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This paper addresses set invariance properties for linear time-delay systems. More precisely, the first goal of the article is to review known necessary and/or sufficient conditions for the existence of invariant sets with respect to dynamical systems described by linear discrete time-delay difference equations (dDDEs). Secondly, we address the construction of invariant sets in the original state space (also called D-invariant sets) by exploiting the forward mappings. The notion of D-invariance is appealing since it provides a region of attraction, which is difficult to obtain for delay systems without taking into account the delayed states in some appropriate extended state space model.

The present paper contains a sufficient condition for the existence of ellipsoidal D-contractive sets for dDDEs, and a necessary and sufficient condition for the existence of D-invariant sets in relation to linear time-varying dDDE stability. Another contribution is the clarification of the relationship between convexity (convex hull operation) and D-invariance of linear dDDEs. In short, it is shown that the convex hull of the union of two or more D-invariant sets is not necessarily D-invariant, while the convex hull of a non-convex D-invariant set is D-invariant.

Positive invariance is an essential concept in control theory, with applications to constrained dynamical systems analysis, uncertainty handling as well as related control design problems [START_REF] Blanchini | Set invariance in control[END_REF][START_REF] Moussaoui | On bounds of input-output systems. reachability set determination and polyhedral constraints verification[END_REF][START_REF] Hmamed | Positive stabilization of discrete-time systems with unknown delay and bounded controls[END_REF]. It serves as a basic tool in many topics, such as model predictive control [START_REF] Mayne | Constrained model predictive control: Stability and optimality[END_REF][START_REF] Santos | Stable mpc with reduced representation for linear systems with multiple input delays[END_REF][START_REF] Reble | General design parameters of model predictive control for nonlinear time-delay systems[END_REF], fault tolerant control [START_REF] Olaru | Positive invariant sets for fault tolerant multisensor control schemes[END_REF] and reference governor design [START_REF] Stoican | Reference governor design for tracking problems with fault detection guarantees[END_REF]. Furthermore, there exists a close link between classical stability theory and positive invariant sets. It is worth mentioning that, in Lyapunov theory, invariance is implicitly described ✩ A preliminary version of the paper has been presented at the 12 th IFAC Workshop on Time Delay Systems, Ann Arbor (MI), USA, 2015.
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The response of a dynamical system to external excitation is rarely instantaneous, and time-delay models are well suited for describing dynamics related to propagation phenomena and/or communication flows (see, for example, [START_REF] Michiels | Stability and Stabilization of Time-Delay Systems[END_REF][START_REF] Hetel | Stabilization of linear impulsive systems through a nearly-periodic reset[END_REF][START_REF] Tarbouriech | Local stabilization of continuous-time delay systems with bounded inputs[END_REF][START_REF] Hennet | A feedback stabilization technique for delay differential systems[END_REF][START_REF] Hmamed | Regulator problem for linear continuous-time delay systems with nonsymmetrical constrained control[END_REF][START_REF] Di Cairano | Refer-ence governor for network control systems subject to variable time-delay[END_REF][START_REF] Gu | Stability of timedelay systems[END_REF][START_REF] Normey-Rico | Control of dead-time processes[END_REF][START_REF] Avila Alonso | A coupled model for healthy and cancer cells dynamics in acute myeloid leukemia[END_REF][START_REF] Miani | Switching controllers for networked control systems with packet dropouts and delays in the sensor channel[END_REF][START_REF] Boussaada | Analysis of drilling vibrations: A time-delay system approach[END_REF][START_REF] Seuret | Lowcomplexity Controllers for Time-delay Systems[END_REF][START_REF] Samanta | Dynamic behaviour for a nonautonomous heroin epidemic model with time delay[END_REF][START_REF] Tarbouriech | Synthesis of controllers for continuous-time delay systems with saturating controls via lmis[END_REF]). In closed loop, the dynamics can be represented by delay differential equations (resp. inclusions) or delay difference equations (resp. inclusions) according to the continuous/discrete framework and the presence of disturbances or uncertainties. In the present paper, we consider autonomous dynamics where the delayed arguments are treated as a state dependence and not as a perturbation signal.

From a mathematical point of view, delay difference equations form an important modeling class, since most modern controllers are implemented via computers or dedicated embedded systems. They have been widely studied in the literature (see [START_REF] Elaydi | An Introduction to Difference Equations[END_REF][START_REF] Fisher | Stability results for delayedrecruitment models in population dynamics[END_REF][START_REF] Tang | Density-dependent birth rate, birth pulses and their population dynamic consequences[END_REF][START_REF] Cooke | On the discretization of a delay differential equation[END_REF]). Difference and differential equations with unbounded random delays have been addressed in [START_REF] Crauel | Difference equations with random delay[END_REF]. Delay difference inclusions DDIs represent also a rich modeling class including networked control systems and uncertain time-delay systems. The relationship between stability of DDIs and the existence of Lyapunov-Krasovskii and Lyapunov-Razumikhin functions has been studied in detail in [START_REF] Gielen | Lyapunov methods for time-invariant delay difference inclusions[END_REF]. Stabilizing controller construction and stability analysis based on Lyapunov-Krasovskii and Lyapunov-Razumikhin functions for DDIs have been proposed therein.

Positive invariance for dynamical systems described by dDDEs has been addressed in [START_REF] Seifert | Positively invariant closed sets for systems of delay differential equations[END_REF]. As hinted before, two main approaches exist in the literature dealing with positive invariant sets for discrete time-delay difference equations. The first approach, referred to as Krasovskii approach, relies on the fact that the discrete-time dDDE allows a finitedimensional extended state space model (this representing a demarcation with respect to the continuoustime counterpart). This extended state space, whose dimension is finite but strongly related to the delay value, leads to an invariant set characterization with respect to an equivalent linear time-invariant model. This concept is well understood and popular in the literature, but it suffers from an increased numerical complexity when delays are relatively large. Lyapunov-Krasovskii and spectral techniques have been also used in [START_REF] Damak | A bridge between Lyapunov-Krasovskii and spectral approaches for stability of difference equations[END_REF] to analyze Lyapunov and asymptotic stability.

The second approach, referred to as Razumikhin approach, has been formulated in the '90s and reinvestigated in the last decade, to obtain an invariant set for the dDDE in the original state space, which is independent of the delay value. This concept is also denoted as D-invariance, and is often conservative as long as the existence conditions are restrictive. It is worth mentioning that a relaxation of the Lyapunov-Razumikhin conditions has been proposed by [START_REF] Gielen | Necessary and sufficient Razumikhin-type conditions for stability of delay difference equations[END_REF]. The proposed conditions, which can be verified by solving an LMI problem for linear dDDEs, prove to be necessary and sufficient for asymptotic stability of dDDEs. Furthermore, the obtained relaxed Lyapunov-Razumikhin functions are useful for constructing invariant sets for dDDEs.

It has been recently recognized that D-invariance can be seen as set factorization of an invariant set in the extended state space [START_REF] Olaru | Low complexity invariant sets for time-delay systems: A set factorization approach[END_REF]. It has been established that the extended state space invariance corresponds to a minimal factorization while D-invariance, under the constraints imposed by the dimension of the dDDE, represents the maximal regular ordered factorization. This interesting result opens the way for factorizations which are in between the two representations, by exploiting non-minimal state space equations. In [START_REF] Laraba | Invariant sets for discrete time-delay systems: Set factorization and state representation[END_REF], the authors have focused on the maximal factorizations. They have proposed a characterization of the link between the Razumikhin and Krasovskii approaches, by using set factorization. The proposed framework yields a fitting trade-off between the conceptual generality of the extended state space approach and the computational convenience of the D-invariance approach. It has been shown that D-invariance represents a particular realization of a broader family of invariant structures. The relationship between these families of invariant sets has been established via set factorization and conjugacy. In [START_REF] Athanasopoulos | On controlled-invariance and stabilization of time-delay systems[END_REF], two specific families of controlled (k, λ)contractive sets in the augmented state space framework have been characterized and the link between these controlled (k, λ)-contractive sets and those of the time-delay system has been established in [START_REF] Raković | Positively invariant families of sets for interconnected and time-delay discrete-time systems[END_REF].

In [START_REF] Lombardi | Cyclic invariance for discrete time-delay systems[END_REF], a new concept of set invariance with respect to discrete-time linear systems subject to delays has been introduced. A family of sets which represent a sequence of cyclically invariant subsets of the state space was defined and characterized. Basically, the existing algebraic conditions for invariance analysis of linear dynamics have been generalized and conditions for the invariance of a given sequences of sets with respect to linear discrete-time dynamics in the presence of delay have been established. The notion of invariant family of sets has been proposed in [START_REF] Raković | Construction of invariant families of sets for linear systems with delay[END_REF][START_REF] Raković | Positively invariant families of sets for interconnected and time-delay discrete-time systems[END_REF] to generalize the cyclic invariance concept.

This paper is an extended version of work published in [START_REF] Laraba | Set invariance for delay difference equations[END_REF], where we addressed the existence of positive invariant sets in the state space of the original dDDE. More precisely, the case of two delays was addressed in the conference paper, while the general case is treated here. D-invariant sets can be seen as invariant sets in both the current and the retarded state space and further related to the stability analysis based on Lyapunov-Razumikhin approach. Sufficient conditions for the existence of a D-invariant set have been first obtained in [START_REF] Dambrine | Feedback control of time-delay systems with bounded control and state[END_REF][START_REF] Goubet-Bartholomeus | Bounded domains and constrained control of linear timedelay systems[END_REF]. Then, a necessary and sufficient characterization for the existence of Dinvariant sets has been provided in [START_REF] Hennet | Stability conditions of constrained delay systems via positive invariance[END_REF][START_REF] Vassilaki | Constrained feedback control of discrete-time systems described by arma models[END_REF]. Particularly, as far as the construction of D-invariant sets is concerned, we can find a series of results in [START_REF] Lombardi | On positive invariance for delay difference equations[END_REF][START_REF] Lombardi | On the polyhedral set invariance conditions for time-delay systems[END_REF], which will be appropriately recalled in the present paper. Recently, [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] has proposed a computationally efficient numerical routine which is necessary to guarantee the existence of D-invariant sets for the delay difference equations with two delay parameters. This condition covers, for the two delay case, the existing necessary conditions in the literature and proves to reduce considerably the gap with respect to sufficient conditions. In the present work, we provide an interesting example for which the condition in [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] is verified but the existing algorithms fail to construct a D-invariant set. As discussed in [START_REF] Aleksandrov | Diagonal Lyapunov-Krasovskii functionals for discrete-time positive systems with delay[END_REF], from the stability point of view a pertinent analysis of D-invariance can be made in relationship with delay-independent stability. In short, it has been shown that the existence of a diagonal Lyapunov-Krasovskii functional is necessary and sufficient for delay-independent stability. Polyhedral Lyapunov functions have been used for stability and positive invariance analysis of networked control systems in the presence of bounded delays, constant, unknown or time-varying. The problem of finding stability margins has been proved to reduce to a linear programming problem [START_REF] Bitsoris | Stability, positive invariance and design of constrained regulators for networked control systems[END_REF]. To summarize, the main objectives of the present paper are resumed as follows: i) an overview of necessary and/or sufficient conditions for the existence of D-invariant sets for dDDEs with an arbitrary delay value; ii) a sufficient condition for the existence of ellipsoidal D-invariant sets for dDDEs; iii) the proof of the relationship between time-varying dDDE stability and the existence of D-invariant sets; iv) the proof of two properties related to convexity and convex operations over D-invariant sets. Notably, it is established that a dDDE admits a D-invariant set if and only if it is time-varying delay-independent stable. This paper is structured as follows. Section 2 presents some preliminary mathematical notions and definitions. Basic properties of D-invariance concept are addressed in Section 3. In the same section, we present necessary and sufficient conditions for the existence of non trivial sets. The relationship between D-invariance and stability of dDDEs concludes the section. Algorithmic construction based on set iteration using forward mappings, and some illustrative examples are revisited in Section 4. The concepts of cyclic invariance and the invariant families of sets as well as the relationship with the set factorization are presented in Section 5. Finally Section 6 draws some concluding remarks.

Prerequisites

Notations

We denote by R, R + , Z and Z + sets of real numbers, non-negative reals, integer numbers and nonnegative integers, respectively. For every interval Π of R we define Z Π := Z ∩ Π. For an arbitrary set A ⊆ R n , int(A) denotes the interior of A. B n r (0) denotes the ball of radius r in Euclidean norm, centered in the origin of R n . We denote by 1 n the vector of dimension 'n' with all the entries equal to 1. We denote by D, ∂D, ext(D) the open unit disc, the unit circle and the exterior of the closed unit disc respectively. For the matrix pair (A, B), the set of generalized eigenvalues and the Kronecker product are denoted by γ(A, B) and A ⊗ B, respectively. I n ∈ R n×n and 0 n×m ∈ R n×m denote the identity and the null matrix, respectively. X ⊕ Y denotes the Minkowski sum of sets X and Y, it is defined by:

X ⊕ Y := {z| ∃(x, y) ∈ (X , Y) such that z = x + y} . Definition 1. A set P ⊆ R n is bounded if there ex- ists r ∈ R + such that P ⊂ B n r (0); closed if ∀x / ∈ P, ∃ǫ ∈ R + such that B n ǫ (x) ∩ P = ∅; compact if it is bounded and closed. Definition 2. A set P ⊆ R n is a (proper) C-set if is convex,
compact and includes the origin in its strict interior.

We denote by Com(R n ) and ComC(R n ) the space of compact subsets and the space of C-subsets of R n containing the origin, respectively. The spectrum of a matrix A ∈ R n×n is the set of the eigenvalues of A, denoted by λ(A), while the spectral radius is defined as ρ(A) := max ξ∈λ(A) (|ξ|). The spectral norm will be denoted by σ(A) and is defined as σ(A) := ρ(A T A).

System Dynamics

In the sequel, we will consider discrete time-delay difference equations of the form:

x(k + 1) = d i=0 A i x(k -i) (1) 
where x(k) ∈ R n is the state vector at the time k ∈ Z + , d ∈ Z + is the maximal fixed time-delay, the matrices A i ∈ R n×n , for i ∈ Z [0,d] and the initial conditions are considered to be given by x

(-i) = x -i ∈ R n , for i ∈ Z [0,d] .
Definition 3. The null solution of the dDDE:

x(k + 1) = m i=0 A i x(k -d i ) (2) 
is asymptotically stable if ∀ǫ > 0, ∃δ > 0 such that whenever

sup j ||x(-j)|| ≤ δ, j = {1, • • • , m}, ||x(k)|| < ǫ, ∀k ∈ Z + and x(k) → 0 when k → ∞. Definition 4. The dDDE (2) is delay-independently stable if its null solution is stable ∀d = [d 0 • • • d m ] ∈ (Z + ) m+1 .
Definition 5. The dDDE with time-varying (positive) delay values:

x(k + 1) = m i=0 A i x(k -d i (k)) (3) is delay-independently stable if its null solution is sta- ble ∀d(k) = [d 0 (k) • • • d m (k)] ∈ (Z + ) m+1 .
It is clear that an extended state space representation can be constructed for any given delay realization. For instance, by setting ξ 1) can be rewritten as:

(k) = x(k) T • • • x(k -d) T T , equation (
ξ(k + 1) = A ξ ξ(k) =      A 0 . . . A d-1 A d I . . . 0 0 . . . . . . . . . . . . 0 . . . I 0      ξ(k), (4) 
This class is relevant for modeling several propagation and transmission phenomena. One example is represented by networked control systems (see [START_REF] Heemels | Comparison of overapproximation methods for stability analysis of networked control systems[END_REF]) where the feedback mechanism is affected by communication delays. These delays are known to degrade the performances and eventually affect stability [START_REF] Halanay | Stability and stable oscillations in discrete time systems[END_REF]. We report next, without proof, some well-known results related to asymptotic stability of systems ( 1) and (4) (see e.g [START_REF] Aström | Computer-controlled systems: theory and design[END_REF]).

Lemma 1. The following statements hold:

• System (1) is asymptotically stable if and only if

det zI - d i=0 A i z -i = 0, ∀z ∈ ext(D) ∪ ∂D. (5) 
• System (4) is asymptotically stable if and only if:

ρ(A ξ ) < 1. ( 6 
)
Theorem 2. The following statements are equivalent:

• The delay difference equation ( 1) is asymptotically stable.

• The system ( 4) is asymptotically stable.

D-INVARIANCE PROPERTIES

Let us first consider the generic (nonlinear) discrete-time dynamical system:

x(k + 1) = f (x(k)) (7) 
where x(k) ∈ R n is the state vector at time k ∈ Z + and the function f : R n → R n is continuous. Definition 6. The set P ⊂ R n is said positively invariant for the system ( 7) if for all x(k) ∈ P, x(k + 1) ∈ P for k ∈ Z + . Alternatively, the set P ⊂ R n is positively invariant for (7) if f (P) ⊆ P.

Definition 7. Given a scalar ǫ ∈ R (0,1) , a set P ⊂ R n containing the origin is called ǫ-contractive with respect to system (7) if for any x(k) ∈ P, x(k + 1) ∈ ǫP for k ∈ Z + .

One can notice from Definitions 6 and 7 that positive invariance is a limit case of ǫ-contractivness (it would amount to choosing ǫ = 1 in Definition 7).

In the sequel, we will come back to these notions and detail analogies and particularities of time-delay systems. The D-invariance concept, recalled below, will be widely used throughout this paper for the setcharacterization of dDDEs. The notations by [START_REF] Lombardi | On positive invariance for delay difference equations[END_REF][START_REF] Lombardi | On the polyhedral set invariance conditions for time-delay systems[END_REF] will be mainly used in this endeavor.

Definition 8. A set P ⊆ R n is called D-invariant for the system (1) with initial conditions x -i ∈ P for all i ∈ Z [0,d] if the state trajectory satisfies x(k) ∈ P, ∀k ∈ Z + . Lemma 3. [52]
The following statements are equivalent:

1. P ⊆ R n is D-invariant for system (1).

d i=0

A i P ⊂ P Several properties fix a set of basic relations between D-invariant sets.

Proposition 1. The following properties hold: [START_REF] Blanchini | Set invariance in control[END_REF].

1. If P ⊂ R n is D-invariant then αP is D-invariant for any α ∈ R + . 2. Let P 1 , P 2 ⊂ R n be two D-invariant sets for
Then P 1 ∩ P 2 is a D-invariant set for the same dynamical system. 3. Let P 1 , P 2 ⊂ R n be two D-invariant sets for [START_REF] Blanchini | Set invariance in control[END_REF].

The Minkowski sum P 1 ⊕ P 2 is a D-invariant set for the same dynamical system. 4. If the set P ⊂ R n is D-invariant for the system:

x(k + 1) = d i=0 A i x(k -i) ( 8 
)
then P is D-invariant for

x(k + 1) = d i=0 A i x(k -τ i ) (9) 
for any τ i ∈ Z + . 5. If the compact set containing the origin P is Dinvariant, then its convex hull Conv(P) is Dinvariant. 6. If P 1 , P 2 ⊂ R n are two D-invariant sets for

(1), their union P 1 P 2 is not necessarily Dinvariant. 7. The convex hull of the union of D-invariant sets is not necessarily D-invariant.

Proof. Properties (1), ( 2) and (4) were proved in [START_REF] Lombardi | Constrained control for time-delay systems[END_REF]. The proof of properties (3) and ( 6) is straightforward. For the proof of property [START_REF] Santos | Stable mpc with reduced representation for linear systems with multiple input delays[END_REF], one can exploit the relationship:

A 1 Conv(P) ⊕ A 2 Conv(P) = Conv(A 1 P) ⊕ Conv(A 2 P) = Conv(A 1 P ⊕ A 2 P).
The first equality is a direct application of the convex hull definition and Minkowski sum properties.

For the second equality, let P 1 , P 2 ⊂ R n , and let x ∈ Conv(P 1 ⊕ P 2 ), then x = λ i (x i + y i ) with x i ∈ P 1 and y i ∈ P 2 , λ i ≥ 0 and

λ i = 1, then x = λ i x i + λ i y i ∈ Conv(P 1 ) ⊕ Conv(P 2 ). Suppose now that x ∈ Conv(P 1 ) ⊕ Conv(P 2 ) then x = λ i x i + β j y j ,with λ i = β j = 1
, and λ i , β j ≥ 0, x i ∈ P 1 , y j ∈ P 2 . since λ i β j = i,j λ i β j = 1 we can write x = i,j λ i β j (x i + y j ), then x ∈ Conv(P 1 ⊕ P 2 ). Note that

A 1 P ⊕A 2 P ⊂ P =⇒ Conv(A 1 P ⊕A 2 P) ⊂ Conv(P)
to conclude that:

A 1 Conv(P) ⊕ A 2 Conv(P) ⊂ Conv(P)
In order to check the property [START_REF] Olaru | Positive invariant sets for fault tolerant multisensor control schemes[END_REF], consider the system:

x(k+1) = 0.2 0.01 0 0.7 x(k)+ 0.6 0 0.005 0.25

x(k-1), (10) then the set

P 1 = x ∈ R 2 | -0.1 -1 ≤ x ≤ 0.1 1
is D-invariant as well as

P 2 = x ∈ R 2 | -1 -0.1 ≤ x ≤ 1 0.1
However, the set obtained as convex hull of the union P 1 P 2 , denoted P = Conv(P 1 , P 2 ), is not D-invariant.

Remark 1. Property (7) of Proposition 1 raises a warning on the convex hull operation applied to the union of two or more D-invariant sets, which is not a closed operation over the class of D-invariant sets. However, property (5) of Proposition 1 points out that for one D-invariant operand, the convex hull operation preserves D-invariance. It becomes clear that under the (unfortunately uncheckable) assumption that a D-invariant set exists, an efficient (convexity based) construction will be able to characterize it.

Remark 2. The property (4) of Proposition 1 holds also for the limit case τ i = ∞. As a consequence, if P ⊆ R n is a D-invariant set containing the origin, then P is positively invariant with respect to the time invariant linear dynamics:

x(k + 1) = A 0 x(k), . . . x(k + 1) = A d x(k). (11) 
Equivalently, A 0 P ⊆ P, • • • , A d P ⊆ P. The same result holds for a dDDE represented by a partial sum of [START_REF] Blanchini | Set invariance in control[END_REF]. Note that the second property of Proposition 1 can be generalized. The intersection of a finite or infinite family of D-invariant sets is D-invariant.

The goal of the next subsections is to collect necessary and/or sufficient conditions for the existence of a D-invariant set for dDDEs. The existence of a nondegenerate and bounded D-invariant set1 is related to the stability of the discrete-time dynamical system (1) affected by delay. It is obvious that asymptotic stability is only a necessary condition for the existence of a D-contractive set and stricter conditions have to be imposed for guaranteeing this existence.

In the following we enumerate a series of necessary and/or sufficient conditions available in the literature, to the best of our knowledge; whenever possible, we will link the conditions to classical numerical routines for the eigenvalue problems. [44] Considering the system (1), the existence of a D-invariant C-set P implies that:

1. The spectral radii of the matrices A i are subunitary:

ρ(A i ) ≤ 1, ∀i ∈ Z [0,d] .
2. The spectral radius of the matrix

d i=0
A i is sub-unitary:

ρ d i=0 A i ≤ 1.
3. The spectral radius of the extended state-space matrix is sub-unitary:

ρ (A ξ ) ≤ 1.
Proposition 2 in conjunction with property (4) of Proposition 1 gives a measure of the complexity of establishing necessary and sufficient conditions. Practically, the difficulty is related to the need of testing the spectral radius of the extended state-space matrix for all possible delay realizations.

Alternative algebraic conditions

Alternative necessary conditions were proposed in [START_REF] Gielen | Set-induced stability results for delay difference equations[END_REF] in terms of asymptotic stability of dDDEs, for the existence of a D-contractive set. The main idea is to cover the possible sign combinations for the tuple A i , i ∈ Z [0,d] : a straightforward task for any value of the delay parameter. In order to simplify the notation, let us introduce the set S = {-1, 0, 1} and ∆ 

= [δ(0), • • • , δ(d)].
ρ d i=0 δ(i)A i ≤ 1, ∀∆ ∈ S d+1 . ( 12 
)
If a given dDDE does not satisfy the above condition, then it does not admit a D-contractive set. [START_REF] Gielen | Set-induced stability results for delay difference equations[END_REF] shows that the condition derived in Proposition 3 is not sufficient for the existence of a D-contractive set, numerical examples being available in this sense.

3.1.3. Specific algebraic conditions for 2 delay dDDEs For dDDEs with two delay parameters, in order to decrease the conservativeness of the time-domain methods, [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] has used the frequency-domain framework. The D-invariance concept was studied, along with its relation to robust asymptotic stability, considered as a strong stability of dDDEs. This notion defines stability with respect to all delay realizations. Due to the incompleteness of the discrete time, the characterization of robust asymptotic stability is not simple. Thus using a more general class of difference equation (precisely the ones that are specified in the continuous-time domain) proved to be useful. In the sequel the concept of strong stability is denoted by delay-independent stability2 and it represents the continuous-time counterpart to robust asymptotic stability.

Recently, [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] has provided a computationally efficient numerical condition which is necessary to guarantee the existence of Lyapunov-Razumikhin contractive sets. This test is sufficient for the robust asymptotic stability with respect to the delay parameter and can be employed in the D-invariance context. The main result can be summarized in the next theorem. Theorem 4. [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] Assume that ρ(A 0 + A 1 ) ≤ 1 and that d 0 ∈ R + and d 1 ∈ R + . Then, the system

x(k) = 1 i=0 A i x(k -d i ) ( 13 
)
admits a D-contractive set only if γ(U, V ) ∩ ∂D = ∅, where

U = 0 n 2 ×n 2 I n 2 -B 0 -B 1 , V = I n 2 0 n 2 ×n 2 0 n 2 ×n 2 B 2 (14) 
B 0 = A 0 ⊗ A T 1 , B 1 = A 0 ⊗ A T 0 + A 1 ⊗ A T 1 -I n 2 , B 2 = A 1 ⊗ A T 0 . (15) 
As stated in [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF], the condition of Theorem 4 covers the existing necessary conditions for the two delay parameters case. However, we report here an interesting example which points out the possible limitations of this condition.

Example 1. [START_REF] Laraba | Set invariance for delay difference equations[END_REF] Consider system (1) with d = 1 and:

A 0 = 0.5 0.5 0 0 ; A 1 = 0 0.5 -0.5 0.5 [START_REF] Gu | Stability of timedelay systems[END_REF] For this numerical example, one can compute:

ρ(A 0 + A 1 ) = 0.8660 < 1
and γ(U, V ) = 1.7442 ± 1.9433i, 0.2558 ± 0.2850i, 0, 0, inf, inf.

The necessary condition by [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF] is fulfilled. However, up to the existing constructive routines (see next section) there is no numerical construction able to determine a D-invariant set for this system.

Sufficient conditions for D-invariance

The converse problem of establishing sufficient conditions for the existence of D-invariant sets has been stated in [START_REF] Lombardi | Constrained control for time-delay systems[END_REF] with two tests that we recall here for completeness. Proposition 4. [START_REF] Lombardi | Constrained control for time-delay systems[END_REF] The existence of a D-invariant C-set P is guaranteed for the system (1), if one of the following spectral norm based conditions holds:

1. The sum of the spectral norms of A i , for i ∈ Z [0,d] , is subunitary:

d i=0 σ(A i ) < 1.

In the case of nonsingular matrix

A i for i ∈ Z [0,d] (1 + σ(A -1 0 A 1 ) + • • • + σ(A -1 0 A d ))σ(A 0 ) ≤ 1 . . . (1 + σ(A -1 d A 0 ) + • • • + σ(A -1 d A d-1 ))σ(A d ) ≤ 1.
Remark 3. The sufficient condition (1) can be generalized by replacing the sum of the spectral norms by the sum of any other induced matrix norms.

Proposition 4 concentrates on the spectral norms of the matrices appearing in the dDDE [START_REF] Blanchini | Set invariance in control[END_REF]. A different approach for establishing sufficient conditions is to exploit the structural properties of specific classes of candidate D-invariant sets. We propose next a contribution in this sense with a sufficient condition for the existence of ellipsoidal D-contractive sets for a dDDE. As it is often the case in this framework, the tests are based on LMIs.

Theorem 5. Considering the dynamical system (1), the existence of an ellipsoidal D-invariant set is guaranteed if the following d + 1 LMIs hold for some P = P T ≻ 0:

     A T 0 P A 0 -P A T 0 P A 1 • • • A T 0 P A d A T 1 P A 0 A T 1 P A 1 • • • A T 1 P A d . . . . . . . . . . . . A T d P A 0 A T d P A 1 • • • A T d P A d      ≺ 0 (18a)      A T 0 P A 0 A T 0 P A 1 • • • A T 0 P A d A T 1 P A 0 A T 1 P A 1 -P • • • A T 1 P A d . . . . . . . . . . . . A T d P A 0 A T d P A 1 • • • A T d P A d      ≺ 0 (18b) . . .      A T 0 P A 0 A T 0 P A 1 • • • A T 0 P A d A T 1 P A 0 A T 1 P A 1 • • • A T 1 P A d . . . . . . . . . . . . A T d P A 0 A T d P A 1 • • • A T d P A d -P      ≺ 0 (18c)
Proof. In order to ensure that the set

Ψ = x ∈ R n , x T P x ≤ 1
is D-invariant for the system described by the dDDE (1), one has to show that x k+1 ∈ Ψ,

∀x k , x k-1 , • • • , x k-d ∈ Ψ
, which is equivalent to the simultaneous verification of the d + 1 inequalities:

x T k+1 P x k+1 -x T k P x k < 0 x T k+1 P x k+1 -x T k-1 P x k-1 < 0 . . . x T k+1 P x k+1 -x T k-d P x k-d < 0
Exploiting the dDDE relationship one has:

x T k+1 P x k+1 -x T k P x k = (A 0 x k + A 1 x k-1 + • • • + A d x k-d ) T P (A 0 x k + A 1 x k-1 + • • • + A d x k-d ) -x T k P x k = x T k (A T 0 P A 0 -P )x k + x T k A T 0 P (A 1 x k-1 + • • • + A d x k-d ) + (A 1 x k-1 + • • • + A d x k-d ) T P (A 0 x k + A 1 x k-1 + • • • + A d x k-d ) < 0.
and in the equivalent matrix formulation:

     x k x k-1 . . . x k-d      T      A T 0 P A0 -P A T 0 P A1 • • • A T 0 P A d A T 1 P A0 A T 1 P A1 • • • A T 1 P A d . . . . . . . . . . . . A T d P A0 A T d P A1 • • • A T d P A d           x k x k-1 . . . x k-d      ≺ 0 (20) 
Analogously for the second inequality:

     x k x k-1 . . . x k-d      T      A T 0 P A0 A T 0 P A1 • • • A T 0 P A d A T 1 P A0 A T 1 P A1 -P • • • A T 1 P A d . . . . . . . . . . . . A T d P A0 A T d P A1 • • • A T d P A d           x k x k-1 . . . x k-d      ≺ 0 (21) 
up to the d + 1 inequality. We can conclude that the existence of a positive definite matrix P = P T is a sufficient condition for the existence of an ellipsoidal D-invariant set, and the proof is complete.

Example 2. For illustration let us consider system (1) with only one delay parameter d = 1 and:

A 0 = 0.35 0.13 0.51 -0.01 , A 1 = 0.51 -0.01 0.03 0.51 . ( 22 
)
The condition for the existence of a D-contractive set proposed in Theorem 5 is fulfilled and the Dcontractive set exists as shown in Figure 1. Dashed black lines in Figure 1 represent the state trajectories starting from some points on the boundary of the ellipsoidal D-contractive set with respect to the dDDE (1) with d = 1, A 0 , A 1 given in [START_REF] Samanta | Dynamic behaviour for a nonautonomous heroin epidemic model with time delay[END_REF]. It is interesting to note that the sufficient condition A 0 p + A 1 p ≤ 1 by [START_REF] Hennet | Stability conditions of constrained delay systems via positive invariance[END_REF][START_REF] Lombardi | On positive invariance for delay difference equations[END_REF] does not hold for this numerical example. 

Necessary and sufficient algebraic conditions for

Polyhedral D-invariant sets The problem of finding convex D-invariant sets can benefit whenever particular structural properties are enforced. It is the case of polyhedral sets, for which necessary and sufficient conditions exist as resumed by the following theorem. Theorem 6. [START_REF] Hennet | Stability and stabilization of delay differential systems[END_REF] Let a delay difference equation be described by [START_REF] Blanchini | Set invariance in control[END_REF]. There exists P a polyhedral Dcontractive set containing the origin:

P = {x ∈ R n | F x ≤ 1} ( 23 
)
with F ∈ R r×n , described by its minimal half space representation, if and only if there exist d + 1 real matrices H i ∈ R r×r , for i = {0, • • • , d}, with nonnegative elements and a positive ǫ < 1, such that:

F A i = H i F (24a) d i=0 H i 1 r ≤ ǫ1 r (24b)
Clearly, if the requirement on ǫ being strictly smaller than 1 relaxed to non-strict inequality, then [START_REF] Elaydi | An Introduction to Difference Equations[END_REF] represents a necessary and sufficient condition for the existence of a D-invariant set.

Relationship between D-invariance and dDDE stability In this subsection we aim at complementing the overview of the necessary and sufficient conditions with a theoretical result that establishes a link between the stability in presence of time-varying delay and the existence of D-invariant sets.

Theorem 7. The dDDE (2) admits a proper Dinvariant set if and only if the time-varying dDDE (3) is delay-independent stable.

Proof. We prove next the case of dDDE with only two delay parameters, x(k + 1) = A 0 x(kd 0 ) + A 1 x(k-d 1 ), the case of finite number of delays (2) being a direct generalization. The proof of the "only if" implication builds on the fact that the existence of a D-invariant set P is equivalent with the set inclusion:

A 0 P ⊕ A 1 P ⊂ P (25) 
Thus for initial conditions x(k) ∈ P for k ∈ Z (-∞,0] one has x(1) ∈ P independent of the delay realization d 0 (0), d 1 (0) ∈ N. By induction, given a positive index i ∈ N, if x(k) ∈ P for k ∈ Z (-∞,i] then x(i + 1) ∈ P independent of the delay realization d 0 (i), d 1 (i) ∈ N which implies that the trajectories are bounded x(k) ∈ P, ∀k ∈ N + . Stability for any initial condition follows from property (1) of Proposition 1. By homogeneity, D-invariance is preserved by scaling and as such, there always exists a D-invariant set which contains a given initial condition of the dDDE.

For the "if" part of the proof, consider the initial conditions for the system (3) to be contained a compact set P containing the origin in its interior. Formally, the initial conditions and the time-varying delay realization can be described by the functions:

x - P : Z (-∞,0] → P d 0 : N + → Z (-∞,0] (26) 
d 1 : N + → Z (-∞,0] (27) 
Having as an objective the construction of the reachable set from P, let us denote the state at time instant k ∈ Z by x(k, x - P , d 0 , d 1 ) as the solution of (3) with respect to the initial conditions x - P and time-varying delay realizations d 0 (•), d 1 (•). With this notation, the reachable set from P via (3) is defined as:

R(P) = x ∈ R n | ∃k ∈ N + , x - P (•), d 0 (•), d 1 (•) s.t. x = x(k, x - P , d 0 , d 1 ) (28) 
Coming back to the proof, the objective is to show that P r = P ∪ R(P) is a proper D-invariant set. The fact that the origin is contained in the interior of P r is inherited from the properties of P. The boundedness of the set R(P) is ensured by the stability assumption and will be inherited by P r . What remains to be proved is the invariance of P r . Three possibilities should be discussed:

• x(kd 0 (k)) ∈ P and x(kd 1 (k)) ∈ P: in this case the state x(k + 1) is part of the one step reachable set and subsequently x(k + 1) ∈ R(P) ⊂ P r .

• x(kd 0 (k)) ∈ P and x(kd 1 (k)) ∈ R(P) (with delay indices which can be interchanged): this case corresponds to a reachable state x(kd 1 (k)) ∈ R(P) combined with a large (pseudoinfinite) delay d 0 (k). By consequence the state realizations x(k + 1) will represent a subset of the reachable set and R(P) ⊂ P r .

• x(k -d 0 (k)) ∈ R(P) and x(k -d 1 (k)) ∈ R(P)
(with delay indices which can be interchanged): again, via reachability x(k + 1) ∈ R(P) ⊂ P r with the particular case d 0 (k) = d 1 (k) which deserves a special treatment. Indeed, for the re-

striction d 0 (k) = d 1 (k), the state dynamics (3) reduces to x(k + 1) = (A 0 + A 1 )x(k -d 1 (k))
. But this realization is only a particular case of the general time-varying delay realization

d 0 (k) = d 1 (k) for which x(k-d 0 (k)) = x(k-d 1 (k))
which is covered by the reachable set construction and the proof is complete.

Remark 4. The sets containing the forward trajectories, as those used in the argument of the proof, are non-convex and lead to computationally demanding constructions, from a practical point of view. In the next section we describe the corresponding algorithm and subsequently reinforce the convexity by exploiting property (5) of Proposition 1.

Construction of D-invariant sets based on set iterations

We address now the construction procedures for the case x(k + 1) = A 0 x(k) + A d x(kd) supposing that it admits a D-invariant set. The general form (1) follows similarly. We use the fact that existence of Dinvariant sets is exactly equivalent, by Lemma (3), to the verification of A 0 P ⊕ A d P ⊆ P. To simplify the explanation, we first define the forward mapping :

Φ : Com(R n ) → Com(R n ) Φ(P) = A 0 P ⊕ A d P (29) 
and the mapping based on the union:

Ψ : Com(R n ) → Com(R n ) Ψ(P) = (P, Φ(P)). (30) 
Note that even if P is convex, Ψ(P) is not necessarily convex.

Remark 5. We enumerate here some useful properties of the mappings defined in (29-30):

1. If a given set P (convex or not) is D-invariant for (1), then Φ(P) ⊆ P. 2. k-iterates over the family of sets is set-wise non decreasing (Ψ k-1 (P) ⊆ Ψ k (P), ∀k ≥ 1) with Ψ k (P) = Ψ(Ψ k-1 (P)) for k > 0 and Ψ 0 (P) = P. 3. If P is D-invariant for (1) then Φ k (P) is set-wise non increasing (Φ k (P) ⊆ Φ k-1 (P), ∀k ≥ 1) .

Basic set-iterates procedure for the construction of D-invariant sets

We describe in this part the basic steps of an iterative construction of D-invariant sets. Under the assumption that such an invariant set exists for the system (1), we can always scale it using property (1) of Proposition ( 1) such that it encompasses the initial set Q. Using the theoretical properties shown above, an algorithmic routine based on non-convex sets mapping is proposed for the computation of D-invariant sets with respect to (1). This algorithm considers as an input argument an arbitrary bounded set Q containing the origin ( [START_REF] Ziegler | Lectures on polytopes[END_REF][START_REF] Schneider | Convex bodies: the Brunn-Minkowski theory[END_REF]). 

R 0 = Q; R 1 = Φ(Q) = A 0 Q ⊕ A d Q; i = 1; while R i ⊂ R i-1 do R i+1 = Ψ(R i ) = (R i , A 0 R i ⊕ A d R i ); i = i + 1; end Return R = R i (Alternatively, R = Conv(R i ) can represent the output if a unique convex set is needed.)
Convergence and finite determinedness analysis: First, it can be proved that Algorithm 1 constructs a non-decreasing sequence that converges to a D-invariant set. Indeed, the algorithm is based on the set mapping R i+1 = Ψ(R i ) which satisfies R i+1 ⊃ R i . Thus the sequence R i is non-decreasing in the sense of set inclusion. On the other hand, since the D-invariance is scalable (using property [START_REF] Blanchini | Set invariance in control[END_REF] of Proposition (1)), the hypothesis of existence of a D-invariant set P containing Q ensures Q ⊂ R i ⊂ P. Since any set R i provided by the algorithm is a subset of P, hence Ψ(R i ) is also a subset of P. In conclusion, the algorithm provides a sequence of sets R i which is non-decreasing by inclusion and limited from above by P. Hence the sequence admits a limit which is D-invariant (by the structure of the algorithm) and proper (because limited from above by P which is a fixed point with respect to the mapping Ψ(•)). Secondly, the finite determinedness can be formally proved. Given the (delay-independent) asymptotic stability of system (1) with matrices A 0 and A d , there exists a finite number of time steps t max such that the trajectories initiated in Q end up in P. The algorithm is collecting the trajectories initiated in Q, which is a subset of P, and thus t max represents an upper bound for the number of iterations. This completes the convergence analysis of the algorithm.

Note that the iterations and the limit set are nonconvex and this is related to the union operation performed by the mapping in Ψ(•). 

Convex set-iterates procedure for the construction of D-invariant sets

We describe briefly in this part the main steps of an iterative construction of D-invariant sets while manipulating only convex sets. This algorithmic routine was proposed by [START_REF] Lombardi | On positive invariance for delay difference equations[END_REF], but we recall it here in light of Theorem 7 and Algorithm 1. Let us define the two mappings :

Ω : ComC(R n ) → ComC(R n ) Ω(P) = A 0 P ⊕ A d P (32) 
Ξ :

ComC(R n ) → ComC(R n ) Ξ(P) = Conv(P, Ω(P)). ( 33 
)
Given a convex set P ∈ ComC(R n ), the sequence Ξ k (P), k > 0 converges toward a convex D-invariant set [START_REF] Lombardi | On positive invariance for delay difference equations[END_REF]. The main objective of this procedure remains the same as the previous one: enlarge the set as much as possible with the Convex hull operation, while keeping it included in a D-invariant superset. 

A 0 , A d ∈ R n×n Result: R Convex D-invariant set R 0 = Q; R 1 = Φ(Q) = A 0 Q ⊕ A d Q; i = 1; while R i ⊂ R i-1 do R i+1 = Ξ(R i ) = Conv(R i , A 0 R i ⊕ A d R i ); i = i + 1; end Return R = R i
This algorithm, unlike the previous one, manipulates convex sets with all their computational advantages. At each iteration, the convex hull of the union of the present set and the forward mapping of the same set R i are obtained.

Complexity and speed of convergence

In this section, we point to the possible extension of Algorithms 1-2 in order to improve the convergence speed. Instead of performing one forward mapping in each iteration before checking D-invariance, N forward mappings are performed in each iteration. This seems to be efficient in the sense that we can reduce the complexity and the number of iterations. (

-invariant set R 0 = Q; R 1 = Ω(Q) = A 0 Q ⊕ A d Q; Aux 1 = R 0 ; i = 1; while R i ⊂ R i-1 do for m = 1 : N do Aux m+1 = Φ(Aux m ) end Aux = [Aux 1 , Aux 2 , . . . , Aux N +1 ]; R i = Conv(Aux); R i+1 = Ω(R i ); i = i + 1; Aux 1 = R i ; end Return R = R i
) Let Q =        x ∈ R 2 |     √ 2 - √ 2 - √ 2 √ 2 √ 2 √ 2 - √ 2 - √ 2     x ≤     0.5 1 0.5 1            34 
be the initialization set. By applying Algorithm 3 with N = 2 and Algorithm 2, two different Dinvariant sets are obtained for the dynamical system (34) in 2 * (N = 2) and 18 iterations, respectively. Figure 4 presents these sets. Dashed black lines represent the state trajectories starting from the vertices of these sets with respect to the dynamics [START_REF] Laraba | Invariant sets for discrete time-delay systems: Set factorization and state representation[END_REF]. It becomes clear that, under the assumption that a D-invariant set exists, an efficient construction exists. We can also use the algorithmic construction (Algorithm 2) as an induced tool to check if a Dinvariant set can/cannot be obtained, whenever the dDDE satisfies the necessary conditions for the existence of such invariant sets. To illustrate this idea, Example 1, which raises a doubt about the sufficiency of the matrix-pencil based conditions [START_REF] Stanković | Further remarks on asymptotic stability and set invariance for linear delay difference equations[END_REF], will be discussed in the sequel. By computing the set iterations up to strict inclusion into the initial one, convergence/divergence can be inferred. If the initial set Q for Algorithm 2 is the ∞-norm unit ball in R 2 and the dDDE is given by the matrices in Example 1, then after 4 iterations one obtains the sequence in Figure 5. The set iteration can be stopped as long as Q is a strict subset of P 4 . This represents a proof by construction that forward set iterations diverge and the system does not admit a D-invariant set. A pictorial overview of the relation between different kinds of stability and existence of D-invariant sets is given in Figure 6. Solid black lines represent implications that have been proved herein. Solid yellow lines represent previous results and dashed lines with question marks represent open problems. Dashed lines with a cross between two statements show that the first property does not necessarily imply the second. 

Extensions of D-invariance

As mentioned in the introduction, two main approaches exist in the literature dealing with positive invariant sets for discrete time-delay difference equations; an invariant set for the dDDE can be computed either in an extended state space, or in the original state space (in this latter case, it is called D-invariant set). The concept of cyclic invariance [START_REF] Lombardi | Cyclic invariance for discrete time-delay systems[END_REF] can be exploited to compute, instead of a rigid set in (R n ) d+1 or R n as in the two aforementioned approaches, a tuple of invariant sets; thus offering a certain degree of flexibility. Definition 9. A (d + 1)-tuple of sets {Ω 0 , . . . , Ω d } is called cyclic D-invariant with respect to (1) if:

A 0 Ω 0 ⊕ A 1 Ω 1 ⊕ • • • ⊕ A d Ω d ⊆ Ω d ; A 0 Ω d ⊕ A 1 Ω 0 ⊕ • • • ⊕ A d Ω d-1 ⊆ Ω d-1 ;
. . .

A 0 Ω 1 ⊕ A 1 Ω 2 ⊕ • • • ⊕ A d Ω 0 ⊆ Ω 0 . (35) 
A generalization of the cyclic invariance notion to invariant family of sets was proposed by [START_REF] Raković | Construction of invariant families of sets for linear systems with delay[END_REF][START_REF] Raković | Positively invariant families of sets for interconnected and time-delay discrete-time systems[END_REF].

Definition 10. A family of (d + 1)-tuples of sets F ⊂ n ) d+1 is an invariant family with respect to (1) if for any tuple {Ω 0 , Ω 1 , . . . , Ω d } ∈ F there exists a set Ω * ⊂ R n such that {Ω * , Ω 0 . . . , Ω d-1 } ∈ F and

A 0 Ω 0 ⊕ A 1 Ω 1 ⊕ • • • ⊕ A d Ω d ⊆ Ω * .
The link between the two main representations for discrete time-delay difference equations and their invariant sets has received recently a unifying characterization via set factorization [START_REF] Olaru | Low complexity invariant sets for time-delay systems: A set factorization approach[END_REF]. The reader is referred to this work for geometrical details on the Cartesian product of sets in relationship with positive invariance for time-delay systems.

Conclusion
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It is easy to observe that sets like {0} or R n are D-invariant but they do not satisfy the non-degenerate or boundedness conditions.

also known as stability in the delays.
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