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We propose a linear algebraic method, named Eigenlogic [1], for two-, many-valued and fuzzy lo-
gic using observables in Hilbert space. All logical connectives are represented by observables where
the truth values correspond to eigenvalues and the atomic input propositional cases, i.e. the “mo-
dels” of a propositional system, to the respective eigenvectors. In this way propositional logic can
be formalized by using combinations of tensored elementary quantum observables. The outcome of
a “measurement” of a logical observable will give the truth value of the associated logical proposi-
tion, and becomes “interpretable” when applied to vectors of its eigenspace, leading to an original
insight into the quantum measurement postulate. Recently the concept of “quantum predicate” has
been proposed in [2] leading to similar concepts.

We develop logical observables for binary logic and extend them to many-valued logic.
For binary logic and truth values {0, 1} logical observables are commuting projector operators [1].
For truth values {+1,−1} the logical observables are isometries formally equivalent to the ones

of a composite quantum spin 1
2 system, these observables are reversible quantum logic gates.

The analogy of many-valued logic with quantum angular momentum is then established using a
general algebraic method, based on classical interpolation framework suggested by the finite-element
method. Logical observables for three-valued logic are formulated using the orbital angular momen-
tum observable Lz with � = 1. The representative 3-valued 2-argument logical observables for the
ternary threshold logical connectives Min and Max are then explicitly obtained [3].

Also in this approach fuzzy logic arises naturally when considering vectors outside the eigensys-
tem. The fuzzy membership function [4] is obtained by the quantum mean value (Born rule) of the
logical projector observable and turns out to be a probability measure. Fuzziness arises because of
the quantum superposition of atomic propositional cases, the truth of a proposition being in this case
a probabilistic value ranging from completely false to completely true.

This method could be employed for developing algorithms in high-dimensional vector spaces for
example in modern semantic theories, such as distributional semantics or in connectionist models
of cognition [5]. For practical implementation, due to the exponential growth of the vector space
dimension, adapted logical reduction methods must then be used. LSA (Latent Semantic Analysis)
algorithms are often used in quantum-like approaches, this was done in [6] using the HAL (Hyper-
space Analogue to Language) algorithm.

Our approach is also of interest for quantum computation because several of the observables in
Eigenlogic are well-known quantum gates (for example CONTROL-Z) and other ones can be derived
by unitary transformations. Ternary-logic quantum gates using qu-trits lead to less complex circuits,
our formulation of multi-valued logical observables could help the development of new multi-valued
quantum gate architectures.
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Eigenlogic [1]

We propose a linear algebraic model for two- and many-valued logic using
families of observables in Hilbert space, the eigenvalues give the truth
values of logical propositions where the input propositional cases (models for
the logical proposition) are represented by the respective eigenvectors.

quantum logical observables logical connectives
eigenvectors of the observables models of the propositional system

eigenvalues of the observables truth values

The outcome of a measurement on a logical observable will give the truth
value of the associated logical proposition.
In classical logic, predicates are used to describe properties of individuals or
systems. A natural idea is that a quantum predicate [2] should be a physical
observable.

Fuzzy Logic Interpretation
Fuzzy logic deals with propositions that can lie between “completely true” and
“completely false”.
When the quantum state is not an eigenstate of the logical system one
can always express a state vector as a superposition, for example:

when more than one coefficient is non-zero we are in the case of a fuzzy
proposition, that can be interpreted as a quantum superposition of
propositional models. Mean values are fuzzy membership functions [3].

Using the Born rule for the state:

For a compound quantum state:

We can give the "measure" of the conjunction, , and
the disjunction, using the seed projector observable:
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The logical observables are in this case represented by 9x9 matrices.
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eigenvectors of the observables models of the propositional system

eigenvalues of the observables truth values

The outcome of a measurement on a logical observable will give the truth
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connective for 

Boolean A, B

truth table 

{F, T}: {0, 1} ; { + 1, − 1} 

{0, 1} projective 
logical

observable 

{ + 1, − 1} isometric
logical

observable 

False F F F F F 0 + I 

NOR F F F T I − A − B + AB (1/2) ( + I − U − V − UV) 

A B F F T F B − AB (1/2) ( + I − U + V+UV) 

¬A F F T T I − A − U 

A B F T F F A − AB (1/2) ( + I + U − V + UV) 

¬B F T F T I − B − V 

XOR ; A B F T T F A + B − 2 AB U V = Z Z 

NAND F T T T I − AB (1/2) ( − I − U − V + UV) 

AND ; A B T F F F AB = Π Π (1/2) ( + I + U + V − UV) 

A ≡ B T F F T I − A − B + 2 AB − UV 

B T F T F B = I Π V = I Z 

A B T F T T I − A + AB (1/2) ( − I − U + V − UV) 

A T T F F A = Π I U = Z I 

A B T T F T I − B + AB (1/2) ( − I + U − V − UV) 

OR ; A B T T T F A + B − AB (1/2) ( − I + U + V + UV) 

True T T T T T I − I 

Projector Binary Logical Observables
J. von Neumann considered projectors as propositions (quantum logic).

Two-dimensional rank-1 projector (qubit)

; eigenvalue 1.       ; eigenvalue 0.

Logical observable as a development in
Here the elements of the development are the rank-1 projectors and the
truth values and :

The two-argument logical observables can be developed on the
corresponding four rank-1 projectors:

The conjunction is here:
All two-argument connectives are derived.

Isometric Binary Logical Observables
There is a linear bijection (isomorphism) from the projector to a reversible
observable (isometry) using the Householder transform:

both observables commute and have the same system of eigenvectors.
The eigenvalues that correspond to the truth values, respectively “false” and
“true”, are now and . The seed observable is Pauli-Z:

The logical dictators and are expressed as a function of the seed
observable :
For the isometric observables negation is obtained by multiplying by .
The exclusive disjunction (XOR) :
The logical conjunction (AND) :

which is the quantum Control-Z gate

Tri-Valued Logical Observables : Min and Max
In tri-valued logic, popular connectives are Min and Max, defined by their
tables:

The corresponding logical observables are given function of the dictators:

The total number of logical connectives for a system of values and
arguments is the combinatorial number . For a two-argument system

taking values the total number of connectives will be 19683.

Tri-Valued Logical Observables : Min and Max
In tri-valued logic,g , popularp p connectives are Min and Max, defined by their
tables:

The corresponding logical observables are given function of the dictators:

The total number of logical connectives for a system of values and
arguments is the combinatorial number . For a two-argument system

taking values the total number of connectives will be 19683.

Min U \\ V F N T 
F ≡ +1 +1 +1 +1 
N ≡ 0 +1 0 0 

T ≡ − 1 +1 0 − 1 

Max U \\ V F N T 
F ≡ +1 +1 0 − 1 
N ≡ 0 0 0 − 1 

T ≡ − 1 − 1 − 1 − 1 

Discussion and Potential Applications
• Several observables in Eigenlogic are well-known quantum gates. e.g.

(Control-Z) corresponds here to the conjunction logical observable .
• Operational correspondence between control logic (Deutsch’s paradigm)

and propositional logic. A goal could be to express the diagonal forms of
observables in Eigenlogic as products of known quantum gates.

• Questions of how could Eigenlogic be used for quantum computing?:
measurements give truth values, but how to reinject them in a circuit?

• Ternary-logic quantum gates using qu-trits lead to less complex circuits
(e.g. Adder). Our formulation of multi-valued logical observables could help
the development of new multi-valued quantum gate architectures.

• The fuzzy membership function is obtained by the quantum mean value
(Born rule) of the logical projector observable.

• This method could be employed for developing algorithms in high-
dimensional vector spaces for example in modern semantic theories,
such as distributional semantics or in connectionist models of cognition [4].
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