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On Degeneracy in Exploration of Combinatorial Tree in
Multi-Parametric Quadratic Programming

Parisa Ahmadi-Moshkenani1, Tor Arne Johansen 1 and Sorin Olaru 2

Abstract— The recently proposed combinatorial approach for
multi-parametric quadratic programming (mpQP) has shown
to be more efficient than geometric approaches in finding
the complete solution when dealing with systems with high
dimension of the parameter vector. This method, however,
tends to become very slow as the number of constraints
increases. Recently, a modification of the combinatorial method
is proposed which exploits some of the underlying geometric
properties of adjacent critical regions to exclude a noticeable
number of feasible but not optimal candidate active sets from
the combinatorial tree. This method is followed by a post-
processing algorithm based on the geometric operations to
assure that the complete solution is found which is time-
consuming and prone to numerical errors in high-dimensional
systems. In this paper, we characterize degenerate optimal
active sets and modify the exploration algorithm such that
the complete solution is guaranteed to be found in a general
case, which can have degeneracies as well, concurrent with the
exploration of combinatorial tree. Simulation results confirm
the reliability of the suggested method in finding all critical
regions while decreasing the computational time significantly.

I. INTRODUCTION

Exploiting the multi-parametric quadratic programming
(mpQP) for solving the model predictive control (MPC)
problems enables the online computational burden of the
problem to be moved offline [1], [2] and [3]. Consequently,
application of MPC can be extended to systems with
relatively fast dynamics. There are basically two approaches
towards solving a mpQP problem. i) Geometric approaches
that iteratively build a partition of parameter space using
geometric (polyhedral) computations [4]–[8] and [9]. The
advantage of these approaches is that mostly optimal
combinations of active sets are considered, avoiding
unnecessary computations due to the combinatorial
number of possible active sets. However, for problems
of high dimension of the parameter space, the geometric
computations become complex and numerically sensitive
and these algorithms, therefore, tend to become slow and
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unreliable. ii) Computational approaches which are based
on implicitly enumerating all possible combinations of
active constraints in a combinatorial search tree [10], [11]
and [12]. These methods avoid geometric computations
and hence deal quite effectively and efficiently with mpQP
problems having a higher number of parameters where the
geometric methods tend to fail [13]. Another enumeration-
based method for solving linear and semi-definite quadratic
multi-parametric programs is recently proposed in [14]
based on reformulating these problems into parametric
linear complementarity problems. This method has shown
to be twice as fast as the method of [10]. The pruning
criterion in all these methods is to simultaneously cut off
branches with infeasible active sets which is crucial for
achieving optimal efficiency in enumeration. A drawback
of these methods, however, is that the number of possible
combination of active constraints increases exponentially
with the number of constraints. Therefore, its applications
is limited to problems with few constraints [12]. In order
to exclude from the combinatorial tree a noticeable number
of feasible active constraints that are not optimal, [15]
has suggested a downward and upward exploration of
combinatorial tree which exploits some of the underlying
relationship between two full-dimensional adjacent critical
regions. This method is guaranteed to find all critical
regions in the non-degenerate cases while reducing the
number of LPs that should be solved. Hence the required
computational time decreases significantly. For degenerate
cases, however, some critical regions may not be found
using the algorithm in [15]. Therefore, a post-processing
algorithm which is relatively time-consuming and based on
the geometric operations (using [16]) is performed in [15]
to assure that all critical regions are found. However, the
main drawback of this method is that the post-processing
algorithm should be performed in both degenerate and non-
degenerate cases, while it is not necessary in the later case.
This is because the algorithm does not identify the existence
of degeneracy on the common facets between adjacent
CRs. In order to avoid the unnecessary post-processing,
a study about full-dimensional critical regions for which
degeneracy occurs on their common facet is presented in
this paper. Exploiting these properties for adjacent CRs,
one can identify, while exploring the combinatorial tree,
whether degeneracy happens for some candidate active sets
in the mpQP or not. In addition an alternative method for
degenerate cases is suggested to assure finding all optimal
active sets without requiring the post-processing check.
Hence, this paper is structured as follows. The combinatorial



approach towards mpQP is briefly explained in section II
in conjunction with the suggested downward and upward
exploration of the combinatorial tree in [15]. The new
approach for exploring the combinatorial tree is presented in
section III together with a series of theorems describing the
theoretical foundation. In section IV the simulation results
are presented which show the efficiency of the suggested
algorithm, and finally the paper is concluded in section V.

II. COMBINATORIAL APPROACH TOWARDS
MULTI-PARAMETRIC QUADRATIC

PROGRAMMING
Consider the standard multi-parametric quadratic program:

V ∗N (x) = min
z

1

2
zTHz (1a)

s.t. Gz ≤ Sx+W (1b)

where z ∈ Rm and x ∈ Rn denote the optimization variables
and parameters, respectively. Assume that the problem is
strictly convex, i.e. H > 0 and all constraints are irredundant.
As shown by [1], the Karush-Kuhn-Tucker (KKT) optimality
conditions can be used to characterize the analytic solutions
to the mpQP problem:

Hz +GTλ = 0, λ ∈ Rq, (2a)

λi(Giz −W i − Six) = 0, i = 1, . . . , q, (2b)
λ ≥ 0, Gz ≤ Sx+W (2c)

Defining Q = {1, . . . , q} as the index set of all constraints
in (1b), we recall that a constraint among q constraints
in (1b) is said to be active if it holds with equality
for a given z and x, and inactive if it holds with strict
inequality. Thus the active set A(z, x) can be described
as A(z, x) := {i ∈ Q | Giz − Six − W i = 0} while
the corresponding inactive set J (z, x) is given by the set
difference of Q and A i.e. J (z, x) := Q\A(z, x). Before
going further, we recall some definitions and theorems.

Definition 1. Redundant constraints: Let a polyhedron
X be represented by Ax ≤ b. We say that Aix ≤ bi is
redundant if Ajx ≤ bj ,∀j 6= i ⇒ Aix ≤ bi (i.e., it can be
removed from the description of the polyhedron).

Definition 2. Minimal representation: A representation of
a polyhedron is minimal if there are no redundant constraints.

Definition 3. Linear Independence Constraints
Qualification (LICQ), (Nocedal and Wright, 1999):
Given z∗(x) as the optimal solution of (1) at which KKT
conditions are satisfied and the corresponding active set
A, we say that LICQ holds if the set of active constraint
gradients {Gi | i ∈ A(z∗(x), x)} is linearly dependent, i.e.,
GA has full row rank.

Definition 4. Strict Complementarity Slackness (SCS),
(Nocedal and Wright, 1999): Given the pair (z∗(x), λ∗(x))

satisfying the KKT conditions, SCS holds if exactly one of
λi∗(x) and Giz∗(x) − Six −W i is zero for each i ∈ Q,
i.e., λi∗(x) > 0 for each i ∈ A(z, x) and si > 0 for
each i ∈ J (z, x) where si is the slack variable of inactive
constraint i ∈ J such that Giz∗(x) + si = Six+W i .
We define as weakly active constraint an active constraint
with an associated zero Lagrange multiplier λi∗ and as
weakly inactive constraint an inactive constraint with
an associated zero slack variable si. Furthermore, an
optimization problem for which both the LICQ condition
and the SCS condition hold is known to be non-degenerate
according to the definition of degeneracy in [5].

Definition 5. Full-dimensional polyhedron: Let
x0 ∈ X ⊆ Rn. If dim(x0) = n, we say that X is
full-dimensional.

Theorem 1:
Consider the problem in (1) with H > 0. Let X ⊆ Rn be a
polyhedron, i.e., the problem’s feasible set and let x ∈ X .
Then the solution z∗(x) and the Lagrange multipliers λ∗(x)
of a mpQP are piecewise affine functions of the parameter
x and z∗(x) is continuous. Moreover, if LICQ holds for all
x ∈ X , λ∗(x) is also continuous [1].

Assuming that we know an optimal active set A and
that LICQ holds, we can use (2a) and (2b) to derive the
parameter-dependent optimizer [1]:

zA(x) = H−1(GA)TH−1
GA(W

A + SAx) (3)

where the existence of H−1
GA := (GAH−1(GA)T )−1 is

guaranteed due to the LICQ and positive definiteness of H .
The set of inequalities in (2c) characterize the critical region
(CR) for the considered optimal active set A. The CR is in
the form of a polyhedron in the parameter space defined by
the following inequalities:

H−1
GA(W

A + SAx) ≤ 0 (4a)

GH−1(GA)TH−1
GA(W

A + SAx) ≤W + Sx (4b)

This polyhedron is the largest set of parameters x ∈ X
for which the combination of active constraints A at the
optimizer remains unchanged.

To determine all optimal active constraints
A(z∗(x), x), x ∈ X , [10] suggests to choose the candidate
active sets from P ′(Q) which is a subset of P(Q) including
all the subsets of Q with maximum m̃ = min{m, q}
members (note that as pointed out by [10], for a mpQP
with m decision variables (z ∈ Rm) and q constraints, only
a maximum of m̃ linearly independent constraints can be
strongly active at the optimal solution [17]) in the order of
increasing cardinality and use the following LP to check



whether the candidate set Ai is indeed optimal or not:

max
z,x,λAi ,sJi

t (5a)

s.t. te1 ≤ λAi , te2 ≤ sJi (5b)

t ≥ 0, λAi ≥ 0, sJi ≥ 0 (5c)

Hz + (GAi)TλAi = 0 (5d)

GAiz − SAix−WJi = 0 (5e)

GJiz − SJix−WAi + sJi = 0 (5f)

Here t is a scalar optimization variable and e1 = [1, . . . , 1]T

and e2 = [1, . . . , 1]T are vectors of appropriate sizes
corresponding to the vector of Lagrangian multipliers
λAi and the vector of slack variables sJi , respectively.
Inequalities (5b) form an upper bound on the optimization
variable t as the minimal value contained in λAi and sJi .
This formulation allows the immediate identification of
failure of the SCS condition whenever t = 0. If the candidate
active set is found not to be optimal, i.e., if the optimization
problem in (5) is not feasible, another optimization problem
should be solved by removing all constraints arising from
the optimality condition (all constraints including λAi in
(5)), to check for the feasibility of the candidate active
set. If this optimization problem is not feasible, we can
exclude Ai and all its supersets from the combinatorial
tree. This is the only pruning criterion in this method which
is based on the infeasibility of a combination of active
constraints. A graphical illustration of the combinatorial
enumeration strategy and the involved pruning process is
given in the form of a combinatorial tree diagram in Fig.
2. As it can be seen from Fig. 2, all feasible combinations
of active constraints remain in the combinatorial tree for
exploring the levels below while for many cases, none
of their supersets become optimal in future. In order to
exclude from combinatorial tree a noticeable number of
feasible candidate active sets which are not optimal, a joint
downward and upward exploration of the combinatorial tree
is suggested in [15] based on the following theorem from [5].

Theorem 2 (No Degeneracy):
Consider an optimal active set {i1, i2, . . . , ik} and its
corresponding minimal representation of the critical
region CR0. Let CRi be a full-dimensional neighbouring
critical region to CR0 and assume LICQ holds on their

Fig. 1: Combinatorial enumeration strategy used in [10]

Fig. 2: Combination of optimal active constraints in adjacent
critical regions in a non-degenerate system

common facet F = CR0 ∩H where H is the separating
Hyperplane between CR0 and CRi. Moreover, assume that
there are no constraints which are weakly active at the
optimizer z∗(x) for all x ∈ CR0. Then:

Type I: If H is given by Gik+1z∗0(x) =W ik+1 +Sik+1x,
then the optimal active set in CRi is {i1, i2, . . . , ik, ik+1}.

Type II: If H is given by λik0 (x) = 0, then the optimal
active set in CRi is {i1, i2, . . . , ik−1}.

According to Theorem 2, the combinations of optimal
active sets in two adjacent CRs differ only in one constraint
in non-degenerate systems. Therefore, one can only keep the
track of optimal active sets and for every found optimal active
set with a full-dimensional CR, find all optimal active sets
corresponding to its adjacent CRs by adding one feasible
constraint to or removing one existing constraint from the
current optimal active set (See Fig. 2 for illustration). Doing
this for all found optimal active sets, guarantees finding the
complete solution in non-degenerate cases due to the fully
connected critical regions which partition the feasible space.
Therefore, this method for finding optimal active constraints
requires joint downward and upward exploration of the com-
binatorial tree. To this aim, one can explore the combinatorial
tree as before, in the order of increasing cardinality. The dif-
ference is that in this method, we only use the optimal active
sets for building the levels below (downward exploration).
Hence if a combination of active constraints is not optimal,
the feasibility check of LP (5) is not needed any more. For
every optimal active set found during downward exploration,
we should explore the combinatorial tree upward to check
for the optimality of all its subsets with one element less if
they are not enumerated yet (upward exploration). Then for
every newly found optimal set during upward exploration, we
should explore the combinatorial tree downward and upward
again, until no new non-enumerated combination is found.
For each eliminated feasible but not optimal combination of
active constraints, the number of LPs in the form of (5) that
should be solved decreases by two (one for checking the
optimality and the other for checking the feasibility of the
candidate active set). However, when degeneracy happens
for some combinations of optimal active constraints, some



CRs may remain unexplored using this procedure. One way
to handle this limitation is to do a post-processing, using
geometric approaches, to find the regions that maybe are
missed as it is suggested in [15]. In the next section, we
suggest an alternative approach for handling degenerate cases
rather than post processing, which is not based on geometric
operations and hence is faster and more reliable when the
number of parameter variables and the number of constraints
increases.

III. NEW APPROACH FOR DEGENERATE CASES

Theorem 2 implies that when the optimal active sets
in two adjacent full-dimensional CRs differ in more than
one constraint, at least one of the LICQ condition or SCS
condition is violated. Regarding different possibilities for the
combination of optimal active constraints in two adjacent
critical regions when the LICQ and/or SCS conditions do
not hold on their common facet, we divide them into two
categories. By Categ.I, we mean those adjacent CRs in
which the combinations of optimal active constraints in
two adjacent CRs differ in more than one constraint and
each CR has only one constraint in addition to a subset of
the optimal constraints in the adjacent CR. For example,
two neighbouring CRs with the corresponding optimal sets
Ai = [i1, . . . ik, ik+1] and Aj = [i1, . . . ik, ik+2] lie in this
category. On the other hand, all adjacent CRs for which
the combination of optimal active constraints differ in more
than one constraint and at least one of the CRs has more
than one constraint in addition to a subset of the optimal
active set in the adjacent CR are classified in Categ.II.
For example, adjacent CRs with corresponding optimal
sets Ai = [i1, . . . ik, ik+1, ik+2] and Aj = [i1, . . . ik],
Ai = [i1, . . . ik, ik+1, ik+2] and Aj = [i1, . . . ik, ik+3],
Ai = [i1, . . . ik, ik+1, ik+2] and Aj = [i1, . . . ik, ik+3, ik+4]
lie in Categ.II.

For all adjacent CRs that are classified in Categ.I, one of
the following two cases can happen on their common facet
which is stated as Corollary 1.

Corollary 1 (Categ.I degeneracy)
Let two full-dimensional neighbouring CRs with the
minimal representation be classified as Categ.I, i.e., the
optimal active sets in these two regions can be defined by
Ai = [i1, . . . ik, ik+1] and Aj = [i1, . . . ik, ik+2]. Then one
of these conditions holds:
a) LICQ is violated for the combination of optimal active
constraints on their common facet.
b) LICQ holds on the common facet and SCS is violated
there, which implies that some of the constraints are weakly
active or weakly inactive.

Proof: The proof follows directly from Theorem 2, i.e.,
since the combinations of the optimal active constraints in
two adjacent CRs differ in more than one constraint, then at
least one of the LICQ or SCS conditions is violated on their
common facet. Hence either LICQ condition is violated on

the common facet (a), or if LICQ condition holds there,
then SCS condition is violated (b). �

Theorem 3 describes the characteristic of combinations
of active constraints on the common facet between two CRs
that are classified as Categ.II.

Theorem 3 (Categ.II degeneracy)
Let two full-dimensional neighbouring CRs be classified as
Categ. II, i.e., the optimal active set in one of the regions
have at least two constraints in addition to a subset of
optimal active constraints in the adjacent CR. Then the SCS
condition is violated on the common facet F between these
two critical regions.

Proof: Let us denote the critical region which has at
least two constraints in addition to a subset of the optimal
active set in the neighbouring critical region as CRi, those
two additional constraints as ik+1 and ik+2 and Aj as the
optimal active set in the adjacent critical region CRj . It
can be proved that AF1

, Aj ∪ ik+1 is an optimal active
set on the common facet with the associated critical region
CRF1 due to feasibility of the LP in (5) with Aj for all
x ∈ F and the trivial value for λik+1 equal to zero (Note
that λik+1 = 0 gives a feasible point for LP in (5) with
AF1

, Aj ∪ ik+1 which guarantees the optimality of AF1

there. But it doesn’t mean that the obtained optimal value
for λik+1 should be necessarily zero). Similarly it can be
proved that AF2 , Aj ∪ ik+1 ∪ ik+2 is an optimal active set
on F with the trivial values λik+1 = λik+2 = 0 in (5) and
the corresponding critical region CRF2

. Since the optimizer
z∗(x) is unique due to positive definiteness of H , for all
x ∈ F we have that Gk+2z∗(x) + sk+2 = Sk+2x +W k+2

with some sk+2 ≥ 0 as x ∈ CRF1 and simultaneously we
have Gk+2z∗(x) = Sk+2x + W k+2 as x ∈ CRF2 . This
means that sk+2 = 0 for all x ∈ CRF1

, which means that
ik+2 is weakly active on F . �

Remark 1. Whenever the facet-to-facet property [18]
does not hold for two adjacent critical regions, the same
results as in Corollary 1 and Theorem 3 still holds by
substituting F with the part of the facet that is common
between CRi and CRj in the proofs.

Exploiting the results in Corollary 1 and Theorem 3, we
can now modify the downward-upward algorithm in [15]
such that the degenerate cases are explicitly considered and
therefore, all critical regions are found during exploration of
the combinatorial tree while the number of LPs needed to be
solved reduces significantly. To this aim, in the downward-
upward exploration we also consider combinations of
active constraints for which either LICQ condition or SCS
condition is violated. If in the exploration of entire tree,
no combination of active constraints with failure in SCS
condition is found, then due to Theorem 3, no adjacent
CRs which can be classified as Categ.II exists in the
whole partitioned feasible parameter domain. The only



possibility for the combinations of optimal active sets in
two adjacent CRs, apart from the non-degenerate cases, is
due to Corollary 1-a. Hence if we explore the combinatorial
tree up to level-(m̃ + 1) where m̃ = min{m, q} (as such
case may happen in the last level of the combinatorial tree
(m̃) with the violation of LICQ condition in the optimal
active set in level-(m̃ + 1) which forms the common facet
between these two adjacent critical regions), and consider
combinations of optimal active constraint for which LICQ
is violated. Then for all such cases explore their subsets
which have one constraint less and are not explored yet, all
critical regions will be found.

If the SCS condition fails for some combinations of active
constraints in a full-dimensional CR or in a low-dimensional
CR which corresponds to the common facet between full-
dimensional CRs, identifying the combination of optimal
active constraints in the adjacent CR is not straightforward.
Specially because of the possibility of many overlapping
low-dimensional CRs which leads to a significantly different
combination of active constraints in the full-dimensional
adjacent CR. To deal with such situations, a similar method
to what is suggested in [19] can be exploited. To this
aim, we can determine the set including all constraints
that are active or weakly inactive for each optimal active
set with violation of SCS condition and then explore all
its unexplored full row rank subsets which have at most
m̃ elements since potentially every combination of these
constraints can appear in a full-dimensional adjacent critical
region depending on which low-dimensional critical regions
with violation of SCS overlap on the common facet. Note
that the indices of all weakly inactive constraints can be
simply obtained by identifying all slack variables equal to
zero.

The following theorem shows that the optimal active sets
for which LICQ is violated need not to be considered in the
downward exploration of the combinatorial tree.

Theorem 4
If a superset Al of an optimal active set Aj for which
LICQ is violated, is also optimal, then the SCS condition is
violated for the optimal active set Aj .

Theorem 4 guarantees the corresponding optimality check
of Al via solving the LP in (5) to be performed when
dealing with optimal sets with violation in SCS condition.
Hence it preserves us from solving the optimization problem
(5) for candidate active sets which can arise from exploring
the supersets of optimal sets with LICQ violation if it is
not needed. Before proceeding with the proof of Theorem
4, we state the following lemma.

Lemma 1.
If the LICQ condition fails for the optimal active set Ai in a
full-dimensional critical region, then all its subsets Aj ⊂ Ai
with GAj having full row rank, are optimal active sets that

are degenerate in the sense of violation of the SCS condition.

Proof. Assume the full-dimensional critical region CRi
with corresponding optimal set Ai = [i1, . . . , ik−1, ik] and
the Lagrange multipliers {λ1, . . . , λk} for which LICQ
is violated. Assume further that Aj = [i1, . . . , ik−1]
is one of its full row rank subsets. This means
that the kth row of matrix GAi can be written as
GAi,k = c1G

Ai,1 + . . . + ck−1G
Ai,k−1 where GAi,j

represents the jth row of matrix GAi . Let x0 be a point
in the interior of CRi. Then it can be easily proved that
Aj is also the optimal active set at x0 with Lagrange
multipliers λ

l
= λl + clλ

k,∀l ∈ {1, . . . , k − 1} and the
slack variable corresponding to the kth constraint is equal
to zero (sk = 0). Hence Aj = [i1, . . . , ik−1] is an optimal
set for which SCS does not hold. �

Using Lemma 1 we can now prove Theorem 4 as follows.

Proof: Assume that Ai = [i1, . . . , ik] is an optimal active
set with a full-dimensional critical region CRi where both
LICQ and SCS conditions hold for that. Further assume
that its superset Aj = [i1, . . . , ik, ik+1] is an optimal active
set with violation of the LICQ condition. By Lemma 1 it
is clear that the corresponding critical region CRj cannot
be full-dimensional since otherwise, SCS condition should
fail for Ai. Then if Al = [i1, . . . , ik+1, ik+2] which is built
by adding the feasible constraint ik+2 to Aj is also optimal
with CRl, two different situations may happen. i) CRl
is low-dimensional: This means that two low-dimensional
critical region CRj and CRl are neighbouring. Therefore
they must overlap. Hence ik+2 is weakly inactive for Aj .
ii) CRl is full-dimensional: This means that CRi and
CRl are two full-dimensional CRs which are adjacent.
Therefore they lie in the Categ.II and the SCS condition fails
on their common facet (with Aj) as a result of Theorem 3. �

Based on the above explanations, the modified downward-
upward algorithm suggested in [15] can be summarized as
in Algorithm 1.

IV. SIMULATION RESULTS

In this section, the results of the combinatorial approach
using the suggested method in Algorithm 1 are shown for
the four tank system with 4 state variables and 2 inputs and
the fuel cell breathing control system with 8 state variables
and 1 input which are used in [15]. These examples do not
have conditions in which SCS fails. However, the condition
in Corollary 1-a can occur, as it happens in the example of
fuel cell system with N = 6 in which m̃ = 3 and Ai =
[3, 11, 13] and Aj = [11, 13, 16] are the optimal sets in two
full-dimensional adjacent CRs and AF = [3, 11, 13, 16] is
the optimal set on their common facet with the violation
of the LICQ condition as |AF | > m̃. The simulation results
using the algorithm in [10], implemented in MPT3, and using
the method which is suggested here for a four tank system
and a fuel cell breathing system on a 3.2 GHz core i5 CPU



Algorithm 1 Downward-upward exploration strategy of the
combinatorial tree

Phase I (Initialization):
1) i = 1, Explore the entire level-1, use (5) to check the

optimality of each constraint. For each optimal con-
straint with violation of the SCS condition, create its
superset including the active and all weakly inactive
constraints and store it in “SCS Set”. If the constraint
is not optimal, use (5) without optimality conditions
to check the feasibility of that constraint. Store all
optimal constraints for which the SCS condition
holds in “Optimal Set” and all feasible constraints,
whether they are optimal or not, in “Feasible Set”;
x if no constraint is found to be optimal without

violation of SCS condition in 1), then:
x while Optimal Set is empty, explore the entire

level-(i+1), check only for optimality of the
generated combinations. For each found opti-
mal set with violation in SCS condition, cre-
ate its superset including all active and weak-
ly inactive constraints and store them in SCS
Set;

x i := i+ 1;
Phase II (Recursive Exploration):

2) (Downward Exploration) Construct level-(i + 1) by
adding one feasible constraint from level-1 to all sets
in Optimal Set which are found in level-i and check
only for the optimality of new combinations whether
LICQ holds for them or not. For each found optimal
active set:
x if both LICQ and SCS hold

compute control law and critical region and add
the combination to Optimal Set;

x elseif SCS fails
compute the superset including all active and
weakly inactive constraints and add it to SCS
Set;

x elseif LICQ fails
add it to LICQ Set to check its subsets with one
element less to find possibly missed CRs as in
Corollary 1-a;

i := i+ 1;
x if i < m̃ = min{m, q} then go to 2), else go 3);

3) (Upward Exploration) For all found optimal active
sets in Optimal Set and LICQ Set, check the opti-
mality of all its subsets with one element less that
have not been enumerated yet. Store all newly found
optimal sets in “New Set”;

4) For each optimal set Ai ∈ New Set:
New Set := New Set \Ai
x if both LICQ and SCS hold

add Ai to Optimal Set and compute the corre-
sponding critical region and control law, check
the optimality of all its subsets with one element
less and supersets with one element more that
have not been enumerated yet (joint upward

and downward exploration of the tree for a newly fo-
und non-degenerate optimal set). Add all found optimal
sets to New Set;
x elseif SCS fails

compute the superset including all active and weakly
inactive constraints and add it to SCS Set;

x esleif LICQ fails
add it to LICQ Set and explore only its subsets with
one element less and check for the optimality, add all
found optimal sets to New Set;
x if New Set is empty then go to 5), else go to 4);

Phase III (Handling Cases with SCS Violation):
5) Compute the union of all sets in SCS Set. Explore

all its full row rank subsets with cardinality less than
or equal to m̃ if it is not enumerated yet;
x add all newly found optimal active set for which

SCS holds to Optimal Set and go to 4);
x if no new set for which SCS holds is found,

stop

running MATLAB 2014a are shown in Table I and Table II,
respectively, where N , nCR and nLP represent the prediction
(and control) horizon, number of found CRs and number of
solved LPs. The LP solver in the suggested method, i.e. Alg.
2, is chosen to be GLPK which is intended for solving large-
scale linear programmings. The last column shows the ratio
of the computational time using the suggested algorithm to
the computational time using algorithm in [10]. It can be seen
that as the prediction horizon increases, this ratio decreases
dramatically which indicates the superiority of the suggested
algorithm for systems with a large number of constraints.

As an example for cases with violation of SCS condition,
we augmented example 1 from [18] by adding random
matrices to G, S and W such that the number of inputs
and the number of constraints are increased in the problem.
Table III shows the comparison for four different randomly
augmented examples for which SCS condition fails for some

TABLE I: Comparison between different algorithms for four
tank system from [19]

Method N nCR nLP tcomp[s]
tAlg.2

tAlg.1

Alg. 1 2 62 679 1.5600
Alg. 2 62 456 1.7743 1.1373
Alg. 1 3 221 17282 19.1400
Alg. 2 221 2709 6.9700 0.3642
Alg. 1 4 605 374470 415.8050
Alg. 2 605 10540 25.1268 0.0604
Alg. 1 5 1393 7193402 11185
Alg. 2 1393 31639 80.0446 0.0072
Alg. 1 6 1432* 25699816 24h*
Alg. 2 2744 77579 239.6348 -

* The code execution is manually stopped after 24 hours. Only 1432 CRs
are found by solving 25699816 LPs while the actual number of LPs to be
solved for the complete solution will be substantially larger.
Alg.1: Algorithm by Gupta/Feller
Alg.2: Algorithm suggested here



TABLE II: Comparison between different algorithms for fuel
cell breathing system

Method N nCR nLP tcomp[s]
tAlg.2

tAlg.1

Alg. 1 3 71 287 2.0150
Alg. 2 71 574 2.7608 1.3701
Alg. 1 4 133 1701 5.0730
Alg. 2 133 1551 5.9922 1.1812
Alg. 1 5 191 6001 11.4970
Alg. 2 191 2653 9.4219 0.8195
Alg. 1 6 241 18561 29.5160
Alg. 2 241 3888 13.2536 0.4491
Alg. 1 7 279 47017 69.8420
Alg. 2 279 4622 16.3629 0.2343
Alg. 1 8 307 149319 230.5860
Alg. 2 307 5840 19.6120 0.0851

Alg.1: Algorithm by Gupta/Feller
Alg.2: Algorithm suggested here

TABLE III: Comparison between different algorithms for the
system with violation in the SCS condition

Method nz q nCR nLP tcomp[s]
tAlg.2

tAlg.1

Alg. 1 4 10 34 452 0.8500
Alg. 2 34 263 2.0614 2.4252
Alg. 1 6 20 54 14376 16.6200
Alg. 2 54 925 3.7631 0.2264
Alg. 1 8 30 70 223211 423.8800
Alg. 2 70 1763 7.3106 0.0172
Alg. 1 10 40 - 6439332* 5h*
Alg. 2 79 2835 9.6660 -

* Matlab ran out of memory in the ninth-level, after approximately 5 hours
of execution and solving 6439332 LPs.
Alg.1: Algorithm by Gupta/Feller
Alg.2: Algorithm suggested here

of the combinations of active constraints. Here nz , q, nCR,
nLP , and tcomp represent the number of control variables,
number of constraints, number of found CRs, number of
solved LPs, and the computational time required by different
algorithms, respectively. It can be seen that the suggested
algorithm has a significant reduction of computational time in
comparison with the algorithm in [10] for the combinatorial
approach and as the the number of control variables and
the number of constraints increase, the superiority of the
suggested algorithm becomes significantly noticeable.

V. CONCLUSION

In this paper, a new method for exploration of the
combinatorial tree in combinatorial mpQP was suggested
which is based on exploiting the information about full-
dimensional adjacent critical regions. By excluding a great
number of feasible but not optimal combination of active
constraints from the combinatorial tree, the computational
time decreases dramatically. All critical regions in both
non-degenerate and degenerate cases are guaranteed to be
found without requiring a post-processing algorithm which
is time-consuming and may cause numerical problems in
high-dimensional parameter spaces. Therefore the suggested
method is well-suited for explicit MPC of high order systems
with a large number of constraints.
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