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Abstract Parametric convex programming has received a lot of attention, since it

has many applications in chemical engineering, control engineering, signal process-

ing, etc. Further, inverse optimality plays an important role in many contexts, e.g.,

image processing, motion planning. This paper introduces a constructive solution of

the inverse optimality problem for the class of continuous piecewise affine functions.

The main idea is based on the convex lifting concept. Accordingly, an algorithm to

construct convex liftings of a given convexly liftable partition will be put forward.

Following this idea, an important result will be presented in this article: any contin-
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uous piecewise affine function defined over a polytopic partition is the solution of

a parametric linear/quadratic programming problem. Regarding linear model predic-

tive control, it will be shown that any continuous piecewise affine control law can be

obtained via a linear optimal control problem with the control horizon at most equal

to 2 prediction steps.

Keywords Convex liftings · Parametric convex programming · Inverse optimality ·

Piecewise affine functions

1 Introduction

Parametric convex programming (PCP) has attracted significant attention due to its

relevance in many related areas, e.g., computational geometry, operational research,

control theory, etc. In particular, optimal solution of a linear/quadratic programming

problem is known to be a piecewise affine (PWA) function defined over a polyhedral

partition of the parameter space. In control theory, this structure of control laws ap-

peared in the last decade as an approximation of the classical nonlinear control laws

with respect to a predefined error [1–3]. Then, it is shown that this PWA structure is

inherited by the exact optimal solution of a linear model predictive control (MPC)

problem with respect to a linear/quadratic cost function [4–9].

Inverse parametric linear/quadratic programming aims to construct a linear con-

straint set and a linear/quadratic cost function such that the optimal solution of their

associated optimization problem is equivalent to a given PWA function, defined over

a given polyhedral partition. This inverse optimality problem has been investigated
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for some years and has resulted in interesting results for the general nonlinear con-

tinuous functions [10] and recently for continuous PWA functions [11, 12].

The authors in [10] proved that every continuous feedback law can be obtained by

PCP. This is an insightful mathematical result; however, it remains purely theoretical;

neither a constructive procedure nor a qualitative interpretation of the dimension of

the optimization arguments is provided. The present work is motivated by a comment

therein: A natural question that can arise from this note would be to particularize our

results to piecewise linear controllers: can any continuous piecewise linear feedback

law be obtained by parametric linear programming? The answer is positive and one

solution to such an inverse optimality problem is recently found in [11] wherein an

indirect solution, built upon a decomposition of a continuous PWA function into the

difference of two continuous convex functions, is introduced.

In this paper, we present the results obtained using a different approach based on

convex lifting. It will be proved that the proposed method can recover the given PWA

function with at most one supplementary variable. The major contributions in this

direction are: 1) the introduction of the convex lifting concept for use in the inverse

optimality problem; 2) the convex liftability related condition for the existence of

a solution of the inverse optimality problem; 3) a constructive procedure based on

convex liftings for obtaining a solution of the inverse optimality problem.

The most important result related to Linear Optimal Control can be stated as

follows: any continuous piecewise affine control law can be recovered via a linear

optimal control problem with a control horizon at most equal to 2 prediction steps.

The key concept used in the developments: the lifting can be defined as an inverse
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operation of orthogonal projection. As underlined by its definition, this operation

allows lifting of a given partition onto a higher dimensional space. In particular, a so-

called convex lifting of a given partition in Rd amounts to a convex surface in Rd+1

such that each pair of neighboring regions are lifted onto two distinct hyperplanes and

its image via the orthogonal projection onto Rd coincides with the given partition.

It is worth reminding that the lifting notion was introduced for the first time in

Maxwell’s research publications, e.g., [13] some 150 years ago. Later, a plethora of

studies were dedicated for the existence conditions of such a convex lifting for a given

partition [14–20]. However, most of these results are difficult to apply in numerical

methods such as those usually employed in linear control design. On the other hand,

control theory needs a systematic approach for the use of a lifting procedure in the

inverse optimality problem. This aspect will be discussed in details in this paper.

2 Notation and Definitions

R,R+,N>0 denote the field of real numbers, the non-negative real numbers set and

the positive integer set, respectively. The following index set is also defined for ease

of presentation, with a given N ∈ N>0, IN := {1, . . . , N}.

A polyhedron is defined as the intersection of finite number of closed halfspaces.

As a sequence, a polyhedron is a closed set. A polytope is defined as a bounded

polyhedron. Given a full dimensional polytope S, then V(S) denotes the set of its

vertices, int(S) denotes its interior. By dim(S),we denote the dimension of the affine

hull of a given set S.Also, conv(S) denotes the convex hull of a given set S. If S is an

arbitrary set in Rd and S is a subspace of Rd, then Proj S S represents the orthogonal
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projection of S onto the space S. Further, if S ⊆ Rd is a full dimensional polyhedron,

a face of S is the intersection of S and one of its supporting hyperplanes. A k−face

represents a face of dimension k. A 0−face is called a vertex, an 1−face is called

an edge, a (d − 1)−face is called a facet. F(S) denotes the set of all facets of the

polyhedron S.

For a given d ∈ N>0, 0d denotes a vector of dimension d whose elements are

equal to 0. Similarly, 0m×n denotes a matrix in Rm×n composed of the elements

equal to 0. Let us recall also some useful definitions.

Definition 2.1 A collection of N ∈ N>0 full dimensional polyhedra Xi ⊂ Rd, de-

noted by {Xi}i∈IN , is called a polyhedral partition of a polyhedron X ⊆ Rd iff:

1. X =
⋃

i∈IN Xi,

2. int(Xi)
⋂

int(Xj) = ∅ with i 6= j, (i, j) ∈ I2N .

(Xi,Xj) are called neighbours iff (i, j) ∈ I2N , i 6= j and dim(Xi ∩ Xj) = d − 1.

Also, if X is a polytope then {Xi}i∈IN is called a polytopic partition.

The definition of a cell complex was presented by Grünbaum in [21]. For simplicity,

a cell complex, in this paper, should be understood as a polyhedral partition whose

face-to-face property is fulfilled, i.e., for any pair of regions, the intersection of faces

is either empty or a common face. Accordingly, a polyhedral partition of a polyhedron

is a cell complex if any pair of neighboring regions share a common facet.

Definition 2.2 For a given polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ Rd,

a piecewise affine lifting is described by the function z : X → R with:

z(x) = AT
i x+ ai for any x ∈ Xi, (1)
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and Ai ∈ Rd, ai ∈ R, ∀i ∈ IN .

Definition 2.3 Given a polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ Rd, a

piecewise affine lifting: z(x) = AT
i x + ai for x ∈ Xi, is called a convex piecewise

affine lifting iff the following conditions hold true:

– z(x) is continuous over X ,

– for each i ∈ IN , z(x) > AT
j x+ aj for all x ∈ Xi\Xj and all j 6= i, j ∈ IN .

The second condition in the above definition implies that z(x) is a convex function

defined over X . Moreover, the strict inequalities ensure that any pair of neighboring

regions are lifted onto two distinct hyperplanes.

For ease of presentation, a slight abuse of notation is herefter used: a convex lifting

is understood as a convex piecewise affine lifting. From the above definition, if a poly-

hedral partition {Xi}i∈IN of a polyhedron X admits a convex lifting, then {Xi}i∈IN

has to be a cell complex. This observation is stated by the following proposition.

Proposition 2.1 A polyhedral partition of a polyhedron, which admits a convex lift-

ing, is a cell complex.

Proof: Suppose the given polyhedral partition {Xi}i∈IN of a polyhedron X ⊆ Rd,

which admits a convex lifting, is not a cell complex. By z(x) = AT
i x+ai for x ∈ Xi,

we denote this convex lifting of {Xi}i∈IN . Then there exists a pair of neighboring

regions, denoted by Xi,Xj , whose facet-to-facet property is not fulfilled.

According to the definition of convex liftings, the hyperplaneH0, described by

H0 :=
{
x ∈ Rd : AT

i x+ ai = AT
j x+ aj

}
,



Constructive Solution of Inverse Parametric Linear/Quadratic Programming Problems 7

contains Xi∩Xj . Also, due to the violation of the facet-to-facet property, there exists

a point, denoted by x0, such that x0 ∈ H0 ∩ Xi but x0 /∈ Xj (an illustration can

be found in Fig.1). x0 ∈ H0 implies AT
i x0 + ai = AT

j x0 + aj . On the other hand,

x0 ∈ Xi, x0 /∈ Xj lead to AT
i x0 + ai > AT

j x0 + aj . These two last inclusions are

clearly contradictory. Therefore, the partition {Xi}i∈IN has to be a cell complex. ut

According to this proposition, a convex lifting is always defined over a cell com-

plex. However, the cell complex characterization of {Xi}i∈IN is a necessary condi-

tion, but not a sufficient condition for the existence of a convex lifting.

Definition 2.4 A given cell complex {Xi}i∈IN in Rd has an affinely equivalent poly-

hedron iff there exists a polyhedron X̃ ⊂ Rd+1 such that for each i ∈ IN :

1. ∃Fi ∈ F(X̃ ) satisfying: ProjRdFi = Xi,

2. if z(x) := min
z
z s.t.

[
xT z

]T ∈ X̃ , then
[
xT z(x)

]T ∈ Fi for x ∈ Xi.

An illustration can be found in Fig.2 where a cell complex in R consists of the mul-

ticolored segments along the horizontal axis. One of its affinely equivalent polyhedra

in R2 is the pink shaded region. Moreover, the lower facets of this polytope are an

illustration of the facets Fi appearing in Definition 2.4.

Note that, given a cell complex {Xi}i∈IN of a polyhedron X ⊆ Rd, affinely

equivalent to a polyhedron X̃ ⊂ Rd+1, if z denotes the last coordinate of X̃ such that[
xT z

]T ∈ X̃ , then {Xi}i∈IN is nothing other than the cell complex associated with

the optimal solution to the following parametric linear programming problem:

z∗(x) = min
z
z subject to

[
xT z

]T ∈ X̃ .
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X i

X j

H 0

xo

Fig. 1: An illustration for Proposition 2.1.
Fig. 2: An illustration of affinely equivalent poly-
hedron.

Also, z∗(x) represents a convex lifting for this cell complex.

3 Problem Statement

3.1 Parametric Linear/Quadratic Programming Problems

Recall (see [4–8]) that a parametric linear/quadratic programming problem is defined

as follows with respect to dx, dU ∈ N>0:

min
U

f(U, x) subject to: GU ≤W + Ex, (2)

where x ∈ Rdx represents the parameter vector, U ∈ RdU represents the decision

variable and f(U, x) represents a linear/quadratic cost function inU and x. The above

problem has a continuous solution denoted as U∗(x) (see [4]), known to be a piece-

wise affine function defined over a polyhedral partition {Xi}i∈IN of the parameter

space denoted as X , as a polyhedron:

U∗(x) = fpwa(x) = Fix+Gi, ∀x ∈ Xi. (3)
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Note that the optimal solution to a parametric quadratic programming problem is

unique if f(U, x) along U is strictly convex; see [4]. It is already known that this

uniqueness may no longer be preserved in the case of a parametric linear program-

ming problem. However, a continuous selection of optimal solution to such a linear

problem is shown in [22] to exist. Conversely, given a continuous PWA function de-

fined over a polyhedral partition, the question is whether there exists an optimization

problem such that its optimal solution is equivalent to the given PWA function. The

answer is shown in [10] to be affirmative, although the numerical construction of

such an optimization problem is still open. A possible candidate for this optimization

problem may be characterized by a linear/quadratic cost function and a set of linear

constraints. For the moment, the definition of an inverse parametric linear/quadratic

programming problem is introduced.

3.2 Inverse Parametric Linear/Quadratic Programming Problems

In principle, an inverse parametric linear/quadratic programming problem aims to

reconstruct an appropriate optimization problem with respect to a given continuous

piecewise affine function u(x) = fpwa(x), defined over a given polyhedral partition

{Xi}i∈IN of the parameter space X ⊆ Rdx such that the optimal solution of this re-

constructed problem is equivalent1 to the given PWA function fpwa(x). This problem

can be stated as follows:

1 The equivalence hereafter means that the boundary between two regions of the parameter space parti-
tion, corresponding to two different affine functions, must be preserved and a subdivision or refinement of
the regions corresponding to the same affine function is possible.
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Problem statement: For a given polyhedral partition {Xi}i∈IN of the parameter space

X ⊆ Rdx , associated with a continuous PWA function fpwa(x) : X → Rdu , find a

linear/quadratic cost function J(x, z, u) and matrices Hx, Hu, Hz,K such that:

fpwa(x) = ProjRdu arg min
[z uT ]T

J(x, z, u) s.t. Hxx+Hzz +Huu ≤ K. (4)

The convex lifting based solution to such an inverse optimality problem is presented

in the sequel. A definition of invertibility needs to be introduced in order to establish

the working assumption of the convex lifting based method.

Definition 3.1 A continuous PWA function defined over a polyhedral partition is

called invertible iff there exists an appropriate constraint set and a cost function such

that their associated parametric convex programming problem admits the given con-

tinuous PWA function as its optimal solution.

4 Constructive Convex Lifting based Approach for Inverse Parametric

Linear/Quadratic Programming

4.1 Existing Results on Convex Liftings

Many studies dedicated to the existence of convex liftings for the cell complexes in

R2, were investigated, e.g., in [13–15,19]. These results were then generalized to the

cell complexes in the general dimensional space Rd through different studies, e.g.,

in [18]. It is shown therein that there exists a convex lifting for a cell complex in Rd

if and only if one of the following holds:

– it admits a strictly positive d−stress;
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– it is an additively weighted Dirichlet-Voronoi diagram;

– it is an additively weighted Delaunay decomposition;

– it is the section of a (d+ 1)-dimensional Dirichlet-Voronoi partition2.

The above results cover the general class of cell complexes in Rd. Unfortunately, de-

spite the mathematical completeness of the existing results, the verification of these

conditions are expensive. Furthermore, they do not provide any hint for the con-

struction of a convex lifting. The next subsection presents such a construction in the

general case of cell complexes.

4.2 Construction of Convex Liftings

In this subsection, the main objective is to present an algorithm for the construction

of a convex lifting for a given cell complex via linear/quadratic programming. This

algorithm exploits the continuity and the convexity of a convex lifting for neighboring

regions. Note that we restrict our attention in this article to the polytopic partitions.

Extensions of the results found here for cell complexes of an unbounded polyhedron

have been recently given in [26].

Suppose we want to lift a given cell complex {Xi}i∈IN of a polytope X ⊂ Rd.

Let X̃ ⊂ Rd+1 be one of its affinely equivalent polyhedra. For each region Xi with

i ∈ IN , the hyperplane Hi, containing the lower facet of X̃ , whose orthogonal pro-

jection onto Rd coincides with Xi, has the following form:

Hi =
{[
xT zi

]T ∈ Rd+1 : zi = AT
i x+ ai

}
, (5)

2 Other related results can be found in Konstantin Rybnikov’s thesis [18], equally in [17, 23–25].
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for suitable Ai ∈ Rd, ai ∈ R.

Let (i, j) ∈ I2N be an index pair such that (Xi,Xj) are neighbors. The continuity

conditions between them are described as follows:

∀x ∈ Xi ∩ Xj , i 6= j, zi(x) = zj(x). (6)

Moreover, the convexity conditions between them can be handled as:

∀x ∈ Xi\(Xi ∩ Xj), zi(x) > zj(x). (7)

Algorithm 1 summarizes the constructive procedure which allows for the computa-

tion of the gains (Ai, ai), ∀i ∈ IN of a convex lifting.

Algorithm 1 Construction of a convex lifting for a given cell complex {Xi}i∈IN of
a polytope X ⊂ Rd.

Input: {Xi}i∈IN and a given constant c > 0.
Output: Gains (Ai, ai), ∀i ∈ IN .

1: Register all pairs of neighboring regions in {Xi}i∈IN .
2: For each pair of neighboring regions (Xi, Xj), (i, j) ∈ I2N :

– Add continuity conditions ∀v ∈ V(Xi ∩ Xj):

AT
i v + ai = AT

j v + aj . (8)

– Add convexity conditions ∀u ∈ V(Xi), u /∈ V(Xj):

AT
i u+ ai ≥ AT

j u+ aj + c. (9)

3: Solve the following convex optimization problem by minimizing a chosen cost
function, e.g.,

min
Ai, ai

N∑
i=1

(AT
i Ai + a2i ) subject to (8), (9). (10)

The following theorem serves as an explanation of this algorithm.



Constructive Solution of Inverse Parametric Linear/Quadratic Programming Problems 13

Theorem 4.1 If the optimization problem (10) is feasible, then the function

z(x) = AT
i x+ ai for x ∈ Xi

represents a convex lifting for the given cell complex {Xi}i∈IN .

Proof: If the optimization problem (10) is feasible, then the continuity conditions

on the function z(x) and the convexity conditions of its epigraph are all fulfilled.

Accordingly, for two neighboring regions (Xi,Xj), it follows that:

AT
i x+ ai = AT

j x+ aj for all x ∈ Xi ∩ Xj ,

AT
i x+ ai > AT

j x+ aj for all x ∈ Xi\Xj .

(11)

The same inclusion holds for the other pairs of neighboring regions. This leads to the

continuity of z(x) and for each i ∈ IN :

AT
i x+ ai > AT

j x+ aj for all x ∈ Xi\Xj , ∀j 6= i, j ∈ IN . (12)

Therefore, function z(x) = AT
i x+ai for x ∈ Xi is a convex lifting defined over the

cell complex {Xi}i∈IN , as defined in Definition 2.3. ut

Note that the cost function chosen in (10) aims to avoid the unboundedness of

the optimal solution. Other choices of this cost function are possible as long as the

boundedness of the optimal solution is guaranteed. Also, as seen in (9), the strict

convexity condition (7) can easily be transformed into inequality constraints in an

optimization problem by adding a positive constant c on the right-hand side of (9),

thus > can be replaced with ≥ . Theoretically, if the given cell complex is convexly
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liftable, then any choice of this positive constant does not have any effect on the

feasibility of the optimization problem (10). Since (8) and (9) amount to

(αAi)
T v + (αai) = (αAj)

T v + (αaj) for v ∈ V(Xi ∩ Xj)

(αAi)
Tu+ (αai) ≥ (αAj)

Tu+ (αaj) + αc for u ∈ V(Xi), u /∈ V(Xj),

for any α > 0. In other words, ˜̀(x) = (αAi)
Tx + (αai) for x ∈ Xi also represents

a convex lifting of cell complex {Xi}i∈IN which may be resulted from Algorithm 1

with a given constant αc. Therefore, the optimization problem (10) is still feasible

with the constant αc > 0. Accordingly, the feasibility of the optimization problem

(10) can serve as another necessary and sufficient condition for the existence of a

convex lifting of a given cell complex. Furthermore, according to Proposition 2.1,

the optimization problem (10) is infeasible for the polytopic partitions of polytopes

whose facet-to-facet property is not fulfilled.

Note also that this construction of convex liftings relies on the vertices of the poly-

topes in {Xi}i∈IN , therefore the computation of its vertices, called vertex enumera-

tion, is required. Although vertex enumeration does not scale exponentially with the

dimension of the associated polytopes, see [27], its computation however becomes

demanding as the dimension increases. Fortunately, this computation is performed

offline, thus it is reasonable to assume that ample computational resources are avail-

able.

To illustrate Algorithm 1, a cell complex in R2 is presented in Fig.3. One of its

affinely equivalent polyhedra is the shaded polytope with the lower facets multicol-

ored.
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Fig. 3: A cell complex in R2 and one of
its affinely equivalent polyhedra in R3.

4.3 Convexly Non-liftable Polyhedral Partitions

It is already known that the parameter partition, associated with the optimal solution

to a parametric quadratic programming problem, may not be a cell complex but a

polyhedral partition. This case usually takes place in linear model predictive control

problems with respect to quadratic cost functions. Therefore, to solve the inverse op-

timality problem via convex liftings, it is necessary to treat such singular partitions in

order that their convex liftability is retrieved. It is shown in [20, 28] that any polyhe-

dral partition can be subdivided into a convexly liftable one provided that its internal

boundaries are still preserved. This result is recalled here for completeness.

Theorem 4.2 ( [20,28]) Given a convexly non-liftable polyhedral partition {Xi}i∈IN

of a polyhedron X ⊆ Rd, there exists at least one subdivision, preserving the internal

boundaries of this partition such that the new cell complex is convexly liftable.

Interested readers can find details about the proof in [20, 28]. According to its proof,

the hyperplane arrangement technique can be of use to carry out this goal. Practically,
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hyperplane arrangement is only one approach to show the existence of modifications

for the given convexly non-liftable polyhedral partition into a convexly liftable one.

In control theory, such a modification can increase the complexity of PWA control

laws in the implementation. However, such a complete refinement may not be neces-

sary in practice. Many different refinement techniques exist. We refer to [29] for an

alternative technique for a class of particular cases in control theory.

5 Solution to Inverse Parametric Linear/Quadratic Programming Problems

The definition of an inverse parametric linear/quadratic programming problem has

been introduced in Subsection 3.2. The solution to such inverse optimality problems

is built in this paper upon the convex lifting approach. First, some regularity assump-

tions need to be stated to make this approach reasonable from a construction point of

view. These assumptions are stated with respect to the notation in Subsection 3.2.

Assumption 5.1 The parametric linear/quadratic programming problems are exclu-

sively considered as possible candidates for solutions to the inverse optimality prob-

lem. As a consequence, the cost function has the following form:

J(x, z, u) =
[
xT z uT

]
Q
[
xT z uT

]T
+ CT

[
xT z uT

]T
, (13)

with positive semidefinite matrix QT = Q ≥ 0.

Assumption 5.2 The polytopic partition {Xi}i∈IN , associated with a given contin-

uous PWA function, is convexly liftable.
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Assumption 5.3 The parameter space X =
⋃

i∈IN Xi is a polytope.

Note that Assumption 5.1 provides a manageable framework for the constructive in-

verse optimality procedure. Larger classes of objective functions can provide more

degrees of freedom, but the linearity of such parametric convex programming prob-

lems is lost. Assumption 5.3 restricts the inverse optimality problem to bounded fea-

sible region given by a polytope, since linear constraints are exclusively of interest.

Also, the construction presented below can easily be extended to polyhedral partitions

of polyhedra, see [26]. Assumption 5.2 is not restrictive, since the convex liftability

of the given polytopic partition can be enforced by refinement procedures according

to Theorem 4.2. Note also that in the scope of this paper, we restrict our attention

to the class of continuous PWA functions. It will be shown that due to this continu-

ity property, the optimal solution to the recovered optimization problem is unique.

Inverse optimality for the class of discontinuous PWA functions is studied in [30].

In this case, it is however shown that the uniqueness of the optimal solution to the

recovered optimization problem is lost.

The following intermediate result is necessary for the development of a construc-

tive solution to the inverse optimality problem.

Proposition 5.1 Let Γs ⊂ Rds be a full dimensional polytope with the set of vertices

V(Γs) = {s(1), . . . , s(q)}. For any finite set of points {t(1), . . . , t(q)} ⊂ Rdt defining

a full dimensional polytope in Rdt , an extension of the family V(Γs) can be obtained

in higher dimensional space Rds+dt for the concatenated vectors
[
sT tT

]T
defining
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the set:

V[sT tT ]T :=


s(1)
t(1)

 , . . . ,
s(q)
t(q)


 .

The polytope Γ[sT tT ]T = conv(V[sT tT ]T ) satisfies: V[sT tT ]T = V(Γ[sT tT ]T ).

Proof: Geometrically, this proposition shows that if s(i) is a vertex of Γs ⊂ Rds ,

then with any complementary vector t(i) ∈ Rdt yielding vector

s(i)
t(i)

 ∈ Rds+dt ,

this vector represents a vertex of the new polytope Γ[sT tT ]T in Rds+dt defined as

the convex hull of the extended set of points V[sT tT ]T . By construction, it can be

observed that V(Γ[sT tT ]T ) ⊆ V[sT tT ]T . Therefore, in order to prove this claim, we

will show that V(Γ[sT tT ]T ) ⊂ V[sT tT ]T leads to a contradiction.

In fact, suppose V(Γ[sT tT ]T ) ⊂ V[sT tT ]T . According to this assumption, there

exists a point in V[sT tT ]T which lies in the interior of the polytope Γ[sT tT ]T or can

be described by a convex combination of the other points. Without loss of generality,

let

s(q)
t(q)

 denote this point, then there exists a vector α ∈ Rq−1
+ such that:

s(q)
t(q)

 =

q−1∑
i=1

αi

s(i)
t(i)

 , q−1∑
i=1

αi = 1. (14)

One can easily see from (14) that s(q), as a vertex of Γs, is described by a convex

combination of the other vertices of Γs. This inclusion is contradictory to the defini-

tion of a vertex of a convex set, see [21]. In other words, all elements of V[sT tT ]T are

the vertices of Γ[sT tT ]T . ut
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Remark 5.1 Note also that this proposition remains valid for the degenerate case

where all points
{
t(1), . . . , t(q)

}
are placed on a hyperplane in Rdt . In this case, the

dimension of polytope Γ[sT tT ]T however becomes lower than ds + dt. These partic-

ular cases of values t(i),∀i ∈ Iq, are excluded in the previous result as not relevant

for the scope of this paper, even though the mathematical result holds.

Consider a given cell complex {Xi}i∈IN of a polytope X ⊂ Rdx satisfying Assump-

tion 5.2 and a continuous PWA function fpwa(x) : X → Rdu defined over this cell

complex. For ease of presentation, let `(x) denote a convex lifting for {Xi}i∈IN .

Define also the following sets:

Π[xT z]T := conv

{[
vT `(v)

]T
: v ∈

⋃
i∈IN

V(Xi)

}
,

V[xT z uT ]T :=

{[
vT `(v) fTpwa(v)

]T
: v ∈

⋃
i∈IN

V(Xi)

}
,

Π[xT z uT ]T := conv
(
V[xT z uT ]T

)
.

(15)

With respect to the above notation, the solution to an inverse parametric linear/quadratic

programming problem can be stated as follows.

Theorem 5.4 Given a continuous PWA function fpwa(x) defined over a polytopic

partition {Xi}i∈IN satisfying Assumptions 5.2, 5.3 and the sets defined in (15), the

following hold true:

1. V[xT z uT ]T = V(Π[xT z uT ]T ) and Π[xT z]T = Proj [xT z]TΠ[xT z uT ]T ,
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2. The given PWA function fpwa(x) is the image via the orthogonal projection onto

Rdu of the optimal solution to the optimization problem below:

min
[z uT ]T

z s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T . (16)

Proof: 1. The first claim: V[xT z uT ]T = V(Π[xT z uT ]T ), is directly deduced from

Proposition 5.1. The second claim follows from the construction of Π[xT z uT ]T hav-

ing all its vertices as extended vectors of the vertices of Π[xT z]T .

2. It is known that Π[xT z]T ⊂ Rdx+1 represents an affinely equivalent polyhedron of

the partition {Xi}i∈IN . Let F (i)

[xT z]T
for i ∈ IN denote the lower facet of Π[xT z]T

such that: Proj xF
(i)

[xT z]T
= Xi and for any x ∈ Xi,

[
xT `(x)

]T ∈ F (i)

[xT z]T
satisfies

`(x) = min
z
z s.t.

[
xT z

]T ∈ Π[xT z]T .

Such a facet F (i)

[xT z]T
can be represented by:

F
(i)

[xT z]T
= conv

{[
vT `(v)

]T
: v ∈ V(Xi)

}
.

Also, there exists, in higher dimensional space Rdx+du+1, a dx−face denoted as

F
(i)

[xT z uT ]T
of Π[xT z uT ]T such that: Proj [xT z]TF

(i)

[xT z uT ]T
= F

(i)

[xT z]T
. Thus, a

point
[
xT z uT

]T ∈ Π[xT z uT ]T satisfying x ∈ Xi has the minimal value of z if and

only if this point locates on F (i)

[xT z uT ]T
. It is worth stressing that the face F (i)

[xT z uT ]T

is defined as follows:

F
(i)

[xT z uT ]T
:= conv

{[
vT `(v) fTpwa(v)

]T
: v ∈ V(Xi)

}
.
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Accordingly, if x ∈ Xi is represented by x =
∑

v∈V(Xi)
α(v)v for α(v) ≥ 0 and∑

v∈V(Xi)
α(v) = 1, then the optimal solution

[
z∗(x) (u∗)T (x)

]T
to the problem

(16) is expressed by:

z∗(x)
u∗(x)

 =
∑

v∈V(Xi)

α(v)

 `(v)

fpwa(v)

 =

 `(x)

fpwa(x)

 , ∀x ∈ Xi.

Clearly, fpwa(x) is a sub-component of this optimal solution.

To complete the proof, the uniqueness of such an optimal solution needs to be

clarified. Suppose there exist two different optimal solutions to (16):

[
z∗1(x) (u

∗
1)

T (x)
]T

= arg min
[z uT ]T

z, s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T ,

[
z∗2(x) (u

∗
2)

T (x)
]T

= arg min
[z uT ]T

z, s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T ,

then it is clear that z∗1(x) = z∗2(x) = `(x).Accordingly, if u∗1(x) 6= u∗2(x) for x ∈ Xi,

there exists a (dx+1)−face denoted asF ofΠ[xT z uT ]T (illustrated in Fig.4) to which

two optimal solutions
[
z∗1(x) (u

∗
1)

T (x)
]T

and
[
z∗2(x) (u

∗
2)

T (x)
]T

belong such that

F is perpendicular to the space
[
xT z

]T
. This implies that the value of fpwa(v)

is not uniquely defined for vertices v ∈ V(Xi). This consequence contradicts the

construction of the constraint set Π[xT z uT ]T presented in (15). Therefore, such two

optimal solutions have to be identical, leading to the uniqueness. ut

The constructive procedure towards recovering a continuous PWA function defined

over a convexly liftable polytopic partition is summarized through Algorithm 2.

Theorem 5.4 proves the existence of an optimization problem with respect to a linear

cost function which admits a given PWA function as a sub-component of the opti-
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X1 X2 X3

z

u

x

F

u∗1(x)

u∗2(x)

z∗1(x) = z∗2(x)

Fig. 4: An illustration of two different optimal solutions.

Algorithm 2 Linear equivalent optimization problem
Input: A continuous PWA function fpwa(x) defined over a convexly liftable poly-
topic partition {Xi}i∈IN of a polytope X ⊂ Rdx .
Output: Π[xT z uT ]T and J(x, z, u).

1: Construct a convex lifting `(x) for {Xi}i∈IN via Algorithm 1.
2: Compute Π[xT z uT ]T as in (15).
3: Define J(x, z, u) = z.
4: Solve the following parametric linear programming problem:[

z∗(x) (u∗)T (x)
]T

= arg min
[z uT ]T

z subject to
[
xT z uT

]T ∈ Π[xT z uT ]T .

5: Obtain the given PWA function: Proju

[
z∗(x)
u∗(x)

]
= fpwa(x).

mal solution. The following theorem shows the existence of equivalent optimization

problem with respect to a quadratic cost function.

Theorem 5.5 Consider a continuous PWA function fpwa(x) defined over a poly-

topic partition {Xi}i∈IN satisfying Assumptions 5.2, 5.3 and the sets defined in (15).

Function fpwa(x) is the image via the orthogonal projection onto Rdu of the optimal



Constructive Solution of Inverse Parametric Linear/Quadratic Programming Problems 23

solution to the following optimization problem:

min
[z uT ]T

(z − σ(x))2 s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T , (17)

where σ(x) : X → R denotes any function satisfying: σ(x) ≤ `(x).

Proof: Consider an affinely equivalent polyhedron Π[xT z]T defined as in (15). Ac-

cording to its definition, we obtain:

`(x) = min
z
z subject to

[
xT z

]T ∈ Π[xT z]T .

Therefore, for any function σ(x) : X → R satisfying σ(x) ≤ `(x), the minimization

of (z−σ(x))2 amounts to the minimization of z subject to the same set of constraints

Π[xT z uT ]T .According to Theorem 5.4, the given continuous PWA function fpwa(x)

is a sub-component of the optimal solution to (16) as well as (17). ut

Algorithm 3 summarizes the constructive procedure of an equivalent optimization

problem with respect to a quadratic cost function.

Remark 5.2 Theorem 5.5 proposes a cost function of z and x. To return this cost

function to the form (13), function σ(x) should be chosen as an affine function of x.

We will present in the sequel the important properties of the solution to inverse para-

metric linear/quadratic programming problems via convex liftings, i.e., the invertibil-

ity and the complexity of the above constructive procedures.

3 One can choose σ(x) to be an affine function composing `(x), i.e., σ(x) = AT
i x+ ai.
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Algorithm 3 Quadratic equivalent optimization problem
Input: A continuous PWA function fpwa(x) defined over a convexly liftable poly-
topic partition {Xi}i∈IN of a polytope X ⊂ Rdx .
Output: Π[xT z uT ]T and J(x, z, u).

1: Construct a convex lifting `(x) for {Xi}i∈IN via Algorithm 1.
2: Compute Π[xT z uT ]T as in (15).
3: Choose a function3σ(x) : X → R such that σ(x) ≤ `(x).
4: Define J(x, z, u) = (z − σ(x))2.
5: Solve the following parametric quadratic programming problem:[

z∗(x) (u∗)T (x)
]T

= arg min
[z uT ]T

(z − σ(x))2 s.t.
[
xT z uT

]T ∈ Π[xT z uT ]T .

6: Project the optimal solution onto Rdu : Proju

[
z∗(x)
u∗(x)

]
= fpwa(x).

Theorem 5.6 (Invertibility) Given a polytopic partition {Xi}i∈IN of a polytope

X ⊂ Rdx , then any continuous PWA function fpwa(x) : X → Rdu , defined over

{Xi}i∈IN , is invertible.

The proof of Theorem 5.6 is omitted, as it summarizes the above results. The com-

plexity of an inverse parametric linear/quadratic programming problem based on con-

vex liftings is also stated as follows:

Theorem 5.7 (Complexity) Any continuous PWA function defined over a polytopic

partition of a polytope can be equivalently obtained by a parametric linear/quadratic

programming problem with at most one auxiliary 1−dimensional variable.

Proof: Let {Xi}i∈IN denote this given polytopic partition of a polytopeX . If {Xi}i∈IN

is convexly liftable, this 1−dimensional variable describes the convex lifting in the

recovered optimization problem. Theorems 5.4, 5.5 show that this PWA function is

invertible through the convex lifting based approach.
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Otherwise, in case the given partition is not convexly liftable, Theorem 4.2 shows

that there exists at least one way to subdivide the given convexly non-liftable poly-

topic partition into a convexly liftable cell complex, denoted by
{
X̃i

}
i∈I

Ñ

, mean-

while the internal boundaries are maintained. According to this subdivision, the given

PWA function fpwa(x) is also subdivided. This new PWA function, say f̃pwa(x), is

equivalent to fpwa(x) and defined over a convexly liftable cell complex
{
X̃i

}
i∈I

Ñ

.

Therefore, similar to the first case, a convex lifting of
{
X̃i

}
i∈I

Ñ

, represents the

1−dimensional auxiliary variable. Also, as proved in Theorems 5.4, 5.5, f̃pwa(x),

associated with
{
X̃i

}
i∈I

Ñ

, is invertible via the convex lifting based method. ut

6 Applications to Linear Optimal Control

Consider a linear, discrete time-invariant system:

xk+1 = Axk +Buk

where xk, uk denote the state and control variables at time k and A,B represent

matrices of suitable dimension. A linear optimal control problem with a prediction

horizon N ∈ N>0 for the above system can be written in the following form:

U∗(x) = argmin
U

F (xk|k, . . . , xk+N |k, uk|k, . . . , uk+N−1|k)

s.t. G(xk|k, . . . , xk+N |k, uk|k, . . . , uk+N−1|k) ≤ 0,

(18)

where xk+i|k ∈ Rdx , uk+i|k ∈ Rdu are the state variable, control variable, respec-

tively, at time k + i, predicted at time k; U =

[
uTk|k . . . u

T
k+N−1|k

]T
denotes the
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decision variable composed of the control variables over the prediction horizon; and

xk|k = xk, uk|k = uk. Also, G(xk|k, . . . , xk+N |k, uk|k, . . . , uk+N−1|k) represents a

linear function along its variables, F (xk|k, . . . , xk+N |k, uk|k, . . . , uk+N−1|k) repre-

sents a linear/quadratic, real-valued function along its variables. In implementation,

the interest of the optimal solution U∗(x) is restricted to the first part, i.e., uk. The

main message of this paper is stated in the sequel.

Proposition 6.1 Any continuous PWA control law is the optimal solution to a para-

metric linear/quadratic programming problem.

Proof: The proof directly follows from Theorem 5.6 since a continuous PWA control

law is a continuous PWA function defined over a polyhedral partition.

Theorem 6.1 Any continuous PWA control law can be equivalently obtained through

a linear optimal control problem with a linear or quadratic cost function and the

control horizon at most equal to 2 prediction steps.

Proof: Let u(x) : Rdx → Rdu denote a given continuous PWA control law defined

over a state space partition {Xi}i∈IN of a polytope X ⊂ Rdx . If {Xi}i∈IN is not

convexly liftable, it can be subdivided into a convexly liftable cell complex accord-

ing to Theorem 4.2. Therefore, one can exclusively focus on the case {Xi}i∈IN is

convexly liftable.

Now, let Π[xT
k z uT

k ]
T denote the set of constraints in the recovered optimization

problem, i.e.,

min
[z uT

k ]
T
z s.t.

[
xTk z uTk

]T ∈ Π
[xT

k z uT
k ]

T . (19)
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For ease of presentation, let Π[xT
k z uT

k ]
T be given in the following form:

Hxxk +Hzz +Huuk ≤ K.

If du = 1, then it suffices to use z as the second predicted controller, i.e., uk+1|k = z.

Otherwise, the set of constraintsHxxk+Huuk+Hzz ≤ K amounts to the following

constraints:

Hxxk +Huuk + [Hz 0]
[
z sT

]T ≤ K, (20)

where 0 denotes a matrix of appropriate dimension, composed of zeros with the num-

ber of columns equal to du − 1. Also, s ∈ Rdu−1 denotes auxiliary variable. Again,

apply

z
s

 for the next predicted control variable, i.e., uk+1|k =

z
s

 . Accordingly,

(19) can be written as follows:

min[
uT
k uT

k+1|k

]T
[
0Tdu

1 0Tdu−1
]  uk

uk+1|k

 s.t. Hxxk + [Hu Hz 0]

 uk

uk+1|k

 ≤ K,
known to be a linear optimal control problem with respect to a linear cost function.

On the other hand, according to Theorem 5.5, the recovered optimization problem

with a quadratic cost function can also be written in the following form:

min
[z uT

k ]
T
(z − σ(xk))2 s.t.

[
xTk z uTk

]T ∈ Π[xT
k z uT

k ]
T , (21)

where σ(xk) ≤ `(xk), `(xk) denotes the convex lifting for the given cell complex

{Xi}i∈IN , used to compute Π
[xT

k z uT
k ]

T . Suppose `(xk) = AT
i xk + ai for xk ∈ Xi,
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it suffices to choose σ(xk) = AT
i xk + ai over X . Accordingly, similar to the case

of linear optimal control with a linear cost function, (21) can be easily written in the

form of linear optimal control with respect to a quadratic function of
[
uTk uTk+1|k

]T
.

To complete the proof, we will show that (20) can be described as the constraint

set in (18). In fact, as G(xk|k, . . . , xk+N |k, uk|k, . . . , uk+N−1|k) is a linear function

of its variables, with a prediction horizon 2, this constraint set can be written as fol-

lows: H1xk +H2uk +H3xk+1|k +H4uk+1|k +H5xk+2|k ≤ H6.

According to the given dynamics and some trivial transformations, (20) yields:

H1 +H3A+H5A
2 = Hx, H4 +H5B = [Hz 0] ,

H2 +H3B +H5AB = Hu, H6 = K.

(22)

Choosing any matrices H3, H5 of suitable dimension, the remaining matrices H1,

H2, H4 can be easily obtained. The proof is complete. ut

Remark 6.1 Note that the second predicted control variable uk+1|k in the recovered

optimization problem does not necessarily satisfy the given constraints on the con-

trol variable, as it will not be implemented. Therefore, we can use it as an artificial

variable. However, making uk+1|k fulfill the constraints on control variable, usually

in the form: umin ≤ uk+i|k ≤ umax, can be adapted from the construction of convex

lifting by fixing the upper and lower bounds for its value.

Remark 6.2 In the context of generalized predictive control (GPC), it has been shown

in [31] that a large prediction horizon can be beneficial for complex plants. In gen-

eral, the nature of GPC does not take constraints into account, closed-loop stability

guarantee being verified at post-design stage. Therefore, the quality of control algo-

Olaru
Texte inséré 
The feasibility of these matrix equalities is obvious based on the trivial solution $H_1=H_x$, $H_4=[H_z 0]$, $H_2=H_u$ and $H_6=K$. The choice of the

Olaru
Barrer 

Olaru
Texte inséré 
 represents a degree of freedom with respect to the recovered optimization problem and its optimal control interpretation.

Olaru
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rithm relies mainly on the prediction horizon. It is worth noting that inverse optimal-

ity problem for such a GPC design can easily be obtained, as the controller resulted

from a GPC problem possesses a linear structure. On the other hand, model predictive

control guarantees closed-loop stability due to suitable terminal constraints imposed

at the end of prediction horizon and only the first part of its optimal solution is of

interest in implementation. Accordingly, the solution of inverse optimality problem

presents in a compact manner a set of constraints, considering the input to be imple-

mented and an auxiliary variable as the second control action. That is the main reason

for which the inverse optimality problem only needs a prediction horizon of 2 steps.

Remark 6.3 The reduction of prediction horizon to 2 has some consequences in the

computation of the associated controller. A remarkable one is that a linear program-

ming problem shares the same first part of its optimal solution with a quadratic pro-

gramming problem. It is known that a quadratic programming problem is in general

more computationally demanding than a linear one. To illustrate this point, we re-

fer the reader to [29, 32] for more detailed analyses and case studies. Note however

that this computational complexity reduction is sometimes obtained at the price of

a larger number of constraints as seen in the numerical example in Subsection 7.2.

As for the implementation of PWA controllers, the constructed convex lifting turns

out to be helpful to avoid storing state-space partition at the hardware level and fa-

cilitate the point-location problem [28]. Accordingly, it allows for implementation of

PWA controllers onto embedded systems with low computational performance and

memory footprint.
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Remark 6.4 It is shown in [4–6] that in the case of non-degeneracies, the optimal cost

function of a parametric quadratic programming problem represents a strictly convex,

piecewise quadratic function (this can also be proven using dynamic programming).

In the context of inverse optimality, the idea of using this optimal cost function as

an auxiliary variable is proposed in [10] and is recalled here. For ease of presenta-

tion, let µ(x) denote the controller defined over a convex set Ω to be recovered and

g0(x) represent a strictly convex function over Ω. Accordingly, the set of constraints

denoted therein by E for inverse optimality problem can be computed as follows:

S :=
{
(x, µ(x), t) : x ∈ Ω, g0(x) ≤ t

}
, E := conv(S). (23)

It can be seen that taking the present controller into account, t as an auxiliary variable

is also used to represent the second control action. In the case of non-degenerate

parametric quadratic programming, its optimal cost function, being strictly convex

and piecewise quadratic, can be used as g0(x). Note also that the controller µ(x) in

this case is a continuous PWA function. Unfortunately, it becomes very difficult to be

able to obtain an explicit representation of the constraint setE as in (23). First, it is not

clear whether E could be described by a set of quadratic constraints. Second, to our

best knowledge, solvers for parametric programming problems subject to quadratic

constraints are still unavailable; instead, only approximate optimal solution can be

obtained. These obstacles prevent this optimal cost function from the application in

the inverse optimality problem. It is worth stressing that a convex lifting used in this

paper is not strictly convex, but convex, as there does not exist a strictly convex,
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piecewise affine function. Moreover, the recovered optimization problem is shown to

have the unique optimal solution which was not treated in [10].

7 Illustrative Examples

This section considers numerical examples to illustrate the above results.

7.1 Double Integrator System

To illustrate the above results, consider a double integrator system:

xk+1 =

1 0.5

0 1

xk +

0.125
0.5

uk, yk =

[
1 0

]
xk (24)

An MPC problem, constructed with the minimization of a quadratic cost function

over a prediction horizon N = 5, is presented as follows, with respect to weighting

matrices Q =

10 0

0 10

, R = 0.5:

J =

4∑
i=0

(xTk+i|kQx
T
k+i|k + uTk+i|kRuk+i|k) + xTk+5|kPxk+5|k,

where P is computed via the Riccati equation. Constraints on the present control

variable and output signal are given by:

uk ∈ [−2, 2] , yk ∈ [−5, 5] . (25)
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The terminal constraint is chosen as the maximal output admissible set as shown in

[33]. The feedback control law is depicted in Fig.7. Its inverse optimization problem

in form (4) can be composed of the components presented in (27). Accordingly, the

new linear optimal control problem with the control horizon of 2 is described as

follows:

min
[uk uk+1|k]

T
[0 1]

 uk

uk+1|k

 s.t. Hxxk +Huuk +Hzuk+1|k ≤ K, (26)

where Hx, Hu, Hz,K are presented in (27).

Consider the same MPC problem but with a prediction horizon 3, we obtain the

inverse optimization problem in form (4) associated with the ingredients in (28). Fi-

nally, an equivalent linear optimal control problem with the prediction horizon 2 is

represented as in (26) with the information in (28).

J(x, z, u) = z

Hx =



0.5423 0.8255

0 0

0.5411 0.8266

−0.4193 −0.8030

−0.4442 −0.7078

0.4378 0.8465

0 0

−0.4444 −0.7067

0.4333 0.8472

−0.4161 −0.8051

0.4313 0.8475

−0.4144 −0.8057

0.4293 0.8477

−0.4128 −0.8061

−0.1863 −0.0931

−0.1622 −0.1622

−0.1339 −0.2008

−0.0621 −0.2527

0.1961 0

0.1863 0.0931

0.1622 0.1622

0.1339 0.2008

0.0621 0.2527

−0.1961 0



, Hz =



−0.1565

0

−0.1546

−0.0266

−0.0881

−0.0308

0

−0.0887

−0.0295

−0.0256

−0.0291

−0.0253

−0.0288

−0.0251

0

0

0

0

0

0

0

0

0

0



, Hu =



0.0039

−1

0.0087

−0.4228

−0.5422

0.3014

1

−0.5434

0.3058

−0.4220

0.3080

−0.4224

0.3102

−0.4232

0

0

0

0

0

0

0

0

0

0



, K =



−3.9966

2

−3.9564

−0.2669

−2.2547

−0.3090

2

−2.2667

−0.2489

−0.2163

−0.2256

−0.1964

−0.2045

−0.1782

0.9781

0.9733

0.9704

0.9655

0.9806

0.9781

0.9733

0.9704

0.9655

0.9806



.
(27)
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J(x, z, u) = z

Hx =



−0.1786 0.8307

0 0

−0.4566 −0.7939

0.4239 0.8322

0.7029 0.5095

−0.4246 −0.8220

0 0

0.7070 0.4889

−0.4215 −0.8233

0.4209 0.8331

−0.1863 −0.0931

−0.1111 −0.3407

0.1961 0

0.1863 0.0931

0.1111 0.3407

−0.1961 0



, Hz =



−0.5271

0

−0.0658

−0.0230

−0.4955

−0.0244

0

−0.5108

−0.0235

−0.0222

0

0

0

0

0

0



, Hu =



−0.0132

1

−0.3961

0.3567

0.0279

−0.3788

−1

0.0128

−0.3796

0.3582

0

0

0

0

0

0



, K =



−6.5119

2

−1.4443

0.0650

−10.8792

−0.1638

2

−11.1891

−0.1209

0.0979

0.9781

0.9336

0.9806

0.9781

0.9336

0.9806



.
(28)

7.2 Non-Minimum Phase System

To illustrate the comparison between GPC design [34, 35] and inverse optimality in

terms of prediction horizon, we consider the following non-minimum phase system

in the discrete-time domain:

H(z) =
−0.375z + 0.625

z2 − 2z + 1
. (29)

The parameters in GPC design are chosen below: the minimum output horizon

N1 = 1; the maximum output horizon N2 = 5; the control horizon Nu = 5 and

weighting value λ = 1. The reference signal (the green line) is represented by a

square wave as shown in Fig.5. Clearly, the controller designed with the above param-

eters is not stabilizing, as the output signal (the blue one) diverges from the reference

signal. As a consequence, if N2 ≤ 5, the obtained controller cannot stabilize the sys-

tem. For now, we increase the maximum output horizon N2 = 6, whereas the other

parameters are still the same. The result presented in Fig.6 verifies that the controller

designed with sufficiently large horizon stabilizes the given system. Note also that

the green and blue signals in Fig.6 represent the reference and output, respectively.



34 N. A. Nguyen et al.
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Fig. 5: Reference tracking designed by GPC
with N2 = 5.
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Fig. 6: Reference tracking designed by GPC
with N2 = 6.
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Fig. 7: The piecewise affine controller to recover in
Subsection 7.1 with N = 5.
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Fig. 8: Controller obtained from the MPC problem
in Subsection 7.2.

To clarify the advantage of inverse optimality, we consider model predictive con-

trol problem for the same system with the same prediction horizon, i.e., N = 5. Note

that a state-space representation of the discrete system (29) is described by:

xk+1 =

 1 0

0.5 1

xk +

 1

0.25

uk, yk =

[
−0.5 0.5

]
xk.

We choose the weighting matrices Q =

 0.25 −0.25

−0.25 0.25

 , R = 1. The cost function

is as in Subsection 7.1; constraints on present output and control variable are as in
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(25). Fig.8 depicts the controller obtained by the above MPC problem. Accordingly,

a linear optimal control problem in form (26) with prediction horizon 2, which admits

this controller as its optimal solution, is composed of the matrices defined in (30).

8 Conclusions

This article presents a method to solve inverse parametric linear/quadratic program-

ming problems. This method relies on convex lifting. It is shown that for any con-

tinuous PWA function defined over a polytopic partition, an appropriate equivalence

of this function can be obtained by another parametric linear/quadratic programming

problem with a supplementary variable of dimension equal to 1. In view of linear op-

timal control, it has been shown that any continuous PWA control law can be obtained

via a linear optimal control problem with the prediction horizon equal to 2 prediction

steps. Several numerical examples prove the effectiveness of this method.

Hx =



−0.1125 −0.0466

0.1052 0.0613

0.3714 −0.7428

0 0

−0.3714 0.7428

0 0

−0.2257 −0.2896

0.2211 0.1060

0.2198 0.3048

−0.2252 −0.0913

−0.3634 −0.4753

0.3091 0.1311

0.3651 0.2709

0.3599 0.4895

−0.3654 −0.2557

−0.3096 −0.1171

−0.4671 −0.6162

0.3691 0.1410

0.4129 0.2241

0.4744 0.3645

0.4654 0.6274

−0.4721 −0.3517

−0.4101 −0.2123

−0.3671 −0.1286

−0.5205 −0.6898

0.4000 0.1391

0.3961 0.1733

0.4590 0.2548

0.5311 0.4153

0.5197 0.6972

−0.5287 −0.4063

−0.4561 −0.2466

−0.3934 −0.1653

−0.3969 −0.1288

−0.1204 −0.0535

−0.1148 −0.0656

−0.0994 −0.0796

−0.0990 −0.0930

−0.0697 −0.1014

−0.0253 −0.0990

0.0990 0.0484

0.1208 0.0535

0.1204 0.0656

0.1148 0.0796

0.0994 0.0930

0.0697 0.1014

0.0253 0.0990

−0.1208 −0.0484



, Hz =



−0.9747

−0.9821

0

0

0

0

−0.9004

−0.9118

−0.9064

−0.8983

−0.7387

−0.8002

−0.7547

−0.7440

−0.7427

−0.7850

−0.5224

−0.6666

−0.5513

−0.5355

−0.5254

−0.5280

−0.5417

−0.6532

−0.3327

−0.5367

−0.3816

−0.3499

−0.3413

−0.3340

−0.3380

−0.3455

−0.3761

−0.5267

0

0

0

0

0

0

0

0

0

0

0

0

0

0



, , Hu =



−0.1875

0.1437

0.5571

−1

−0.5571

1

−0.2334

0.3295

0.1932

−0.3660

−0.3103

0.4969

0.4730

0.2782

−0.4996

−0.5237

−0.3595

0.6321

0.6894

0.5961

0.3373

−0.6121

−0.7024

−0.6496

−0.3776

0.7298

0.8170

0.7759

0.6550

0.3637

−0.6642

−0.7821

−0.8225

−0.7406

0

0

0

0

0

0

0

0

0

0

0

0

0

0



, K =



−7.8134

−7.8728

7.4278

2

7.4278

2

−5.2366

−7.1781

−5.2714

−7.0721

−2.2718

−6.0973

−4.5081

−2.2878

−4.4358

−5.9812

0.9457

−4.7929

−3.2222

−1.7351

0.9511

−1.7108

−3.1659

−4.6971

3.4171

−3.5266

−2.1733

−1.0872

0.5602

3.4299

0.5548

−1.0737

−2.1417

−3.4612

0.9913

0.9912

0.9919

0.9932

0.9945

0.9901

0.9915

0.9913

0.9912

0.9919

0.9932

0.9945

0.9901

0.9915



. (30)
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6. Seron, M.M., Goodwin, G.C., Doná, J.A.: Characterisation of receding horizon control for constrained

linear systems. Asian Journal of Control 5(2), 271–286 (2003)

7. Olaru, S., Dumur, D.: A parameterized polyhedra approach for explicit constrained predictive control.

In: Decision and Control, 43rd IEEE Conference on, vol. 2, pp. 1580–1585 (2004)

8. Pistikopoulos, E.N., Georgiadis, M.C., Dua, V.: Multi-parametric programming. Wiley-vch (2007)

9. Feller, C., Johansen, T.A., Olaru, S.: An improved algorithm for combinatorial multi-parametric

quadratic programming. Automatica 49(5), 1370–1376 (2013)

10. Baes, M., Diehl, M., Necoara, I.: Every continuous nonlinear control system can be obtained by

parametric convex programming. IEEE tran on Automatic Control 53(8), 1963–1967 (2008)

11. Hempel, A., Goulart, P., Lygeros, J.: On inverse parametric optimization with an application to hybrid

scontrol. Automatic Control, IEEE Transactions on 60(4), 1064–1069 (2015)

12. Nguyen, N.A., Olaru, S., Rodriguez-Ayerbe, P., Hovd, M., Necoara, I.: Inverse parametric convex

programming problems via convex liftings. In: 19th IFAC World Congress, Cape Town, South Africa

(2014)

13. Maxwell, J.C.: On reciprocal diagrams and diagrams of forces. Philosophical Magazine ser. 4. 27,

250–261 (l864)

14. Crapo, H., Whiteley, W.: Plane self stresses and projected polyhedra 1: the basic pattern. Structural

Topology 19, 55–73 (1993)



Constructive Solution of Inverse Parametric Linear/Quadratic Programming Problems 37

15. Crapo, H., Whiteley, W.: Spaces of stresses, projections and parallel drawings for spherical polyhedra.

Contributions to Algebra and Geometry 35(So. 2), 259–281 (1994)

16. Aurenhammer, F.: Recognising polytopical cell complexes and constructing projection polyhedra.

Journal of Symbolic Computation 3, 249–255 (1987)

17. Aurenhammer, F.: Criterion for the affine equivalence of cell complexes in rd and convex polyhedra

in rd+1. Discrete and Computational Geometry 2, 49–64 (1987)

18. Rybnikov, K.: Polyhedral partitions and stresses. Ph.D. thesis, Queen University, Kingston, Ontario,

Canada (1999)

19. Schulz, A.: Lifting planar graphs to realize integral 3-polytopes and topics in pseudo-triangulations.

Ph.D. thesis, Fachbereich Mathematik und Informatik der Freien Universitat Berlin (2008)

20. Nguyen, N.A., Olaru, S., Rodriguez-Ayerbe, P., Hovd, M., Necoara, I.: On the lifting problems and

their connections with piecewise affine control law design. In: European Control Conference, Stras-

bourg, France (2014)
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