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Abstract-The present article describes a novel approach combining identification and control design for motion control of multiple-link elastic-joint robots with motor sensors only and in presence of model uncertainties. The proposed modelbased control design method makes use of the H∞ (H-infinity) framework to design a two-degree-of-freedom controller with anticipation able both to i) withstand uncertainties or variations in model parameters and ii) follow reference trajectories with prescribed precision thanks to a preview feedforward action which anticipates the future trajectory on a given time horizon. The proposed design methodology is experimentally evaluated on a two-degree-of-freedom lightweight robotic arm, which is first modeled and identified in the frequency domain. Experimental validation of the controller confirms that the objectives of the dynamic precision in trajectory tracking and tip vibration damping are both achieved. Additional analysis and numerical simulations illustrate how the presented preview H∞ controller may be seen as an extension, with supplementary design parameters, of the traditional motor feedback with compensations based on the robot inverse dynamic model. A performance comparison between the proposed control method and the traditional inversionbased control shows the benefits of the anticipatory action and the possibilities offered by an H∞ design framework for the management of trade-offs in the specifications.

Index Terms-Elastic-joint robots, frequency-domain identification, H-infinity control design, model uncertainties

I. INTRODUCTION A. Problem statement

T HE present work deals with serial robot manipulators with flexible transmission elements modeled by elastic joints. As the level of elasticities in robotic manipulators varies with the target applications and the mechanical design, different control solutions can be envisaged. On the one hand, traditional manufacturing robots developed for high precision may often be considered as essentially rigid, and position sensors at the motor level are sufficient in most applications. On the other hand, lightweight manipulators built to fit into a human environment with sufficient safety guarantees are more likely to display an intrinsic elastic behavior, and are therefore equipped with suitable, often joint-level, additional position or torque sensors for precise control [START_REF] Albu-Schäffer | A unified passivitybased control framework for position, torque and impedance control of flexible joint robots[END_REF].

Between these two extrema, the present study focuses on robots with moderate levels of joint elasticities due for instance to flexible transmissions, which can not be neglected in the context of precise motion control, but which may not justify an integration of additional joint-level sensors. Such manipulators, with motor position sensors only, include both industrial robots lifting heavy payloads with respect to their proper mass, robotic structures of reduced cost which rigidity is not a primary goal, or even fully equipped robots exposed to sensor faults. The control objective is then to achieve the best performance in terms of trajectory tracking and vibration damping which is possible using motor-side measurements only. To compensate the absence of joint-level sensors, model-based control design allows to find powerful solutions, provided that the model uncertainties or parameter variations are taken into account in the design procedure.

To deal with the absence of joint sensors, several control strategies have been described in the literature. Model-based observers can be used to reconstruct missing measurements [START_REF] Ruderman | Sensorless torsion control of elastic joint robots with hysteresis and friction[END_REF], [START_REF] Huard | Sensorless force/position control of a single-acting actuator applied to compliant object interaction[END_REF]. As an alternative, a classical control scheme implements motor-level feedback control (for instance proportional derivative) completed by direct compensations based on the robot inverse dynamic model [START_REF] De Luca | Robots with flexible elements[END_REF]: for regulation tasks, gravity compensation is shown to be sufficient, while in trajectory tracking, a two-degree-of-freedom (dof) controller is used, where the feedback controller is completed with a feedforward compensation of the nominal reference trajectory torque. In the remaining of the article, this controller is referred to as the inversion-based controller.

B. Contribution

In this article, a novel approach combining identification and anticipatory two-degree-of-freedom controller design is proposed for motion control of multiple-link elastic-joint robots in presence of model uncertainties and when motor sensors only are available.

This extends the classical inversion-based controller in several ways: i) both the feedback and the preview feedforward controllers are designed using the H ∞ framework, which allows to precisely take into account the competing control objectives of robust stability, disturbance rejection, vibration damping and dynamic precision; ii) the resulting feedforward control does not consist of a direct inversion of the robot dynamic model, but is designed on the already closedloop system, thus increasing the overall robustness to model parameter variations; iii) the preview feedforward control is designed to anticipate the future trajectory on a specified time horizon for an improved tracking precision, whereas the classical inversion-based controller implements an intrinsic anticipation only through the acceleration terms.

In the following paragraphs, a brief literature review is provided about the model-based compensation in robotics, the robust control of robot manipulators including the use of H ∞ methods in control of elastic-joint robots under uncertainties, the control methods that include an anticipatory action over the future reference and the identification of elastic-joint robots with motor sensors only.

C. Related work 1) Model-based compensation: Thanks to the structure of their mathematical models, rigid (resp. elastic-joint) manipulators can be linearized and decoupled by feedback, this property being related to the more general case of control of differentially flat systems. After such transformation, linear time-invariant diagonal systems of double (resp. quadruple) integrators are obtained [START_REF] De Luca | Robots with flexible elements[END_REF]. Rigid model parameters are nowadays easily accessible from CAD tools, and can also be obtained experimentally using well established identification techniques [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. In the elastic-joint case, a complete feedback linearizing control is impossible without additional sensors (joint position or torque), while the rigid case requires only motor-side sensors.

2) Robust control: As the quality of the previously mentioned compensation heavily relies on the quality of the model, the benefits of robust design methods have been underlined very early in the rigid case [START_REF] Stout | Application of H∞ theory to robot manipulator control[END_REF] in association with various forms of inverse dynamic compensation (feedback linearizing control or feedforward compensations). The robustness problem with respect to uncertainties due to an imperfect feedback linearization was treated in [START_REF] Kang | Robust vibration control for SCARA-type robot manipulators[END_REF] using µ-synthesis for a robot containing one elastic joint.

H ∞ design was also used to reject the disturbances due to transmission nonlinearities [START_REF] Moghaddam | Nonlinear modeling and robust H∞-based control of flexible joint robots with harmonic drives[END_REF], or to deal with the specifications trade-offs for a single link robot under feedforward compensations [START_REF] Wang | Controller design and implementation for industrial robots with flexible joints[END_REF]. While LPV models have been considered in robust polytopic approaches [START_REF] Yu | Gain scheduled LPV H∞ control based on LMI approach for a robotic manipulator[END_REF], the direct exploitation of the experimental identification results for uncertainty characterization of elastic-joint arms as in [START_REF] Dadashi | H-infinity controller design for a flexible joint robot with phase uncertainty[END_REF] is not very common in robotics. Frequency-domain descriptions of uncertainty bounds for control are more frequently treated in the identification-for-control literature [START_REF] Gevers | Identification for control: From the early achievements to the revival of experiment design[END_REF].

3) Anticipation: Beyond well-established two-dof controller structures with feedback and feedforward actions, the anticipation of the trajectory over a finite horizon is a convenient way to increase the tracking precision. Besides model predictive control [START_REF] Upreti | Predictive control of flexible joint robotic manipulator[END_REF]- [START_REF] Makarov | Comparison of two robust predictive control strategies for trajectory tracking of flexible-joint robots[END_REF], two-dof controllers with anticipation (referred to as preview control in the dedicated literature [START_REF] Peng | Preview control for vehicle lateral guidance in highway automation[END_REF]) can be designed using LQG, H 2 or H ∞ frameworks [START_REF] Takaba | A tutorial on preview control systems[END_REF]- [START_REF] Kristalny | Preview in h 2 optimal control: Experimental case studies[END_REF]. In the preview problem, the anticipatory effect is usually materialized by a delay between the anticipated reference and the controlled system inputs. The control design problem is then solved on the initial system, augmented with the delay dynamics. Recently, preview H ∞ control techniques have been applied for disturbance rejection within the robotic context in beating heart surgery [START_REF] Bachta | Active stabilization for robotized beating heart surgery[END_REF] or in power grids [START_REF] Babazadeh | A robust two-degree-of-freedom control strategy for an islanded microgrid[END_REF]. Here, we consider an anticipatory feedforward action on the reference signal for trajectory tracking.

4) Identification: Within the present study, the purpose of the experimental identification is to provide suitable models for H ∞ control design. To reduce the complexity (order and structure) of the H ∞ controllers, a linearizing feedback based on the rigid model is first applied to partially compensate the robot dynamics. The resulting system, which would consist of a set of decoupled double integrators in a perfectly rigid case, but contains here elastic modes, is experimentally characterized in frequency domain. The pursued objective therefore differs from the one of the classical physical model parameters identification. Physical parameters of the complete elastic joint robot model can be identified using additional measurements from joint position sensors, motion capture, accelerometers or joint torque sensors as for instance reported in [START_REF] Albu-Schaffer | Parameter identification and passivity based joint control for a 7 dof torque controlled light weight robot[END_REF]- [START_REF] Oaki | Grey-box modeling of elastic-joint robot with harmonic drive and timing belt[END_REF]. Without additional sensors, existing dynamic identification methods for industrial robots with flexibilities are mainly based on simplified physical models combined with specifically designed closed-loop experiments in accordance with the assumed simplifications. Identification is then performed locally (single-joint approaches as in [START_REF] Pham | Identification of joint stiffness with bandpass filtering[END_REF], [START_REF] Östring | Closed-loop identification of an industrial robot containing flexibilities[END_REF]), or globally through optimization over several identified local models [START_REF] Wernholt | Nonlinear gray-box identification using local models applied to industrial robots[END_REF].

In the objective of identifying a model for H ∞ robust design, the selected approach is inspired by the methodology described in [START_REF] Wernholt | Nonlinear gray-box identification using local models applied to industrial robots[END_REF]. In the considered case of robots with motor-side measurements only and a moderate level of joint flexibilities, it is of interest of investigating to which point the control methods usually used for rigid robots apply, and when the control methods specifically designed for elastic-joint robots need to be implemented. In this paper, we investigated the effects of a rigid model-based compensation through the analysis of the resulting system model [START_REF] Gautier | Dynamic identification of robots with power model[END_REF]. We show that the identification can be used to bound the flexibilities effects in the model, in order to ensure a robust controller design regarding these uncertainties.

D. Outline

Section II introduces the modeling of elastic-joint robots with a rigid model-based linearizing feedback which partially compensates the robot dynamics. Frequency-domain identification of the resulting system is described in Section III, and the experimental example of a two-link lightweight robotic arm is considered. Preview H ∞ control design for the previously identified system is detailed in Section IV, and experimental evaluation results are provided. Finally, in Section V, the proposed control method is compared with a classical inversion-based control through numerical simulations which allow to consider multiple sets of values for the uncertain parameters.

II. DYNAMIC MODELING AND CONTROL-ORIENTED ANALYSIS IN PRESENCE OF MOTOR SENSORS ONLY

In the perspective of a robust control design using motor measurements only, the dynamic models of rigid and elastic-joint robots are first briefly recalled. The effects of a rigid model-based feedback are examined, and a linear model for identification and control is obtained.

A. Dynamic models of robot manipulators

Consider a n-link elastic-joint manipulator in which the elastic effects of the motor-to-joint transmission are modeled by torsional springs of stiffness K. Let θ ∈ R n denote the motor angles after the reduction stage, q ∈ R n the joint angles and τ ∈ R n the motor torque after reduction. Assuming that the angular velocity of the rotors is due only to their own spinning, i.e. neglecting the inertial couplings between the motors and the links [START_REF] De Luca | Robots with flexible elements[END_REF], the following reduced dynamic model of the elastic-joint robot can be obtained using the Lagrange formalism:

M L (q) q + H(q, q) + τ f a + K(q -θ) = 0 (1) 
J θ + τ f m + K(θ -q) = τ (2) 
with M L ∈ R n×n the rigid body inertia matrix, J ∈ R n×n the diagonal rotor inertia matrix, K ∈ R n×n the diagonal matrix of joint stiffness, τ f a and τ f m ∈ R n respectively the joint and motor friction torques, and H = C(q, q) q + τ G (q) ∈ R n regrouping respectively the Coriolis and centrifugal torques C(q, q) q and the gravitational torques τ G (q). In this framework, the purely rigid case corresponds to an infinite joint stiffness so that θ = q, and the standard n-link rigid model can be written as follows:

M (q) q + H(q, q) + τ f = τ (3) 
with M = M L + J the rotors and links inertia matrix and τ f the common friction torque.

B. Linearizing control of rigid robots

Under the rigidity assumption, the robot's identification and control are fully accessible using only motor measurements. The model (3) being linear in the parameters, the latter can be identified using a weighted least squares procedure. The conventional linearizing feedback control for the rigid motion is then (4), with the estimates M (q) and Ĥ(q, q) updated at each sampling time, and the new control vector u:

τ = M (q)u + Ĥ(q, q). (4) 
In case of perfectly known rigid dynamics (3), the control (4) leads to a linearized and decoupled system of input u and output θ, consisting of a set of n independent double integrators. An outer control loop can then be designed to control each axis as a linear SISO system.

C. Motor-side based modeling

The proposed approach, aimed at identifying and controlling the elastic-joint dynamics using motor sensors only, relies on the model (3) assumed known from preliminary experiments or CAD data, and the inner loop (4). The resulting system Σ, of input u and output θ, does not consist on n independent double integrators as expected in the perfect rigid linearization case. It is instead still nonlinear, coupled and affected by resonant elastic modes.

In the robust control design perspective, the system Σ is linearized around an equilibrium point θ0 = 0, q0 = 0, θ 0 = q 0 + K -1 τ G0 with τ G0 = τ G (q 0 ) the gravity torque at q 0 . The friction terms τ f a = F v q and τ f m = F vm θ are assumed to represent the viscous friction contribution with coefficients F v and F vm . The system Σ can then locally be written as a Linear Time Invariant (LTI) system in the Laplace domain with s the Laplace variable:

Θ(s) = G(s)U (s) (5) 
The term G ij (s) of the matrix G in (5) represents the influence of input u j on output θ i . For instance, in a 2-dof arm case (n = 2), G ij (s) has the following form:

G ij (s) = a 0 (s + a 1 )(s 2 + a 2 s + a 3 )(s 2 + a 4 s + a 5 ) s(s + b 1 )(s + b 2 )(s 2 + b 3 s + b 4 )(s 2 + b 5 s + b 6 ) (6)
with a i and b j real scalar coefficients depending on the robot dynamic parameters among which the stiffness and friction parameters. Particularly, such a gray-box approach allows to consider parametric uncertainties.

III. FREQUENCY-DOMAIN IDENTIFICATION

In this section, a gray-box identification in frequency domain is applied to an elastic-joint robot manipulator (1-2) under the rigid model-based feedback (3) in order to validate the proposed control-oriented model ( 6) and to estimate its unknown elastic parameters F vi , F vmi , K i . The rigid model is assumed to be known from previous identification experiments and CAD data. In a two-step procedure inspired by [START_REF] Wernholt | Nonlinear gray-box identification using local models applied to industrial robots[END_REF], the Frequency Response Function (FRF) of the system of interest is first estimated, and the model parameters are then obtained by optimization with regard to the parametric theoretical frequency response of the system [START_REF] Stout | Application of H∞ theory to robot manipulator control[END_REF]. For the experimental evaluation, the ASSIST robot arm (Fig. 1) is considered.

A. Nonparametric frequency response estimation

A frequency-domain approach is well suited for the modeling and control of elastic-joint robots as the elastic modes can be easily observed and validated. Moreover, it provides a way to extract frequency-domain information about the model uncertainties which may be used for the robust control design.

1) Input design: The choice of odd random phase multisines is suggested in [START_REF] Schoukens | Frequency response function measurements in the presence of nonlinear distortions[END_REF] to obtain the best linear approximation of a dominantly linear system under nonlinear distortions. Beside the properties of multisines for frequencydomain identification as periodic signals, the use of a random phase allows averaging the FRF over several realizations to reduce the nonlinear effects, and thus combines the benefits of random and periodic excitation. A random phase multisine is defined as:

u(t) = N f k=1 A k cos(ω k t + φ k ) (7) 
with ω k ∈ 2πl NpTs , l = 0, 1, . . . , Np 2 -1 . N f is the number of excited frequencies ω k , A k the signal amplitudes, φ k the random phases uniformly distributed on [0, 2π], T s the sampling time, and N p (even integer) the length of the signal. Odd random phase multisines can be used to excite only the odd harmonics in order to minimize the influence of nonlinearities in the estimation [START_REF] Schoukens | Frequency response function measurements in the presence of nonlinear distortions[END_REF]. A specific power spectrum Φ u (ω) is achieved using amplitudes

A k = 2 Φ u (ω k )/N p . (8) 
Consider a SISO system y = Gu + v, with v the measurement noise, under feedback u = -F ident y + r. Only the power spectrum Φ r of the reference signal r can be explicitly defined in closed-loop experiments. However, the spectrum Φ u of the system input u is of crucial importance for the quality of the experimental FRF estimation. In the elastic robot identification, a flat power spectrum Φ r typically results in a low signal-to-noise (SNR) ratio, and thus a high variance at low and resonant frequencies. Therefore, Φ r needs to be carefully designed to achieve a suitable input spectrum Φ u . The input and the reference power spectra are connected by

Φ u = |S G | 2 Φ r + |S G | 2 |F ident | 2 Φ v , (9) 
where

S G = (1 + F ident G) -1
is the closed-loop sensitivity function and Φ v the noise spectrum. Therefore, if the controller F ident and the system G are known, to achieve an input spectrum close to a given spectrum Φ u , the following reference spectrum can be considered:

Φ r = 1 |S G | 2 Φ u . (10) 
In an identification procedure aimed at identifying G, prior knowledge can be used to design the spectrum. An approximation G ident of G can be estimated from the physical principles or from an initial identification experiment to be refined.

2) Multivariable frequency response estimation: Consider a linear system G with n u inputs u and n y outputs y. Assuming periodic data affected by measurement noise V , with U (ω k ) and Y (ω k ) the Discrete Fourier Transforms (DFT) of the input u and output y at frequency ω k , the following input-output relation holds:

Y (ω k ) = G(ω k )U (ω k ) + V (ω k ). (11) 
To estimate G(ω k ) ∈ C ny×nu , data from n e ≥ n u different experiments are collected:

Y (ω k ) = G(ω k )U (ω k ) + V (ω k ) (12) 
with

U (ω k ) ∈ C nu×ne and Y (ω k ) ∈ C ny×ne .
Different estimators can be used to compute the FRF Ĝ from [START_REF] Gevers | Identification for control: From the early achievements to the revival of experiment design[END_REF]. In this work, an arithmetic mean is used to average the FRF over the experiments:

Ĝ(ω k ) = 1 N e Ne m=1 Ĝ[m] , Ĝ[m] = Y [m] (ω k ) U [m] (ω k ) -1 (13) 
assuming n y = n u and n e = N e × n u experiments in order to partition the system [START_REF] Gevers | Identification for control: From the early achievements to the revival of experiment design[END_REF] into N e integer number of blocks

Y [m] (ω k ) and U [m] (ω k ) of size n u × n u .
The sample variance of the arithmetic mean estimator is computed as follows:

σ Ĝ (ω k ) 2 = 1 N e (N e -1) Ne m=1 Ĝ[m] (ω k ) -Ĝ (ω k ) 2 . (14) 

B. Flexible parameters estimation

In the second step of the identification procedure, the discretized parametric model ( 6) of the elastic-joint robot is fitted to the nonparametric FRF. The rigid parameters are fixed to the previously identified values and used in the rigid modelbased inner loop. The elastic parameters to be identified are the joint stiffness matrix K ∈ R n×n , and the joint and the motor viscous friction coefficients F v and F vm . For an improved numerical stability and robustness to outliers, the parameter vector p flex is estimated in a weighted logarithmic least squares procedure over the frequency response magnitudes:

p opt flex = arg min pflex V cost (p flex ) (15) 
V cost = Np k=1 log (|G (ω k )|) -log Ĝ (ω k ) 2 W k . ( 16 
)
The weighting matrices W k = W (ω k ) can be defined to emphasize the optimization on a particular frequency interval.

In this work the inverse of the sample standard deviation

W k = σ Ĝ (ω k ) -1 is used.

C. Experimental FRF of the ASSIST robot arm

In this section the previously described modeling and identification procedure is applied on the lightweight and elasticjoint ASSIST robot arm, which rigid parameters are identified in [START_REF] Makarov | Generalized predictive control of an anthropomorphic robot arm for trajectory tracking[END_REF] using a conventional rigid identification method based on linear least squares.

1) System under consideration: Without loss of generality, the 7-dof ASSIST robot arm is considered here as a two-joint manipulator, where the shoulder j 1 and the elbow j 2 only are actuated, the other five rotational dof being fixed (Fig. 1). The robot motion is thus restricted to the vertical plane. With the compensation (3), this system corresponds to the theoretical model [START_REF] Stout | Application of H∞ theory to robot manipulator control[END_REF]. In a mechanical design focused on a safe humanrobot interaction, the joint actuators are based on a screw-andcable mechanism achieving a high mechanical backdrivability [START_REF] Makarov | Generalized predictive control of an anthropomorphic robot arm for trajectory tracking[END_REF]. DC motors driven by PWM servo amplifiers in torque mode are employed. The motor shafts are equipped with incremental position encoders. The robot arm is controlled by a real-time dedicated controller running VxWorks, with a sampling time T s = 4ms.

2) Experiment design and results: As the local model (5) depends on the robot configuration q 0 , the identification experiments are performed in n config = 7 configurations selected as extremal with respect to the joint position ranges, corresponding for each of the two joints to q min i = -π/2 rad, q med i = 0 rad and q max i = π/2 rad. Random phase multisines are used as input signals for the closed-loop identification, with odd frequencies selected over the range 0.5-50Hz. Each joint is excited separately, with 6 realizations of the input signal, resulting in n e = 6 × 2 experiments. The used signal length is N p = 2 12 points. The input spectrum design method [START_REF] Yu | Gain scheduled LPV H∞ control based on LMI approach for a robotic manipulator[END_REF] is applied to the different axes of the robot using G ident (s) = ω 2 r /ω 2 a • (s 2 + 2ξω a s + ω 2 a )/(s 2 (s 2 + 2ξω r s + ω 2 r )) obtained from preliminary identification results, and a Proportional-Derivative (PD) controller F ident (s) = K p + K d s.

Fig. 2 shows the frequency responses Ĝ of the two-dof AS-SIST arm in the tested configurations, which are in accordance with the theory: two elastic modes corresponding to the two elastic joints are observed. As expected in case of collocated pairs of motors and motor sensors, each anti-resonance in the diagonal terms is followed by a resonance. The first resonance is centered around 6Hz with ca. 1Hz dispersion due to the configuration variations. The second resonance, mainly visible in the j 2 responses, varies between 13 and 30Hz. Fig. 2 also illustrates the correspondence between the experimental nonparametric FRF estimate Ĝ0 given with its sample standard deviation σ Ĝ, and the fitted parametric model G 0 in the nominal configuration. The obtained elastic parameters for this configuration are K = diag {699.7, 645.0} Nm rad -1 , F v = diag {1.79, 0.42} Nm s rad -1 , F vm = diag {41.44, 5.41} Nm s rad -1 . The difference in the motor viscous friction coefficients F vm may be explained by the presence of additional reduction gears on the first motor.

D. Uncertainty description

The system Σ resulting from the control (4) applied to (1-2) is seen in the following as uncertain. The nominal model denoted G 0 corresponds to the identified model in the extended horizontal position of the arm (q 1 =0rad, q 2 =0rad). An additive unstructured uncertainty ∆ G , to be tacken into account in the control design for robust closed-loop stability, represents the variations of the system around this nominal configuration, as well as variations of the system's parameters which may be due to wear, temperature-dependent friction or a payload (Fig. 3). For robust control design, the estimated upper bound of ∆ G is approximated in frequency domain by W ∆ (s). In the case where it models the variations of the system around the nominal configuration, the uncertainty ∆ G can be characterized from the previous identification experiments by

∆ G (ω k ) = max i G 0 (ω k ) -Ĝi (ω k )
, with G 0 is the nominal model and Ĝi the estimated frequency response in the i-th configuration (i = 1 . . . n config ). As said before, in addition to this definition, ∆ G can include model variations due to uncertain parameters.

IV. H ∞ PREVIEW CONTROL DESIGN This section presents the design of an anticipative twodof controller satisfying the objectives of robustness, damped disturbance rejection and trajectory tracking, using motorside information only for the previously identified system. Following the frequency-domain approach in continuity with the identification procedure, the specifications for this controller are expressed by frequency weighting functions, and the design of the preview two-dof controller is performed using H ∞ techniques.

A. Preview H ∞ control design methodology

Fig. 4 depicts the two-dof controller structure with a feedforward action for reference preview intended to improve the tracking accuracy. Information about future reference is provided to the controller with an anticipation horizon t a , materialized at the controller's input by a delay D between the anticipated reference and the system input.

The control problem is thus solved for the initial system augmented with the delay. In the present work, the feedforward and feedback components H ff and H fb of the controller are designed in a two-step sequential procedure for each joint. SISO continuous-time approximate models G01,2 (s) of G 0 are used to limit the order of the controllers. The controllers obtained from H ∞ synthesis are reduced by the balanced realization method, an integral action is isolated in H fb to ensure zero static error, and the resulting controllers are discretized using the bilinear transform for real-time implementation. 1) Feedback controller design: In a first step, H fb is designed for each joint using the augmented system in Fig. 5. Here G0 (s) denotes G01,2 (s) respectively for joint 1 or 2. In a classical four-block H ∞ control scheme the closed-loop transfers [START_REF] Takaba | A tutorial on preview control systems[END_REF] are shaped by weightings W fb 1 , W fb 2 , W fb 3 :

e u = W fb 1 S y -W fb 1 S y G0 W fb 3 W fb 2 H fb S y -W fb 2 T u W fb 3 θ ref i d (17) 
with the direct and complementary sensitivity functions:

S y (s) = 1 + G0 (s)H fb (s) -1 (18) 
T u (s) = 1 + H fb (s) G0 (s) -1 H fb (s) G0 (s) (19) 
The H ∞ control problem is then formulated as follows:

min γ (20) 
s.t. W fb 1 S y -W fb 1 S y G0 W fb 3 W fb 2 H fb S y -W fb 2 T u W fb 3 ∞ < γ (21) 
The general expression of the used weightings is provided below:

W fb 1 = k fb 1 W notch , W fb 2 = k fb 2 W ∆ (22) 
W fb 3 = 1 W fb 13 W fb 1 , 1 W fb 13 = k 13 Ks + ω c13 ε s + ω c13 (23) 
with

W notch = s 2 + αs + ω min 0 ω max 0 s 2 + max αs + ω min 0 ω max 0 (24) α = ω max 0 -ω min 0 ¯ 1 -¯ 2 1 -2 max , max < ¯ (25) 
2) Feedforward controller design: In the second step, the preview feedforward controller is designed to minimize the tracking error. The augmented system in Fig. 6 is composed of the previously designed closed-loop with H fb before reduction, the bloc D(s) equivalent to a time delay of N a samples, obtained from D(z) = z -Na by the inverse bilinear transform, and weightings W ff 1 and W ff 2 given by [START_REF] Lightcap | Dynamic identification of a mitsubishi pa10-6ce robot using motion capture[END_REF][START_REF] Oaki | Grey-box modeling of elastic-joint robot with harmonic drive and timing belt[END_REF]. The main design objective of this step is to shape S y by W ff 1 to obtain the desired dynamic accuracy. Additionally, W ff 2 is used to limit the control effort. 

W ff 1 = k ff 1 W notch W 10 (26) 
W ff 2 = k ff 2 W ∆ , 1 W 10 = √ Ks + ω c1 √ ε s + ω c1 2 (27) e' u' d d' G ij e u θ i θ i ref H fb i W 1 fb W 2 fb W 3 fb Fig. 5. Feedback controller design. e u fb u ff D u G ij θ i θ i d H fb i H ff i θ i ref e' u' W 1 ff W 2 ff

B. Experimental evaluation

1) Design results: For each joint, an H fb controller of order 12 is obtained with the MATLAB® Robust Control Toolbox™ and is reduced to order 8. After discretization, γ equals 2.25 for j 1 and 2.79 for j 2 . The stability margins are provided in Table I for the SISO designs of both joints. In a trade-off between the obtained performance and the order of H ff , an horizon N a = 7 is selected. A controller H ff of order 30 is thus obtained for each joint, then reduced to order 12 and discretized.

2) Experimental evaluation: The previously designed controller is evaluated on the ASSIST robot arm. Trajectory tracking at the motor level and step disturbance rejection at the end-effector are compared in the nominal conditions and with an unmodeled 1kg payload attached to the arm.

In experiment 1, joints j 1 and j 2 are simultaneously actuated along sinusoidal motor references (Fig. 7). High amplitude and low frequency references are used to evaluate the controller robustness to varying configurations (an amplitude of 1 rad for j 1 leads to a vertical displacement of 1.35m). Low amplitude and higher frequency references are used to evaluate the controller performance under disturbances due to the dynamic couplings between the joints. Fig. 8 shows the motor tracking error in experiment 1 with and without 1kg payload. The tracking error on j 2 is slightly higher than on j 1 due to the couplings. The impact of the payload is very limited thanks to the robustness properties of the preview H ∞ controller.

In experiment 2, the reference robot arm position is the extended horizontal configuration (q 1 = 0, q 2 = 0), and an additional load of 1kg is attached to its end. The load is suddenly suppressed to create a joint torque step disturbance. A Leica® laser tracker LTD800 measures the 3D position of a reflector fixed at the arm tip. The resulting vertical displacement is shown in Fig. 9. The vibrations due to the disturbance are effectively damped within 1s by the controller, both in the nominal and the payload cases.

V. COMPARISON OF ELASTIC-JOINT ROBOT CONTROL METHODS IN PRESENCE OF UNCERTAINTIES

In this section, a comparison between the classical inversion-based control (Fig. 10) and the proposed control (Fig. 4) is conducted with respect to their robustness properties and performance in presence of modeling uncertainties. This comparison is illustrated by numerical simulation results.

A. Comparison method

The classical inversion-based control (Fig. 10) has a two-dof structure, where a PD feedback controller is completed with a feedforward compensation of the nominal reference trajectory torque. Here, an integral action is added to the traditional proportional derivative (PD) controller to allow fair comparisons with H fb (s). The resulting PID controller is denoted R(s) and its gains are selected so as to approach similar robust stability and bandwidth properties of the feedback controller H fb presented in Table I.

The overall structure of both methods is similar (Fig. 10 and Fig. 4). In both methods, knowing the desired link motion q d , the nominal motor trajectory θ d can be deduced from (1). In the inversion-based control, the feedforward compensation consists in the nominal torque τ d , computed as a function of q d and its time derivatives up to the fourth order [START_REF] De Luca | Robots with flexible elements[END_REF]. In the proposed method, the feedforward compensation is generated through H ff with an anticipation over the future trajectory.

The goal of the present section is to analyze and compare the behavior of the two control structures in presence of uncertainties, both in frequency and time domain. In the numerical simulations, several randomly generated sets of the uncertain parameters values are used. Uncertain model parameters include the rigid body parameters (inertia, mass properties), and the flexible parameters (joint stiffnesses, motor and joint viscous friction coefficients). The rigid body (resp. flexible) parameters are considered to be affected by ±10% (resp. 30%) uncertainty. Indeed, the flexible parameters' identification is less accurate when compared to the rigid body properties which can also be known from CAO. In addition to that, the excursion of the mass parameters of the rigid links is augmented to model un to 3kg of payload fixed at the endeffector of the robot. The lightweight ASSIST robot arm can lift important loads in comparison with its own weight, and the 3kg payload therefore results in variations over 100% for the mass parameters of the links.

B. Frequency-domain comparison

In this section, using linear analysis, the expressions of the closed-loop sensitivity functions are derived for both methods in presence of model uncertainties. Let us first note that in Fig. 4 and 10, the nonlinear systems Σ and Σ are not the same. Σ represents the complete nonlinear elastic joint arm, while Σ contains in addition the rigid model-based compensation. To use a common formalism for the comparison of this two control structures, linear analysis is first performed around an operating point to evaluate the sensitivity functions. The nonlinear system Σ (resp. Σ ) is represented in the Laplace domain by its transfer matrix G(s) (resp. G (s)) and it nominal model used in the computations G 0 (s) (resp. G 0 (s)). Within the inversion-based control scheme (Fig. 10), the inverse dynamics compensation is conventionally denoted

τ d = (G 0 ) -1 (s)θ d .
In presence of uncertainties (i.e. G = G 0 and G = G 0 ), the direct sensitivity functions, defined as transfers from θ d to e, and denoted S 1 (s) for the inversion-based control and S 2 (s) for the preview H ∞ control, can be expressed as:

S 1 (s) = (I n + G R) -1 (I n -G (G 0 ) -1 ) (28) S 2 (s) = (I n + GH fb ) -1 (D -GH ff ) (29) 
It can be observed through the S 1 (s) transfer matrix that if the system knowledge is perfect, a perfect tracking can be achieved by the inversion-based control. In the following, the case with uncertainty is considered. The complementary sensitivity functions (transfers from θ d to θ) denoted T 1 (s) for the inversion-based control and T 2 (s) for the preview H ∞ control can be expressed as:

T 1 (s) = (I n + G R) -1 (G (G 0 ) -1 + G R) (30) T 2 (s) = (I n + GH fb ) -1 (GH ff + GH fb D) (31) 
From the inspection of these expressions, the proposed method may be seen as an extension of the inversion-based control as it offers additional design degrees of freedom with the specifically designed feedforward controller including anticipation and a more general feedback controller. 

C. Time-domain comparison

The complete nonlinear model of the robotic system is then used to simulate the time responses for 20 sets of uncertain parameters. Fig. 11 illustrates the motor tracking error in joints j 1 and j 2 obtained for experiment 1 (Section IV-B2) with both controllers. For low frequency reference, the error amplitudes are similar, but for high frequency references, the dynamic precision of the preview H ∞ control yields better results with respect to the maximum error amplitude and also the error amplitude dispersion for different uncertain parameters sets. Indeed, the dynamic precision as well as robustness can be taken into account in the control design through the choice of the weighting functions. Moreover, the preview H ∞ control benefits from a higher anticipation horizon N a which is another dof in the design.

Fig. 12 shows the motor positions in joints j 1 and j 2 in the disturbance rejection experiment with both controllers, in which an output step disturbance of 0.1 rad is applied to joint 2. A lower oscillations amplitude and faster damping is achieved with the preview H ∞ control, as well as a smaller dispersion for different parameters sets. The disturbance rejection properties are indeed also included in the weighting function selection when designing the H ∞ controller.

VI. CONCLUSION

In this article, a global procedure was proposed for identification and robust control design for motion control of multiple-link elastic-joint robots using motor measurements only, in presence of uncertainties. A two-dof controller with anticipation was proposed and the H ∞ framework was used to solve the constrained control design problem with trade-offs between specifications, such as the dynamic precision ensuring good trajectory tracking, damped disturbance rejection and the robustness to uncertain or varying parameters. The proposed identification and control design methodology especially applies to multi-joint robots equipped with motor-side sensors only, in which the joint elasticities can not be neglected to achieve accurate motion control. Due to its structure, the proposed controller can be applied without any restriction to manipulators with more than two dof. The presented preview H ∞ controller may be seen an extension of the traditional motor feedback with compensations based on the robot inverse dynamic model. Since no compensations directly based on an inverse model are used, this controller demonstrates an increased robustness with respect to modeling uncertainties, which can arise from uncertain or varying parameters, as in the case of variable payload. In the same time, the tracking precision can be ensured thanks to the anticipatory feedforward action with a tunable time horizon.
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 12 Fig. 1. ASSIST robot arm with 2 actuated joints {j 1 , j 2 } considered in this study and 5 other dof, with an illustration of the actuation principle.
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 3 Fig. 3. Uncertain model G ∆ with additive uncertainty ∆ G and nominal model G 0 .
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 7 Fig. 7. Motor references in experiment 1 (j 1 solid, j 2 dashed).
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 8910 Fig. 8. [EXPERIMENTAL] Motor tracking error in experiment 1 with 2-dof H∞ controller without payload (solid) and with 1kg payload (dashed).

  Fig. 11. [SIMULATION WITH UNCERTAIN PARAMETERS] Motor tracking errors in experiment 1 with preview H∞ (blue) and inversion-based controller with PID (green).

Fig. 12 .

 12 Fig. 12. [SIMULATION WITH UNCERTAIN PARAMETERS] Motor positions in the disturbance rejection experiment with preview H∞ (blue) and inversionbased controller with PID (green).
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TABLE I DISCRETIZED

 I H∞ (HFB ) CONTROLLERS EVALUATED ON THE NOMINAL MODEL. ωc IS THE OPEN-LOOP CROSS-OVER FREQUENCY, M G (Mϕ) THE GAIN (PHASE) MARGIN, Mτ THE DELAY MARGIN IN SAMPLES.

	H fb	Mϕ ( • ) ωc (Hz) M G (dB) Mτ	|Sy| max dB	|Ty| max dB
	Joint 1	71.3	26.7	8.37	1.9	4.89	0
	Joint 2	65.9	31.7	9.09	1.5	4.96	0.20
	Motor references (rad)	0 -0.5 0 0.5 -1 1	5	joint j 1 joint j 2	10	15	20	25	30
						Time (s)			

  TableIIpresents the maximum H ∞ gain of the multivariable sensitivity and complementary sensitivity functions, evaluated for 100 sets of uncertain parameters on the linearized models. Smaller dispersion is observed in the preview H ∞ control case, and the peaks due to the resonances are better controlled through the explicit specifications of the weighting functions in the design step.

TABLE II MAXIMUM

 II H∞ GAIN OF THE MULTIVARIABLE DIRECT SENSITIVITY Sy AND COMPLEMENTARY SENSITIVITY Ty FUNCTIONS

	Controller	|S| max dB	|T | max dB
	Inversion-based control with PID	12.35	20.08
	Preview H∞ control	7.02	8.46