{

volume(Em1
∩ · · · ∩ EmNe

)
}

,

s.t. any xi ∈ I, there exists Em = (µm,Cm) ∈ E

that (xi − µm)C−1
m (xi − µm)T < 1, (18)
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Fig. 3. Approximation of the posterior space by using a multi-ellipsoidal enclosing method on important samples. Where + denotes the sparse grid nodes
and • the important samples.

where Ne is the number of ellipsoids, µm and Cm are ellipsoid center and bounding matrix of Em.

4) Approximation of the posterior volume

ûp ≈ volume(E ∩ U), (19)

where U is the uniform prior space, the same as used in Eq. (6).

Applying MultiNest on the estimated posterior space results in N-MultiNest as described in algorithm 2, where uk is given

uk = ûp exp

{

−
k

Na

}

, (20)

lm is the average likelihood for all non-important samples in the metamodel database. With reference to the scheme shown in

Fig. 3, it is the average likelihood value for all black crosses in Fig. 3 (d).

Algorithm 2 Multi-nested sampling algorithm with narrowed searching space at the initialization.

1: procedure N-MultiNest

2: Initialize with Na random samples {xm1 ,xm2 , · · · ,xmNa} from estimated posterior space E ∩ U and sort them in

ascending order of likelihoods.

3: Set Ẑ0 = lm(1− ûp) and u0 = ûp with ûp given in Eq. (19).

4: Same steps 4-10 as in Algorithm 1 but with uk given in Eq. (20) instead of Eq. (12).

5: end procedure

Compared with Algorithm 1, Algorithm 2 runs only on the estimated posterior space instead of the entire prior space. For

narrow likelihood distributions, it can save on warming-up iterations. Ẑ0 is now the marginal likelihood on the complement

of the posterior space, called initial evidence as well. By comparing it with the estimated evidence Ẑ , it can confirm whether

the chosen value for ǫL is appropriate or not. A detailed discussion is given in § IV-D.

D. Ellipsoidal enclosing of important samples

In the example shown in Fig. 3 (d), there is only one ellipse enclosing all important samples. This is usually the case for

unimodal, isotropic likelihoods. For multimodal or anisotropic likelihoods, multiple ellipses are used. In this case, we need to

determine the number of ellipses Ne, their centers and bounding matrices. This is done by clustering the important samples

first and then drawing an enclosing ellipse for each cluster.
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In [15], [17], a brief review of clustering algorithms is given. A recursive partitioning and bounding algorithm has also

been proposed in [17] based on a hierarchic K-means algorithm, wherein the partition method works jointly with the bounding

method to minimize the total volume. In our implementation, a similar algorithm is used, with improvements made on how to

get the ellipse bounding matrix after recursive K-means clustering.

Let us assume that we have a sub-set of important samples Im ⊂ I, Im = {xn1 ,xn2 , · · · ,xnNm}. All its elements are

clustered in the same group and enclosed by an ellipsoid Em = (µm,Cm).

0 1
0

1

Enclosing ellipse

(a) Feroz method [17]

0 1
0

1

Enclosing ellipse

(b) Khachiyan method [28], [29]

Fig. 4. 2D example of enclosing ellipse for sparse grid important samples for “banana” shaped likelihood distribution where • represents the important
samples and – the likelihood density lines.

In [17], the authors proposed to use the mass center for µm and the covariance matrix for Cm. After applying this ellipsoidal

enclosing method to our problem, we observed that the result is relatively poor. We give in Fig. 4a the result for a “banana”

shaped likelihood distribution. We see that the area enclosed by the ellipse is far away from the true distributed area of

the important samples. Two reasons can explain why this so-called Feroz method does not work for our problem. First, the

likelihood that we are dealing with is a very narrow distribution, and there is a limited number of important samples. Second,

due to the use of a sparse grid surrogate model, the important samples are not uniformly distributed according to the true

likelihood. But the Feroz method therein is efficient only when sufficient samples are available and the samples should be

quasi-uniformly distributed in the remaining posterior space. For our problem here, these two conditions are clearly not satisfied.

So, we propose to use the following way to find the MVEE:

(µm,Cm) = argmin {det(Cm)}

s.t. (xi − µm)C−1
m (xi − µm)T ≤ 1, i = n1, n2, · · · , nNm

Cm > 0, (21)

where Cm > 0 means Cm is positive definite.

Since the ellipsoidal volume is proportional to det(Cm), the optimization given in Eq. (21) is a joint optimization problem

minimizing the volume of the enclosing ellipsoid. It can be solved by the Khachiyan method [28]. More efficient implemen-

tations are discussed in [29]–[31]. In our implementation, the dual-optimization algorithm described in [29] is used. Fig. 4b

shows the result for the same ellipsoidal enclosing problem as in Fig. 4a. The ellipse is closer to the true posterior volume

because the Khachiyan method does not require a lot of samples and the samples do not need to be uniformly distributed

within the posterior volume.

Considering the improved efficiency of this MVEE method compared to the Feroz method [17], we apply it not only here

for posterior volume approximation but also in optimal ellipsoidal decomposition in evidence estimation in Algorithm 2.

IV. SIMULATION TEST IN EDDY-CURRENT TESTING

A. Model selection between single crack and double cracks

To analyze the performance of our approach, simulations are performed based on a ECT example sketched in Fig. 5. A planar

infinite non-ferromagnetic plate is affected by surface cracks. The number of cracks is unknown. To simplify the discussion,

we only consider two possible situations: one with a single crack, the other with two cracks. In terms of observations, a

surface scan of impedance variations is performed via an air-cored probe coil driven by a time-harmonic current signal. More

information about the configurations can be found in Tab. II.

Let us name the single-crack model as M1 and the double-crack model as M2. In M1, only two parameters are used to

characterize the flaw while six parameters are required for M2. We can imagine that the measurements from M1 and M2

will be very close to each other when v is very small. To test the model selection ability, we apply our approach sketched in

Fig. 1 on simulated data at a typical SNR = 20dB, the interest here being to find the smallest value v for reaching a correct

decision in the model selection.
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Fig. 5. Eddy-current test examples: a non-ferromagnetic plate effected by a single crack (a) or by two cracks (b).

TABLE II
PLATE, COIL AND INSPECTION CONFIGURATIONS

Plate

thickness (ht) 1.25 mm conductivity 1 MS/m

Coil

turns 140 outer radius 1.6 mm
inner radius 0.6 mm height 0.8 mm
frequency 150 kHz

Inspection

lift-off 0.5 mm spacing step (x) 0.5mm
number of measurements 9 × 33 spacing step (y) 0.5mm

B. Accuracy and computational demand of sparse grid surrogate model

Before conducting Bayesian model selection, we fisrt need to train databases for both models of concern. In this work,

databases are trained by using the adaptive method described in [25] where outputs are simulated by a MoM [26], input

parameters are located on sparse grids on the uniform prior space U the bounds of which are given in Tab. III.

TABLE III
PARAMETER RANGES USED IN THE DATABASE TRAINING.

Model parameters ranges

M1

a d
inferior bound (mm) 2 0.125
superior bound (mm) 10 1.125

M2

a1 d1 a2 d2 w v
inferior bound (mm) 2 0.125 2 0.125 0 0.01
superior bound (mm) 10 1.125 10 1.125 2 1

For a sparse grid database, once we know the number of unknown parameters N , the number of nodes in the database J

depends only on the depth of the sparse grid ds, definition seen [27]. The relation among J , N and ds can be approximately

described by an asymptotic expression

J = O
(

2ds

(

ds log 2
)N−1

)

. (22)

The choice for ds usually compromises between the accuracy of surrogate model and the computational cost of the database

training [25], [27].

In our implementation, ds is chosen adaptively according to the smoothness of the observations of impedance variations.

We start our database training from ds = 0 and increase it until the requirement on interpolation accuracy of the model is

satisfied. We found that ds = 6 is a good compromise between the interpolation accuracy and the computational cost for both

models M1 and M2. The corresponding number of nodes in sparse grid databases J = 176 for M1 and J = 10256 for M2,

respectively.

To verify the interpolation accuracy, we conducted an additional analysis where the interpolated data from the surrogate

model are compared to the simulated data from MoM [26] at 1000 random test samples. Fig. 6 shows the results of the relative

square errors. We see that the average relative error is less than 1% for both models. However, there are still a few of them
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with relative errors larger than 15%. By checking on the impedance variation signal, we found that those correspond to cases

where both cracks are of small sizes. Since the impedance variation is small, the relative error becomes large whereas the

absolute error remains small. So globally, we consider that the surrogate model with sparse grid depth ds = 6 is accurate

enough for our following analysis.
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(b) double-crack model

Fig. 6. Relative square errors between simulated data and interpolated data with sparse grid at depth 6 for 1000 random test samples.

In terms of the computational cost, on a standard 3.4 GHz PC, one simulation by the MoM [26] takes seconds while one

sparse grid interpolation costs milliseconds even for the 6-parameter case. This provides a considerable speed-up when many

repeated runs are required in the inversion. Noticing that MoM simulations in database training is totally independent among

nodes, they can be run in parallel on multi-threads and multi-processors to reduce the time consumption in database training.

In practical ECT, more complicated electromagnetic simulations can be dealt with; therein the gain provided by applying a

sparse grid surrogate model would be higher [25].

C. Data simulation

As already indicated, measurements from models M1 and M2 can be very close to each other if v is small. Then, to

distinguish one from the other is challenging. So, the smallest v for which the proposed approach is able to make the correct

selection should be a good indicator for its model selection ability.

In our test, eight simulations of synthetic noise-free data are performed, one using the single-crack model, the others using

the double-crack model with varying distances v from 0.04mm to 0.3mm. Five random draws of Gaussian noise of same

variance are then added to noise-free data leading to a set of forty noisy data simulations. The noise variance σ2
y is obtained

using SNR = 20dB in the following equation

σ2
y = ‖f(x,M)‖2mean10

− SNR
10 , (23)

‖f(x,M)‖2mean being the average l2 norm of the noise-free data on the entire scanning map. The N-MultiNest is then applied

on this set of simulated data. Using five simulations for each given v enables us to analyze the variance evolution of evidence

approximation versus noise draws for the same SNR, all the other parameters remaining the same as the ones given in Tab. IV.

In such a configuration, the single-crack case is equivalent to the double-crack case when v = 0mm. In order to show the

TABLE IV
FIXED FLAW PARAMETERS USED IN DATA SIMULATION.

Model fixed parameters (mm)

M1 a = 6.6, d = 0.65

M2 a1 = 5, d1 = 0.65, a2 = 5, d2 = 0.65, w = 1.6

difficulty of the model selection problem, Fig. 7 shows the map of the amplitude of the variation of impedance of the simulated
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noisy data for v = 0mm (Fig. 7a, single-crack model), v = 0.12mm (Fig. 7b) and v = 0.3mm (Fig. 7c). As exemplified

in Fig. 7d which gives the map of the absolute values of the difference between the variation of impedance for v = 0mm
(Fig. 7a) and for v = 0.12mm (Fig. 7b), it is difficult to distinguish between M1 and M2 for v = 0.12mm whereas the

difference increases when v increases as expected and as shown in Fig. 7e for v = 0.3mm. Hence, it is interesting to see

whether the Bayesian model selection approach is able to distinguish between the two models despite these slight differences.

(a) single
crack

(b) double cracks
v = 0.12mm

(c) double cracks
v = 0.3mm

(d) difference (b)-(a) (e) difference
(c)-(a)

Fig. 7. Amplitude images of simulated impedance variations at SNR = 20 dB for v = 0.12mm, 0.3mm and their differences compared with the single-crack
case.

D. Choice of threshold ǫL

As we mentioned in § III-B, ǫL is a small positive value thresholding the “non-zero” likelihood values. Here, “non-zero”

means that its contribution to the evidence estimation is not ignorable. Therefore, the choice of ǫL depends on the likelihood

distribution p(y|x,M). It compromises between the saved warm-ups and the approximation error introduced by pre-estimation

of posterior volume in evidence. In our algorithm 2, ǫL plays a role only in the estimation of the initial evidence Ẑ0 which

corresponds to the integral of the likelihood on D ∩ I ′. Even though the likelihoods are small on D ∩ I ′, Ẑ0 can still be

significant if the volume of I ′ is large enough. Thus, the choice of ǫL should be small enough so that the initial evidence Ẑ0

remains relatively small compared to the total evidence Ẑ .

In our examples here, p(y|x,M) is in the order between 10−100 and 10−2000. We chose to use a relative small ǫL = 10−100

in order to guarantee that the additional error introduced on the evidence is ignorable. To justify this choice, we can compare

the initial evidence Ẑ0 with the final estimated evidence Ẑ, as done in § IV-E. In the implementation, all calculations involving

likelihoods are performed after applying the logarithm in order to avoid exceeding the data precision limit.

E. N-MultiNest evidence estimation

We apply N-MultiNest described in § III on the forty sets of simulated noisy data respectively for M1 and M2. Fig. 8

shows the estimated model evidences and their averages at the eight v values. We observe that there is no overlap between

stars and circles when v > 0.12mm, which indicates that the evidence of M2 is always larger than that of M1. Even if, as

shown in Fig. 7d and said earlier, no difference can be observed on the measurements for M1 and M2, the proposed approach

can perform correct model selection with a probability close to 100%.

Tab. V shows the average results over the five independent simulations. Due to the estimation uncertainty for model evidence,

decisions on model selection should be made according to














log
[

r(M1,M2)
]

> 10 M1
∣

∣

∣
log [r (M1,M2)]

∣

∣

∣
≤ 10 difficult to tell

log
[

r(M1,M2)
]

< −10 M2

(24)

instead of comparing r(M1,M2) directly with 1.

Let us remind that one of our main contributions in this work is the use of an improved NS algorithm to approximate the

model evidence. The proposed N-MultiNest saves warming-up time due to the use of pre-estimated posterior volume. In order

to show the interest of our approach, we provide in Tab. V the pre-estimated posterior volumes ûp, the equivalent warm-up

iterations Nwarm-up and the total number of N-MultiNest samples K , Nwarm-up being calculated by taking ûp into Eq. (15).
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Fig. 8. Estimated model evidences by using N-MultiNest, solid lines being averages of five independent simulations.

TABLE V
AVERAGE PRE-ESTIMATED POSTERIOR VOLUMES, SAVED WARM-UP

ITERATIONS, TOTAL N-MultiNest SAMPLES AND BAYES FACTORS

VARYING v FROM 0mm TO 0.3mm. NUMBER OF ACTIVE SAMPLES

Na = 200, SNR = 20 dB.

Crack
distance

v (mm)

single-crack model

M1

double-crack model

M2

Bayes factor

ûp

(10−2)
Nwarm-up K

ûp

(10−2)
Nwarm-up K See Eq. (24)

0.00 0.27 1180 1412 6.79 553 5410 6
0.04 0.41 1072 1640 6.13 558 5339 1
0.08 0.47 1097 1667 5.89 566 4363 −6
0.12 0.41 1076 1663 7.03 531 4242 −22
0.20 0.48 1001 1837 0.70 992 3579 −48
0.30 0.53 1072 1844 0.06 1469 3399 −72

From ûp shown in Tab. V, we observe that the posterior volumes are all less than 10% of the prior volume. This indicates that

we are dealing with narrow posterior distributions. For the double-crack model, when v = 0.3mm, the likelihood concentrates

only on less than 0.1% of the total prior volume. Compared to MultiNest, the proposed N-MultiNest saved up to 45% of

iterations (case v = 0 mm for M1).

We also compared the initial evidence Ẑ0 with the final estimated evidence Ẑ0 to see whether the use of pre-estimated

posterior volume will introduce additional error on evidence estimation, and we observed that Ẑ0

Ẑ
are all less than 10−100 for

all the tested cases. This indicates that ǫL = 10−100 is small enough to ensure that the additional error introduced on evidence

estimation by the use of pre-estimated posterior volume is totally ignorable. Of course, a larger ǫL can be used to save more

warm-ups but consequently it will increase the estimation uncertainty for evidence and enlarge the range of v for which the

proposed model selection approach has difficulties to make a decision.

For practical applications, the metamodel database is often built on very large parameter ranges to include all possibilities.

Therefore, the ratio between the posterior volume and the prior volume can be very small. For these cases, it is more interesting

to use the pre-estimated posterior volume as the initial sampling space.
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TABLE VI
ESTIMATED PARAMETERS AND STANDARD DEVIATIONS FOR ONE SIMULATION AT v = 0mm AND v = 0.3mm, SNR = 20 dB.

True model and
parameters (mm)

estimated parameters x̂± σ (mm)

single-crack model M1 double-crack model M2

a d a1 d1 a2 d2 w v

M1

a = 6.6, d = 0.65
6.603±0.168 0.649±0.007 6.265±1.067 0.440±0.202 6.277±1.113 0.483±0.196 0.162±0.457 0.571±0.494

M2

a1 = 5, d1 = 0.65
a2 = 5 , d2 = 0.65
w = 1.6, v = 0.3

6.180±0.128 0.716±0.006 5.196±0.373 0.644±0.014 5.074±0.436 0.636±0.018 1.478±0.356 0.366±0.088

F. Estimated parameters
As discussed in § III, in N-MultiNest, the model evidence is approximated by a series of samples with increasing likelihoods.

These samples, also called N-MultiNest samples, follow the posterior distribution for the model of concern. So the unknown

parameters can be estimated from these samples without extra computation as well as the variances:


























x̂i =
1

K

K
∑

k=1

xk
i

σ2
i =

1

K(K − 1)

K
∑

k=1

(xk
i − x̂i)

2

, i = 1, 2, · · · , N (25)

where the subindex i is the parameter index while the upper-index k is the N-MultiNest sample index. So the proposed approach

can jointly solve the parameter inversion and the model selection.

As examples, we give in Tab. VI the parameter estimation results for one simulation of two situations v = 0mm and

v = 0.3mm respectively, one with the single-crack model as the true model used in the simulation, the other with the double-

crack model as the true model. On the diagonal axis, it shows the estimation results for the correct model. They are all close

to the true parameter values. In terms of estimation uncertainty, w and v are difficult to estimate accurately compared with

lengths and depths.

In order to illustrate how N-MultiNest behaves during the iterations, we show in Fig. 9 the distribution of N-MultiNest

samples and their evolutions versus iterations for the situation v = 0mm. The data are simulated from M1 in this case, but

we know that both models can be valid. This has been confirmed by the estimated evidences displayed in Fig. 8.

From Fig. 9a, we see that the posterior distribution for M1 is relatively simple, i.e., it is similar with a Gaussian distribution

and has one global maximum only. The nested sample obtained at each iteration yields decreasing likelihoods. If we draw the

active samples at each iteration, their distribution narrows from pre-estimated posterior region down to a point.

For the double-crack model, it is difficult to show their distribution in 6D. We display in Figs. 10a, 10b their evolutions vs.

iterations for v = 0mm and in Figs. 11a, 11b for v = 0.3mm. For display simplicity, all parameter values are normalized with

respect to the bounds given in Tab. III. We observe that the distribution of the N-MultiNest samples for the case v = 0mm is

more complicated than for the case v = 0.3mm. For the case v = 0mm, we can imagine that there exist infinite combinations

for the six unknown parameters. One obvious possibility is to make one of the cracks disappear. This means a1 and d1 (or a2
and d2) tending to zero. This is exactly the situation shown in Figs. 10a, 10b. Limited by the metamodel bounds, a2 and d2
cannot be zero, but are approaching their inferior bounds. For the case with a large gap in-between v = 0.3mm, the evolution

of N-MultiNest samples is simpler. They all converge to their true values.

Since the series of samples {x1,x2, · · · ,xK} follow the posterior distribution p(x|y,M), 1D marginal distributions for

each parameter can also be estimated by the histograms of these samples, as displayed in Fig. 10d for the case v = 0mm
and in Fig. 11d for the case v = 0.3mm. The peaks of the 1D marginal distributions represent local or global maxima of the

marginal posterior distributions. We can see that the case v = 0mm is much complicated than the case v = 0.3mm.

G. Computational cost

The computational cost depends on the number of unknown parameters and the complexity of the posterior distributions.

For the single-crack model, we see from Fig. 9a that the posterior distribution is similar with a Gaussian distribution and

there are only two unknown parameters. Tab. VII gives the total computational times and the sampling acceptance rates for

different cases. The computational time is obtained on a standard PC with 3.4 GHz CPU. For the double-crack model, the

total computational time is inversely proportional with the acceptance rate which is only 0.3% at v = 0mm and reaches 18%
at v = 0.3mm. This is because the posterior distribution is much more complicated when v = 0mm. As illustrated in Tab. V

and Fig. 10d, the posterior volume is much larger; there are multiple local maxima and global maxima.

So far, we only discuss dual-model selection, yet the approach can be applied directly for multiple models. It only needs

to run the N-MultiNest algorithm on each competing model. Since the computation is independent for each model, it can be

performed in parallel, and the total computational time remains the same.
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TABLE VII
NUMBER OF ACCEPTED SAMPLES K , ACCEPTANCE RATE rACC AND COMPUTATIONAL TIME t OF N-MultiNest ON A 3.4 GHZ PC FOR CASES v = 0mm,

0.12mm AND 0.3mm.

Case v = 0mm v = 0.12mm v = 0.3mm

K
racc

(%)
t

(min.)
K

racc

(%)
t

(min.)
K

racc

(%)
t

(min.)

M1 1412 45 3 1663 42 2 1844 20 4
M2 5410 0.3 679 4242 3 67 3399 18 11

V. CONCLUSION

In this work, we first introduce a general framework of Bayesian model selection based on a data-fitting surrogate model.

The use of a surrogate model enables us to train the database off-line. It can help us to reduce significant computational

time on-line in the inversion. Second, we propose an efficient sampling algorithm N-MultiNest for approximating the model

evidence. It makes use of the fact that posterior distribution is often concentrated on a very small part in the prior space.

Instead of sampling on the entire prior space as done by other nested sampling algorithms, we sample on the pre-estimated

posterior space only. The pre-estimation of the posterior volume is carried out by using the nodes existing in the database

trained off-line.

Based on an ECT example, numerical simulations show that the proposed approach has high model selection ability. To

distinguish between a single-crack and a double-crack model, it is able to make a correct decision even when the gap between

the two cracks is 0.12mm only. Considering that the measurements are performed with a spatial resolution of 0.5mm, we

believe that the proposed model selection has very high model selection ability in general.

Furthermore, the proposed approach is directly applicable to multiple model selection and can be used in all kinds of non-

destructive applications. The only constraint is that the number of unknown parameters should not be too large. If not the

algorithm will suffer both from the curse-of-dimensionality in the database training and the heavy computational cost in the

model evidence approximation.
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Fig. 9. N-MultiNest samples for the single-crack model at v = 0mm, SNR= 20 dB. Normalizations are performed with respect to the parameter ranges
given in Tab. III.
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Fig. 10. Normalized N-MultiNest samples, negative-log likelihoods vs. iterations and 1D marginal distribution densities for the double-crack model at
v = 0mm, SNR = 20dB. Normalizations are performed with respect to the parameter ranges given in Tab. III.
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Fig. 11. Normalized N-MultiNest samples, negative-log likelihoods vs. iterations and 1D marginal distribution densities for the double-crack model at
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