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Abstract: This paper proposes a stability criterion for the study of distributed generators
equipped with local reactive power regulations. Existing formal methods propose a memory-
consuming analysis with some practical issues while dealing with large-scale systems. To cope
with this, a novel analytic stability criterion is established in this work. Firstly, a necessary
condition for system stability is demonstrated for a feeder hosting a single generator. The
approach is illustrated on a real medium voltage feeder. Then, a conjecture is proposed to study
the stability of feeders hosting several generators equipped with reactive power regulations.
Conjecture validity is proved over several theoretical grids hosting up to four distributed
generators thanks to simulations.
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1. INTRODUCTION

During the past decades, the share of generators connected
to the distribution grid – the distributed generators (DGs)
– has severely increased thereby strongly modifying distri-
bution grids behavior (Azmy and Erlich, 2005). As one of
the consequences of this change, the voltage along distri-
bution feeders hosting generation has increased (Dai and
Baghzouz, 2003). To cope with this, distribution grid op-
erators (DSOs) have imagined many solutions to maintain
the voltage within acceptable limits. The classic solution
consists in reinforcing the network thus mitigating voltage
issues but with a subsequent cost. In France, the main
DSO (ERDF) estimates the cost of photovoltaic power
connection to be up to 300 ke/MW in 2030. In order
to try to avoid – or at least to postpone – such invest-
ments, numerous alternatives to network reinforcement
have been investigated in the literature (Dutrieux et al.,
2015). Among these, local control laws of DGs reactive
power (Q) with respect to their voltage (U) have partic-
ularly drawn attention such as in Unger et al. (2013) or
Turitsyn et al. (2011). Indeed, such a control law offers to

⋆ This study has been carried out in the RISEGrid Institute
(www.supelec.fr/342 p 38091/risegrid-en.html), joint scientific pro-
gram between CentraleSupelec and EDF (’ElectricitÃ c© de France’)
on smarter electric grids.

mitigate voltage issues without limiting the DG’s injection
of active power. Indeed, the DG measures the voltage at
its connection point and adapts, in real time, its reactive
power set point according to a given lookup table. The
shape of Q(U) regulation adopted by ERDF the French
DSO (Witkowski et al., 2013) is shown in Fig. 1.
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Fig. 1. General structure of the system under study

As it can be seen in Fig. 1, this is a closed-loop regulation
and so may endanger voltage stability. Even if there exists
a lot of work on voltage control by reactive power manage-
ment with inverters, very few have studied the stability of a
grid hosting many DGs equipped with Q(U) regulations.
This can be explained as such studies raise considerable
challenges due to the non-linearity of the Q(U) control
law. For example, the control law considered in this work
is piecewise affine with five operating modes (Fig. 1). In
order to assess the stability of a grid hosting one or several



DGs equipped with Q(U) regulations, simulations and
experimentations have been carried out.

In empirical studies presented by Beauné et al. (2014) and
Esslinger and Witzmann (2013), Q(U) regulations do not
cause any system instability. However, other works have
drawn contradictory conclusions. Stetz (2014) presents a
simulation work evidencing unstable operating points for
a grid hosting one DG equipped with a Q(U) regulation.
Without a formal stability study of these regulations, no
general conclusion can be drawn. Recently, Andren et al.
(2015) has proposed an analytic study of the stability
of a grid hosting several Q(U) regulations functioning
in one linear operating mode. This linearity assumption
allows the authors to assess stability by computing the
eigenvalues of the system with some limitations on the
validity domain. Preliminary work (Cosson et al., 2015a)
develops a new stability study method coping with the
non-linearity of the Q(U) regulation. This method is based
on the computation of a discrete abstraction of the system
and its refinement thanks to bisimulation calculations.
This method performs a formal stability analysis of a
piecewise affine hybrid system but at a high computational
cost.

The present paper formulates a stability criterion for a
distribution grid hosting several Q(U) regulations and so
allows us to conclude on system stability while keeping
a reduced computational load. This expression lies in the
study of the possible commutations between several linear
operating modes. An intensive investigation leads to an
analytic criterion for the stability of one DG expressing
stability limits with respect to regulation and grid param-
eters. Then, an extrapolation of this result to the grids
hosting several DGs is presented.

Section 2 details the studied system and the proposed
model. Then, the analytic expression of the stability crite-
rion for one DG is elaborated in Section 3. The next section
presents the extrapolation of the stability criterion to grids
hosting several DGs and simulation results validating the
criteron for realistic case-studies. Lastly, the conclusions
of this work are developed in Section 5.

2. SYSTEM MODELING

A medium-voltage feeder, connecting several consumers
and n generators is considered. All n DGs are supposed to
be equipped with the same Q(U) regulation. As presented
in Fig. 1, these regulations measure and filter the voltage
magnitude at the DGs buses U(k) ∈ R

n. The measure-
ment filter is considered to be a discrete-time first-order
low-pass filter with a sample time Ts = 1s and a unit
gain. Then, the filtered voltage magnitude Uf (k) ∈ R

n

is converted into a reactive power set point Q(k) ∈ R
n

through a piecewise affine Q(U) law with five operating
modes. The purpose of this work is to study the possible
voltage oscillations caused by the Q(U) regulations. If such
oscillations exist, they would have a period larger than the
sampling time Ts of the regulation, so approximately of a
few seconds. Thus, in order to study these phenomena,
the appropriate model is an electromechanical one (Kun-
dur et al., 1994). All electromagnetic phenomena will be
modeled in steady-state.

As network lines transients are electromagnetic phe-
nomena (Kundur et al., 1994), they are modeled in
steady-state. Thus, the grid behavior can be represented
by the power flow equations (Bolognani and Zampieri,
2016). The model of the grid should express the volt-
age magnitude variation explicitly at the DGs buses
∆U(k) ∈ Un ⊂ R

n with respect to reactive power changes
∆Q(k) ∈ Qn ⊂ R

n. To do so, a linear approximation of
the power flow equations is computed around the opera-
tion point defined by Q = 0

∆U(k) = KQ∆Q(k) +Kd∆Ud(k) (1)

where ∆Ud(k) = [∆Ud1
(k), · · · ,∆Udm

(k)]T is a vector of
m disturbance variables. In this model, all non-controlled
variables are considered as disturbances such as varia-
tions in active power, voltage at the primary substation,
consumed power, etc. The matrices KQ ∈ R

n×n and
Kd ∈ R

n×m can be calculated as the sensitivity matrices of
the bus voltage magnitude to the variations of the injected
reactive power and disturbances.

The DGs are supposed to be connected to the grid through
power electronics as it is generally the case (Machowski
et al., 2011). The control of reactive power with power
electronics converters, such as inverters, can be modeled
as a first order low-pass filter with a unit gain and a time
constant of a few milliseconds (Machowski et al., 2011).
Thus, in this work, the DGs power electronics are modeled
in steady-state. Lastly, the DGs behavior is modeled by
their Q(U) regulations composed of a measurement filter
and a Q(U) control law. The discrete-time first-order low-
pass filter is modeled by its state equation with a unity
gain and a ∈ [0, 1[ its rapidity.

∆Uf (k + 1) = a ∆Uf (k) + (1− a) ∆U(k) (2)

where ∆Uf (k) ∈ Uf ⊂ R
n is the vector of filtered voltage

magnitudes at the DGs buses at time t = kTs. Afterwards,
the variation of the reactive power set point ∆Q(k) is
computed through a piecewise affine function.

∆Q(k) = G(I(k)) ∆Uf (k) + F(I(k)) (3)

where I ∈ In = {1, . . . , 5}n is the vector of the operating
modes of each DG at time kTs such as:

∆U−(I(k)) ≤ ∆Uf (k) ≤ ∆U+(I(k)) ⇔ ∆Uf (k) ∈ DI(k)

(4)
where Di denotes, for every i ∈ I, the polyhedron defined
by the set of points u ∈ Uf such as ∆U−(i) ≤ u ≤
∆U+(i).

The matrix G(I(k)) ∈ R
n×n is a diagonal matrix with

gjj(ij(k)) being the slope of the Q(U) law of the j-th DG
which is in the ij(k)-th operating mode. Each component
fj(ij(k)) of the vector F(I(k)) ∈ R

n corresponds to the
intercept of the j-th DG Q(U) law in mode ij(k) as
indicated in Table 1.

ij 1 2 3 4 5

gjj 0 σ = −∆QM

∆U2−∆U1
0 σ 0

fj ∆QM σ∆U1 0 −σ∆U1 −∆QM

∆U−

j
−∆UM −∆U2 −∆U1 ∆U1 ∆U2

∆U+
j

−∆U2 −∆U1 ∆U1 ∆U2 +∆UM

Table 1. Parameters of the Q(U) law of the
j-th DG in each operating mode ij

To simplify the study, only one disturbance term, com-
bining the influence of all non-controlled variables, will



be considered in the following ∆Ud(k) ∈ R. Furthermore,
the stability study of Q(U) regulations focuses on a few
seconds. Over this time span, the disturbance term will be
considered as constant ∆Ud(k) = ∆Ud.

To conclude, the system composed of a medium-voltage
grid hosting n DGs equipped with a Q(U) regulation can
be modeled as shown in Fig. 2.
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Fig. 2. Proposed model of a distribution grid hosting
several DGs in order to study its stability

Let A(.) and b(.) be defined as:

A : In → R
n×n

I 7→ a In + (1 − a)KQG(I)
b : In → R

n

I 7→ (1− a)(Kd∆Ud +KQF(I))

(5)

Then, from equations (1)–(5), the following closed-loop
equation can be written:

∆Uf (k + 1) = A(I(k))∆Uf (k) + b(I(k)) (6)

Unstable behavior of such a piecewise affine hybrid system
has been studied by Cosson et al. (2015a). The proposed
method enables us to assess the stability of a distribution
feeder hosting several DGs. It has evidenced the risk of
voltage oscillations caused by the switching between two
operating modes of the Q(U) law. This method gives
detailed results but its complexity grows exponentially
with the number of DGs, thus limiting its application to
a small number of DGs. In this paper, a stability criterion
to ease the study of a large system is proposed. Let us first
detail the methodology to obtain a formal expression of a
stability criterion for a grid hosting a single DG equipped
with a Q(U) regulation.

3. STABILITY CRITERION FOR A SINGLE
DISTRIBUTED GENERATOR

3.1 Methodology

The goal of this work is to express a set of sufficient condi-
tions on system parameters that ensures system stability.
To the best of our knowledge, no direct method has been
found. The proposed methodology is based on deriving
necessary conditions to system instability to then prove
system stability. The system is said to be unstable when
the operating mode of the Q(U) control law oscillates. This
behavior is referred to as a cycle and leads to reactive
power and voltage periodic oscillations. All possible cycles
must be envisaged. To do so, their existence is assumed
leading to a set of necessary conditions on system param-
eters. The contrary of this set of necessary conditions to
instability is a set of sufficient conditions to stability.

In order to be able to apply this reasoning, an exhaustive
list of cycles must be established. As the number of possi-
ble cycles grows with the number of DGs, the methodology
is applied here only for grids hosting a single DG.

Nonetheless, an infinite number of cycles can exist even for
a single DG. To cope with this, only cycles in between only
two different operating modes are considered as possible
as no other cycle has been evidenced in the previous
work (Cosson et al., 2015a). In the following, these cycles
are referred to as simple cycles. As five operating modes
exist, ten simple cycles are considered. Table 2 presents
the list of these cycles.

1↔2 1↔3 1↔4 1↔5

2↔3 2↔4 2↔5

3↔4 3↔5

4↔5

Table 2. List of possible simple cycles for a
single DG

3.2 System description

A grid hosting a single DG (n = 1) is studied here. The
closed-loop dynamics equation can be expressed as follows:

∆Uf (k + 1) = A(i(k))∆Uf (k) + b(i(k)) (7)

where i(k) ∈ I is the operating mode at time kTs such as
∆Uf (k) ∈ Di ⊂ R. Table 3 presents the dynamic equation
coefficient expression for each operating mode.

i A(i) b(i) Di

1 a (1 − a)(Kd∆Ud +KQ∆QM ) [−∆UM , −∆U2]

2 a+ (1− a)σ (1 − a)(Kd∆Ud +KQσ∆U1) [−∆U2, −∆U1]

3 a (1− a)Kd∆Ud [−∆U1, ∆U1]

4 a+ (1− a)σ (1 − a)(Kd∆Ud −KQσ∆U1) [∆U1, ∆U2]

5 a (1 − a)(Kd∆Ud −KQ∆QM ) [∆U2, ∆UM ]

Table 3. Parameters of the closed-loop equa-
tion in the i-th operating mode

3.3 Expression of the stability criterion

The stability criterion is expressed thanks to a two-step
approach. Assuming the existence of a cycle between
operating modes i and j implies that:

(1) it exists at least one point of Dj that can be reached
fromDi and vice-versa (referred to as the predecessors
study);

(2) it exists at least one point of Di (respectively Dj)
involved in the cycle between operating modes i and
j (referred to as the reachability study).

Please note that the existence (respectively non-existence)
of a cycle between two different operating modes i and j
in I2 will be denoted Cij (resp. Cij).

Firstly, the predecessors study is detailed. Let us define
the predecessor of a domain D in a domain D′ such as

Pred(D,D′) = {x ∈ D′ ⊂ Di | A(i)x+ b(i) ∈ D} (8)

To study the existence of a cycle between modes i and j,
it can be noticed that

Cij ⇒

{

Pred(Dj ,Di) 6= ∅
Pred(Di,Dj) 6= ∅

(9)

From these equations, a set of inequalities on system
parameters can be obtained. The method is illustrated



on cycle C35. Its existence is assumed which implies that
Pred(D5,D3) is not an empty set.

∃u ∈ Uf

{

−∆U1 ≤ u ≤ ∆U1

∆U2 ≤ au+ (1− a)Kd∆Ud
(10)

This is used to bound the admissible disturbance term.
Pred(D5,D3) 6= ∅ ⇒

∆U2 − a∆U1 ≤ (1− a)Kd∆Ud
(11)

Similarly, a necessary condition for the existence of a
predecessor of D3 in D5 is obtained. Combining these
conditions, it can be proved that:

C35 ⇒ a ≤
−1−KQσ

1−KQσ
(12)

Thus, if the set of system parameters is chosen such as
(12) is not satisfied then, it can be ensured that no cycle
can exist in between modes 3 and 5.

a >
−1−KQσ

1−KQσ
⇒ C35 (13)

This reasoning is applied to every cycle of the list (Table 2)
and necessary conditions to cycle existence are obtained.
Typical data for French medium-voltage grids lead to
consider network lines to be shorter than 40 km with a
reactance per distance unit of a few 0.1 Ω/km. The DG
maximum reactive power set point is considered up to 40%
of the active power which is supposed to be up to 10 MW
on a medium voltage feeder. Considering these orders of
magnitude, it can be proved that, for any regulation or
grid parameters, necessary conditions for C14, C15, C24

and C25 cannot be met.

a >
−1−KQσ

1−KQσ
⇒ C13, C35

a >
−KQσ

1−KQσ
⇒ C12, C23, C34, C45

∀a ∈ [0, 1] ⇒ C14, C15, C24, C25

(14)

To conclude, the predecessors study has restrained the list
of possible cycles to six out of the ten initially considered
(illustrated in Table 4). Moreover, it has been proved that

none of these cycles can exist if a >
−KQσ

1−KQσ
(see the green

interval in Fig. 3).

1↔2 1↔3

2↔3

3↔4 3↔5

4↔5

Table 4. List of possible simple cycles for a
single DG after the predecessors study
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Fig. 3. Region of proved stability (green) with respect to
filter rapidity a after the predecessors study

The conditions established thanks to the predecessors
study are sufficient conditions to system stability. They re-
strain admissible values of filter rapidity in order to ensure
system stability. As they are only sufficient conditions, the

system might be stable for a value of a lower than the limit
and thus this method might be too restrictive. It means
that the range of admissible rapidity settings is narrower
than the range of stable settings. To push back this limit,
a reachability study is performed. It consists in verifying
that, for each possible cycle, it exists at least one unstable
operating point and thus detecting cycles that cannot
exist. This has been done in two steps. Firstly, it has been
demonstrated there is at most one point involved in a cycle
Cij . Lastly, this point location has been studied according
to system parameters to conclude on cycle existence.

The set Sij ⊂ Di ⊂ R is defined as the set of points
from Di involved in the cycle Cij . It corresponds to the
points belonging to Di which lead, in one time-step, to
an operating point in Dj leading itself back to Sij in the
following time-step. Thus, the sets Sij and Sji can be
defined as follows :

{

Sij = {x ∈ Di : A(i)x + b(i) ∈ Sji}
Sji = {x ∈ Dj : A(j)x+ b(j) ∈ Sij}

(15)

Assuming that Cij exists implies that the sets Sij and Sji

are not empty sets. From now on, the existence of Cij is
assumed. The reachability study tries to characterize the
operating points belonging to Sij and Sji.

These two sets are assumed to be polyhedrons such as Di

and Dj , it can be written that:

∃(Kij , Lij) ∈ (RnS )2 : x ∈ Sij ⊂ R ⇔ Kijx ≤ Lij

∃(Kji, Lji) ∈ (RnS )2 : x ∈ Sji ⊂ R ⇔ Kjix ≤ Lji

(16)
Combining (15) and (16), it can be said that for all x ∈ Sij ,

{

Kij x ≤ Lij

KjiA(i) x ≤ Lji −Kjib(i)
(17)

As this is satisfied for every point in Sij , the two polyhe-
drons defined by (17) must be equivalent, which implies

∃ λ ∈ R :

{

Kij = λ KjiA(i)
Lij = λ (Lji −Kjib(i))

(18)

Similarly, it can be established that

∃ µ ∈ R :

{

Kji = µ KijA(j)
Lji = µ (Lij −Kijb(j))

(19)

Under the assumption that A(i)A(j) is not equal to zero
nor one, Lij can be expressed as the product of a scalar
and Kij .

Lij =
b(j) +A(j)b(i)

1−A(i)A(j)
Kij (20)

Taking this into account, the definition (16) of the poly-
hedron Sij can be rewritten with kh ∈ R defined as a
component of the vector Kij = (kh)h∈{1,...,nS}.

∀x ∈ Sij ⇔ ∀h ∈ {1, . . . , nS}, khx ≤
b(j) +A(j)b(i)

1−A(i)A(j)
kh

(21)
It can be noted that as Sij is necessarily a closed interval
of R, then the system (21) of nS equations must define
a lower bound and an upper bound for x ∈ Sij . This
implies that it exists at least one positive component kh
of Kij (defining the upper bound) and another kh′ which
is negative (defining the lower bound).

From this statement, it can be deduced that (21) implies
that:



∀x ∈ Sij ⇔ x =
b(j) +A(j)b(i)

1−A(i)A(j)
(22)

The operating point of Di involved in Cij is now denoted
x⋆
ij . Now let us express at which conditions this point

actually belongs to Di. This method is illustrated on cycle
C34.

x⋆
34 =

1 + a+ (1− a)KQσ

1 + 1− aKQσ
Kd∆Ud −

KQσ

1 + 1− aKQσ
∆U1

(23)
Let us try to locate x⋆

34 in D3. It can be written that
{

−∆U1 ≤ x⋆
34 ≤ ∆U1

∆U1 ≤ A(3) x⋆
34 + b(3) ≤ ∆U2

(24)

From (23), the disturbance term ∆Ud can be expressed
as a function of x⋆

34. Injecting this in (24), the following
inequalities are obtained

{

x⋆
34 ≤ ∆U1

∆U1

1+a+(1−a)KQσ
≤ x⋆

34

1+a+(1−a)KQσ

(25)

On one hand, it can be seen that if 1+a+(1−a)KQσ < 0
then there exist operating points satisfying (25) thus cycle
C34 can exist. On the other hand, if 1+a+(1−a)KQσ > 0,
the conditions of (25) are equivalent to x⋆

34 = ∆U1 thus the
only point in C34 is actually the border of D3. It can be
shown that:

x⋆
43 = x⋆

34 = ∆U1 = D3 ∩ D4 (26)

This means that the trajectory of C34 is actually a fixed
point belonging both to D3 and D4 as it is their common
border. To conclude, this cannot be considered as an
unstable trajectory.

a >
−1−KQσ

1−KQσ
⇒ C34 (27)

Similar calculations have been conducted to study suffi-
cient non-existence conditions of cycles C12, C23 and C45.
Finally, it has been proved that (27) implies the absence
of cycles C12, C23 and C45. The reachability study has
led to the expression of a larger stability region as shown
in Fig. 4. Please note that there is no proof of system
instability for a filter rapidity a < alim.

I

0

I

1

I

alim =
−1−KQσ

1−KQσ

I

−KQσ

1−KQσ

STABLE?

a

Fig. 4. Region of proved stability (green) with respect to
filter rapidity a for simple cycles

Let us illustrate these results on a real case study.

3.4 Illustration on a real case-study

To illustrate the proposed method, the stability criterion
of a real medium-voltage feeder is calculated. The modeled
grid is a real 124 nodes distribution feeder of the ERDF
network. This feeder hosts about 300 kW of consumption
and a single DG: a wind farm of 6 MW located about
20 km away from the primary substation. In its present
condition, this distribution feeder is experiencing over-
voltage issues. In order to try to mitigate them, the DG

is considered to be equipped with the Q(U) regulation
presented in Fig. 1.

The influence of reactive power variations at the DG
connection point is modeled by a gainKQ calculated using
a sensitivity analysis of DG voltage with respect to reactive
power variations.

KQ = 0.13 V/kV Ar (28)

The Q(U) regulation parameters are set such as:

∆QM = 2.4 MV ar and σ = −9.6 kVar/V
∆U1 = 750 V and ∆U2 = 1000 V

(29)

The proposed stability criteria is computed.

alim = 0.11 (30)

If the filter rapidity is set to be higher than alim, then
no simple cycle can exist and the system is stable if no
complex cycle arises. On the other hand, nothing can be
predicted for system stability if the filter is faster than
alim.

The behavior of the system in response to a disturbance
step (at time equals 1 second) is simulated for four values
of filter rapidity a. As it can be seen in Fig. 5, for a > alim,
the system is stable as planned by the stability criterion.
Please note that for settings closed to the limit case, even
if the system is stable, however, it endures large voltage
oscillations and its settling time is important. On the
other hand, as a increases toward one, voltage oscillations
amplitude tend to be reduced but the system dynamics is
slowed down. A trade-off has to be made between stability
and rapidity.
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Fig. 5. Dynamical simulations of the voltage profile for a
disturbance step with several rapidity filter settings

It can be seen on Fig. 5 that when a < alim then this
system is unstable. This result cannot be generalized to
any system but it highlights the fact that the proposed
stability criterion is close to the reality.

In this section, an explicit stability criterion has been
proposed for grids hosting a single DG equipped with a
Q(U) regulation. The method has been illustrated on the
Q(U) regulation presented in Fig. 1 and it can be applied
to any piecewise affine DG power regulation as a function
of the voltage. The validity and interest of such a criterion
have been illustrated on a real case-study. It demonstrates
the necessity to carefully set system parameters in order to
ensure system stability. Let us now discuss the stability of a
grid hosting several DGs equipped with Q(U) regulations.



4. STABILITY CRITERION FOR SEVERAL
DISTRIBUTED GENERATORS

4.1 Methodology

The methodology detailed in the previous section proposes
to study the stability of a single DG by enumerating all
possible cycles. For the study of n DGs, considering only
simple cycles, two among n cycles must be considered.
It can be easily understood that the methodology for a
single DG is not adapted to the study of the interactions
in between n DGs. To overcome this issue, it can be noticed
that the proposed stability criterion for a single DG can
be seen as the local stability of each operating mode.

Indeed, let us consider a single DG in operating mode
i ∈ I. The dynamics equation of the system (7) in the
operating mode i is stable if and only if the eigenvalues
λ(i) of the A(i) have a module lower than one. In the
considered case, A(i) is a scalar and so:

{

λ(1) = λ(3) = λ(5) = a
λ(2) = λ(4) = a+ (1− a)KQσ

(31)

Dynamics in modes 1, 3 and 5 are always stable as the
filter rapidity is positive and smaller than one. Modes 2
and 4 are stable if and only if:

−1 < a+(1−a)KQσ < 1 ⇔
−1−KQσ

1−KQσ
< a < 1

(32)
Thus, it can be noted that the stability of all operating
modes dynamics is equivalent to the stability criterion
shown on Fig. 4. To conclude, for a single DG, it can be
said that:

∀i ∈ I, | λ(i) |≤ 1 ⇔ alim < a < 1 ⇒ No simple cycle
(33)

In this paper, it is conjectured that this result can be
expanded to n DGs. The proposed stability criterion
consists in computing the eigenvalues of the evolution
matrix of the dynamic system of every possible operating
mode. If all eigenvalues have a module smaller than one,
the system is supposed to be stable.

If |λ| < 1, ∀λ ∈ eig(A(I)), ∀I ∈ In ⇒ No simple cycle
(34)

As for now, this conjecture has not been proved to be
right. In order to assess its validity, a series of numerical
experiments have been done to compare, for a grid hosting
n DGs, the stability conjecture to the stability computed
with the formal tool presented by Cosson et al. (2015b).

4.2 Statistical validation

In order to evaluate the validity of the proposed conjecture
(34), a large number of simulations is done. For every case,
the formal stability of the system is computed thanks to
bisimulation calculation (Cosson et al., 2015b). The result
is then compared with the conjecture.

For this paper, a 20-node theoretical medium-voltage grid
with lines up to 16 km is modeled. This grid hosts up
to four DGs equipped with a dead-band Q(U) regulation
law (see Fig. 1). The maximum number of DGs has
been limited to four due to the available memory of the

computer 1 . For each scenario, the number of DGs is
randomly chosen as well as their point of connection to
the grid and their active power. The sum of active powers
has been limited to 10 MW to take into account realistic
data. Figure 6 presents as an example scenario number 17
which corresponds to a grid hosting 3 DGs.

1 2 3 4 5 6 7 80

19 20

15 16 17 18

9 10 11 12 13 14

4.0 MW 3.8 MW

1.2 MW

20.4 kV

Legend:

Primary substation (slack bus)

Node hosting power consumption

Node hosting power generation

Fig. 6. Scheme of scenario 17 feeder

In this work, 60 scenarios – corresponding to different
network configurations – have been randomly picked. Fig-
ure 7 presents the distribution of the number of DGs
hosted by the feeder for all scenarios and Figure 8 the
distribution of the cumulated active power over the feeder
for all scenarios. For each scenario, all DGs filters have
the same rapidity setting which is randomly chosen among
a ∈ {0; 0.1; . . . ; 0.5}. Thus, 360 systems are under study.
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Firstly, their stability is computed formally with the bisim-
ulation technique. Then, the stability of each operating
mode is analyzed to assess system stability thanks to
the proposed conjecture. Results of both methods are
compared in order to validate the conjectured stability
criterion. With the formal stability study, 39.3% of the
cases are found to be unstable. All of the unstable cases
are also detected by the conjecture whereas stability of the
system is not always detected by the conjecture (Table 5).

Indeed, the stability of the local linear dynamics implies
the global stability of the system (34) but is not equivalent
to it. For example, in scenario number 16 with a filter
rapidity set to zero, the bisimulation calculation finds
the system to be stable whereas the operating mode
I = [2 2 2]T is unstable. This instability does not affect the

1 These simulations have been done with a computer with 16 Go of
memory.
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❵
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❵
❵

then ...
When ... Criterion is

stable
Criterion is
unstable

Bisimulation is stable 100% 12.6%

Bisimulation is
unstable

0% 87.4%

Table 5. Quantitative comparison of stability
analysis using the proposed criterion knowing
the result of bisimulation calculation (Cosson

et al., 2015b)

global stability as none of the unstable operating modes
is actually reachable. For instance, electrical distance in
between DGs is such as all DGs cannot be in operating
mode 2 at the same time.

To conclude, the conjecture of (34) is satisfied for all
the tested cases. The statistical study has highlighted the
validity of the conjecture at least for systems up to three
DGs. The proposed stability criterion for n DGs seems
to be a sufficient condition to system stability but not a
necessary condition.

5. CONCLUSION

This paper proposes a stability study of n DGs equipped
with dead-band Q(U) regulations based on previous obser-
vations of unstable behavior (Cosson et al., 2015a). The
presented work consists in the establishment of an ana-
lytic stability criterion which pushes back the maximum
number of DGs that can be considered as the numerical
complexity is reduced compared to bisimulation calcula-
tion.

Firstly, the existence as well as the explicit expression
of a stability criterion have been demonstrated for grids
hosting a single DG and considering only simple cycles.
Then, its extension to several DGs is conjectured. The
proposed stability criterion is: the local stability of each
linear operating mode implies the global stability of the
system (34). To validate it, a stability study over 360 sys-
tems is conducted. The comparison with formal stability
study confirms the validity of the conjecture in all tested
cases.

Please note that due to numerical complexity of the
bisimulation calculation, the validation study was limited
to feeders hosting up to four DGs. Even though, the
bisimulation calculation over the 360 studied cases took
more than 87 hours with up to 102 iterations before
being able to conclude. Further work will include the
improvement of the bisimulation calculation convergence
in order to extend stability study to more complex cases.
Indeed, a broader validation study is needed to confirm
conjecture validity for feeders hosting more than four DGs.

To conclude, this paper focuses on the stability of dead-
band Q(U) regulations. Further work will generalize these
results to the stability study of various DG power regula-
tions.
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