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In this paper, a suboptimal approach to distributed closed-loop min-max MPC for uncertain systems consisting of polytopic subsystems with coupled dynamics subject to both state and input constraints is proposed. The approach applies the dynamic dual decomposition method and reformulates the original centralized min-max MPC problem into a distributed optimization problem. The suggested approach is illustrated on a simulation example of an uncertain system consisting of two interconnected polytopic subsystems.

Introduction

Model Predictive Control (MPC) is an efficient methodology to solve complex constrained multivariable control problems in the absence, as well as in the presence of uncertainties [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF][START_REF] Mayne | Constrained Model Predictive Control: Stability and Optimality[END_REF][START_REF] Maciejowski | Predictive Control with Constraints[END_REF][START_REF] Camacho | Model Predictive Control[END_REF]. MPC involves the solution at each sampling instant of a finite horizon optimal control problem subject to the system dynamics, and state and input constraints. The conceptual structure of MPC is given in Fig. 1 [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF]. The MPC denomination stems from the idea of employing an explicit model of the plant to be controlled which is used to predict the future output behaviour. This prediction capability allows solving optimal control problems on line, where tracking error, namely the difference between the predicted output and the desired reference, is minimized over a future horizon [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF].

Optimizer Plant r(t) u(t) y(t)

input output reference measurements Fig. 1. Basic MPC structure [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF].

The result of the optimization is applied according to a receding or moving horizon philosophy [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF]: At time only the first input of the optimal command sequence is actually applied to the plant. The remaining optimal inputs are discarded, and a new optimal control problem is solved at time t 1 t  . The model-based philosophy is the major advantage of the MPC philosophy but brings also the most important difficulties. Since the model is only an approximation of the real plant, it is important for the MPC to be robust with respect to model uncertainties and plant disturbances [START_REF] Bemporad | Robust Model Predictive Control: A Survey[END_REF]. One possible strategy to obtain this is the design of min-max MPC, as was first proposed in [START_REF] Campo | Robust model predictive control[END_REF]. There are two formulations of min-max MPC: the open-loop formulation (the optimization is performed over a sequence of control actions) and the closed-loop formulation (the optimization is performed over a sequence of feedback control laws) (see [START_REF] Magni | Robustness and robust design of MPC for nonlinear discrete-time systems[END_REF] for a review of the min-max MPC approaches). The openloop min-max MPC [START_REF] Magni | Robustness and robust design of MPC for nonlinear discrete-time systems[END_REF] guarantees the robust stability and the robust feasibility of the system, but it may be very conservative since the control sequence has to ensure constraints fulfilment for all possible uncertainty scenarios without considering the fact that future measurements of the state contain information about past uncertainty values. The conservativeness of the open-loop approaches can be overcome by the closedloop min-max MPC approaches [START_REF] Magni | Robustness and robust design of MPC for nonlinear discrete-time systems[END_REF].

However, solving in a centralized way MPC problems for medium-and large-scale systems may be impractical due to the large number of decision variables and the topology of the plant and data communication. Therefore, there is a strong motivation for development of methods for distributed solution of MPC problems. The distributed MPC has the advantage to reduce the original, large size, optimization problem into a number of smaller and more tractable ones. Recently, several approaches for distributed /decentralized MPC have been proposed [START_REF] Scattolini | Architectures for distributed and hierarchical Model Predictive Control -A review[END_REF][START_REF] Christofides | Distributed model predictive control: A tutorial review and future research directions[END_REF][START_REF] Maestre | Distributed Model Predictive Control Made Easy[END_REF].

There are only a few papers considering the problem of robust distributed MPC of interconnected polytopic systems. Thus, in [START_REF] Zhang | Distributed model predictive control for polytopic uncertain systems subject to actuator saturation[END_REF] a distributed MPC algorithm for polytopic systems subject to actuator saturation is proposed. In [START_REF] Al-Gherwi | A robust distributed model predictive control algorithm[END_REF], an online distributed MPC algorithm that deals explicitly with model errors is proposed. It is supposed that the subsystems are coupled through their inputs and only constraints on the inputs are considered. In [START_REF] Grancharova | An approach to distributed robust model predictive control of discrete-time polytopic systems[END_REF][START_REF] Grancharova | Distributed robust model predictive control of interconnected polytopic systems[END_REF], an approach to distributed open-loop min-max MPC for interconnected polytopic systems is developed, which is based on the dual decomposition method [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF][START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF].

In this paper, an approach to distributed closedloop min-max MPC for uncertain linear systems consisting of polytopic subsystems with coupled dynamics subject to both state and input constraints is proposed. The approach applies the dynamic dual decomposition method [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF][START_REF] Giselsson | Distributed model predictive control with suboptimality and stability guarantees[END_REF] and reformulates the centralized closed-loop min-max MPC problem into a distributed closed-loop min-max MPC problem. It is based on distributed on-line optimization and can be applied to large-scale polytopic systems. In comparison with [START_REF] Grancharova | An approach to distributed robust model predictive control of discrete-time polytopic systems[END_REF][START_REF] Grancharova | Distributed robust model predictive control of interconnected polytopic systems[END_REF], here the optimization of the feedback policies is described as an alternative to the optimization of the control actions.

Formulation of the Closed-Loop Min-Max MPC Problem

Consider a system composed by the interconnection of M linear uncertain subsystems (Fig. 2), described by the polytopic discrete-time models:

1 ( 1) ( ) ( ) ( ) ( ) ( ) [ ( ), ( )] 1, 2,..., M i i i i i i j j j i i i i j x t A t x t B t u t A x A t B t i M           t (1)
where and ( )

i n i x t   ( ) i m i u t   ( ) i i n m    i i n n ij A   
are the state and control input vectors, related to the i-th subsystem, and are uncertain timevarying matrices, and are known constant martices. 
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  (5) Another assumption will be made with respect to the rate of variation of parameters, mainly with respect to the prediction horizon as it will be shown next in the MPC design.
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for periods of time, which are not less than ( N is supposed to be sufficiently large).

N     Before formulating the robust MPC problem, a set i   is introduced, which is a finite subset of i  . The set i   is defined by: vert int i i i       (6) 
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It is supposed that a full measurement

1 2 [ , , ... , ] M x x x x 
of the overall state is available at the current time t . The robust regulation problem is considered where the goal is to steer the overall state of the system (1) to the origin. Let be a finite horizon such that
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. The Assumption A2 characterizes a framework under which the model has a slow variation with respect to the time constants and prediction horizons. Thus, it can be accepted that ] const [ ] ,
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  contains the feedback laws for the whole system. Then, for the current x , the robust regulation MPC solves the optimization problem:

Problem P1 (Centralized min-max MPC):
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where . The cost function is: [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF] where:
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Here, is the stage cost for the i-th subsystem and are weighting matrices. The sets and are defined by:
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It follows from ( 16)-( 17) that and are convex (polyhedral) sets, which include the origin in their interior (due to Assumption A1). It should be noted that the state constraints (8) guarantee the robust feasibility of the solution in sense that the state constraints in (3) will be satisfied for the worst-case uncertainty realizations in , .
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Let

denote the optimal solution of problem P1. According to the receding horizon strategy, the control action applied to the plant at time is . The following assumption is also made:
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is linear, i.e. it has the form:
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where the matrix and the vector are to be optimized. In general, the control law parameterization of the form (18) will result in a suboptimal solution of the min-max optimization problem (problem P1). Let and
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It should be noted that the cost function ( 14) is in general non-convex with respect to the uncertain matrices ,

i i A B , 1,..., i M 
. Therefore, considering only the vertices of the sets , when computing the worst-case cost would not have been sufficient. For this reason, the finite uncertainty sets

i  1, ... , i M i   , 1, ... , i M 
defined by ( 6) include some interior elements in addition to the vertices.

Distributed Closed-Loop Min-Max MPC of Linear Systems with Uncertainty

Problem P1 can be decomposed by using the dynamic dual decomposition approach [START_REF] Camacho | Model Predictive Control[END_REF][START_REF] Campo | Robust model predictive control[END_REF]. The following decoupled state equations can be formulated:
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1, 2, ... ,

i i i i i i i i i x t A t x t B t u t v A t B t i M t        (21) 
with the additional constraints that [START_REF] Campo | Robust model predictive control[END_REF]:
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Similar to [START_REF] Campo | Robust model predictive control[END_REF], the constraints (22) are relaxed by introducing the corresponding Lagrange multipliers i n i p   (also referred to as prices) in the cost function [START_REF] Cohen | Optimization with an auxiliary constraint and decomposition[END_REF]. Further, define the following sequences: 
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Then, the original problem P1 is reformulated as a dual problem in view of distributed robust MPC: Problem P2 (Distributed min-max MPC):
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It can be easily shown that under Assumption A3, the optimization problem P1 (where the equation ( 7) is represented equivalently as equation ( 20)) is convex with respect to the optimization variables and G g . Then it can be proved that if 

M i P i V x V P x    i , with (35) 0 t N p  
It means that the solution of the centralized min-max MPC problem P1 is equivalent to the solution оf the distributed dual min-max MPC problem P2. The proof of (35) follows similar arguments as in [START_REF] Grancharova | An approach to distributed robust model predictive control of discrete-time polytopic systems[END_REF].

From (35) it follows that the computation of ,

* i G * i
g , for given prices can be done in a decentralized way, but finding the optimal prices requires coordination. The prices are found by applying the accelerated proximal gradient method to solve the dual problem to a convex primal optimization problem (see [START_REF] Giselsson | Accelerated gradient methods and dual decomposition in distributed model predictive control[END_REF] and the references therein). Given a price prediction sequence for the rth iteration, the corresponding sequences , , are computed locally by solving problem P3 i and ( 33)-(34). Then, the prices can be updated distributedly with the following iteration for the i-th subsystem:
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[ , , ... , ] ), and is the dual function (cf. ( 24)):
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The gradient of the dual function with respect

to the prices at is: . In [START_REF] Grancharova | An approach to distributed robust model predictive control of discrete-time polytopic systems[END_REF], an off-line algorithm to obtain an estimate of is provided.

( , ) S P x i P r P Q  * * , , 1 ( , ) | 0,1,..., 1 r i M P | i t k ij j t k t P Q j j i S P x v A x k N            (38) From (38) 
L The following suboptimal algorithm to distributed closed-loop min-max MPC of uncertain polytopic systems is proposed.

Algorithm 

R i i u   t t   , . ... , i M i M
10. Apply to the overall system the control inputs , . u t

11.

Let and go to step 2. It is clear that the computational load required by the centralized solution of the robust MPC problem will increase rapidly both with the increase of the number of the subsystems constituting the overall system and with their dimensions. In contrast, with the distributed robust MPC approach the original, large size, optimization problem is decomposed into a number of smaller and more tractable ones, which can be solved in parallel. Therefore, the computational complexity depends only on the number of the variables and the number of the constraints associated to each subsystem. Another advantage of the distributed approach is that it allows the performance optimization of the subsystems to be done autonomously and it is not required to have a central optimization unit. In addition, the distributed MPC is characterized with reduced communicational requirements, because only the interconnected subsystems need to communicate in order to optimize the global performance.

With the proposed robust MPC approach the purpose is to achieve robust feasibility (satisfaction of the constraints for all possible uncertainties within the uncertainty set) and robust performance (optimizing the worst-case value of the performance index). It is known that the robust control system may have optimal performance only for some values of the uncertain parameters, i.e. the optimality is "sacrificed" in some extent in order to achieve robustness. It has to be kept in mind that if a nominal MPC controller is designed by ignoring the presence of uncertainty, will lead to violation of constraints and possible poor performance for values of the uncertain parameters, which differ from the nominal ones. Therefore, it is necessary to guarantee robustness of the control system when there is uncertainty about plant dynamics. By using the closedloop min-max MPC approach to obtain robustness, a less conservative solution is obtained in comparison to the open-loop min-max approach.

Simulation Example

Consider the following system composed of two interconnected polytopic subsystems and :

1 S 2 S 1 1 1 1 1 1 1 2 2 1 1 : ( 1) ( ) ( ) ( ) ( ) ( ) S x t A t x t Bu t A x t A t       (39) 2 2 2 2 2 2 2 1 1 2 2 : ( 1) ( ) ( ) ( ) ( ) ( ) S x t A t x t B u t A x t A t       (40) 
where: 

                                            (41) 
Here 

A B A B             (42) 
The following state and input constraints are imposed on the system (39)-( 40

): 0.1 ( ), 2 ( ) 2 , 1,2 0.1 
i i x t u t i              (43) 
The prediction horizon is and the weighting matrices are The computed trajectories of the control inputs and the states ) are depicted in Fig. 4 to Fig. 6. The results show that the suboptimal trajectories obtained with the distributed min-max MPC keep both the state and input constraints. 
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Conclusions

In this paper, a suboptimal approach to distributed closed-loop min-max MPC for uncertain systems consisting of polytopic constrained subsystems is proposed and its performance is illustrated with a numerical example. The results show that the suboptimal trajectories obtained with the proposed approach keep both the state and input constraints.
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1 (Distributed closed-loop min-max MPC by on-line optimization):

  

	sub-problems P3 i ,		i	1, 2, ... ,	M	. Compute the
	worst-case state trajectories	X	* i	r		[	* , | r it t x	, ... ,
	* , r i t N t | ] x 	,		i		1, 2, ... ,	M	from (33)-(34).
	6. For i-th subsystem,	i	1, 2, ... ,	M	, communicate
	the							worst-case	state	trajectories
	X	* j	r		[	x	* j t t , | r	,...,	* j t r , x 	| ] N t	,	j	1, ... ,	, M j i 	of the
	interconnected subsystems.
	7. Compute					distributedly	the	updates
	i P	r	1 		[	1  i t , r p	, ... ,	, r i tN 1 ] p  	i , 	1, 2, ... ,	M	of the price
	sequences by applying (36) with		and using L L
	(38).												
	8. end															
	9. Let 0 i P		i P	R				1, 2,	
	( )			t * 1 ,					1, 2, ... ,	
										1						
																	1. Obtain an estimate	L	of the Lipschitz constant to the
																	gradient		( , ) P S P x	, number	R	of iterations, and fix
																	arbitrary guesses	i P	0	,	i		1, 2,	... ,	M	for the price
																	sequences. Let	0 t  .
																	2. Let the state at time t be	1 [ , ... , ] M x t x x ( ) x  	.
																	3. for	r		0,1, ... ,	R	1  do
																	4. For i-th subsystem,	i	1, 2, ... ,	M	, communicate
																	the price sequences	r j P		[	p	, j t r	, ... ,	, j t N r p 	]	,
																	j		1, ... ,	M	,	j i 	of the interconnected
																	subsystems.
																	5. Compute the sequences	* i G	r		* , [ ,..., r it G	* , it r G 	N	]	,
																	g	* i	r		* , [ ,..., r it g	* , r it N g 	]	and	i V	*	r		* , [ ,..., r it v	* , r it N v 	]	,
																	corresponding	to	the	price	sequence
																	P	r		[ , ... , r t p	r t p 	N	]	by solving distributedly the QP
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