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Abstract—In the context of human-robot collaboration, an
efficient impact detection is essential for safe operation. Residual-
based collision detection relies on the difference between the
estimated and actual motor torques. However, in these model-
based methods uncertainties affect the residual in the same struc-
tural way as a collision does, leading to potential false alarms.
This paper proposes to quantify the influence of uncertainties on
residual generation methods based on the inverse dynamic model
for both rigid and elastic-joint robots. These uncertainties-induced
errors are investigated depending on their origin (parameters
estimation or numerical differentiation). Boundaries of these
errors are determined along a given trajectory and account as the
minimum threshold of detectability of a collision. These results
are illustrated in simulation.

I. INTRODUCTION

In industrial or service applications, human-robot interaction
to perform tasks in cooperation involves sharing the same
workspace. In this context, appropriate regulations and tech-
nologies must ensure safety and minimize the risk of injury
for the operator in case of collision with the robot [1], [2].

To prevent a collision, exteroceptive sensors and supervi-
sions systems (such as computer vision [3], 3D-simulation,
etc.) can be used to detect any unexpected presence in the
robot area and adapt its trajectory accordingly. In case of
failure of these techniques (e.g. obstruction of the field of
vision or breakdown) or to furthermore enhance security, a
certain number of methods are proposed to detect rapidly,
sensitively and reliably a collision. To obtain a fast detection,
robot capabilities can be extended by the use of additional
sensors such as skin sensors [4] or proximity and contact
force sensors [5], however often at the expense of cost and
integration constraints. Other collision detection approaches
use only proprioceptive sensors, e.g. motor and joint position
sensors or joint torque sensors [6]. Their reliability, essential
for the operator safety, is directly related to the sensitivity of
the selected impact detection method.

Collision detection approaches are often derived from fault
diagnostic methods, since collisions can be viewed as faulty
behaviours that introduce changes in the state variables or
parameters of a static or dynamic system as described in
[7]. The diagnostic is composed of two steps : the residual
generation followed by its evaluation. A classical residual
generation method for collision detection is based on the

difference between the actual applied motor torque and the
estimated motor torque obtained from the robot dynamic
model in the absence of any external force. To estimate the
motor torque, a basic approach uses the inverse dynamic
model based on the estimated parameters and configuration
coordinates without any external disturbance as in [8] and
[9]. Another widely used method relies on the generalized
momentum of the robot [10], [11], [12]. This method has the
advantage of avoiding the measure or computation of motor
and joint accelerations that generate measurement noise and
delay. As part of this study, only the basic method based on
the inverse dynamic model of the robot will be studied at first.

These residual generation approaches are model-based
methods which are affected by uncertainties if the model
is not exactly known or is not properly adapted to the
operational conditions (e.g. varying payload or temperature).
Consequently, the estimated motor torque contains errors
which affect the residual generation in the same structural way
as an external force. Several approaches propose to account
for uncertainties in the detection method. A Kalman filter
with friction uncertainties is designed in [12] to increase the
robustness of the generalized momentum observer method. For
the same method, an adaptive fault and detection isolation
scheme has been proposed in [13] to deal with parametric un-
certainties. In a similar perspective, a new residual evaluation
approach has been developed in [14] based on a dynamic state-
dependent threshold and an online estimated filter to adapt the
algorithm to different operating conditions but without dealing
explicitly with uncertainties.

This paper proposes to quantify the influence of uncertain-
ties on the residual for both rigid and elastic-joint backdrivable
robots with only motor and joint positions sensors. Indeed,
despite the absence of force/torque sensor, robots with good
backdrivable properties can achieve a very sensitive collision
detection using only motor-side measurements, as in [14],
since external forces are accurately reflected on motor shafts.
This approach is derived for basic residual generation methods
using the inverse dynamic model of the robot. Uncertainties
are expressed as a contribution of both parameters estimation
and numerical differentiation errors. The total uncertainties-
induced errors are investigated and boundaries are determined
along the trajectory, which allows to quantify the minimum



threshold of detectability of a collision, that is the sensitivity
of the collision detection method. Simulation results on a 6
degrees-of-freedom (DOF) manipulator robot highlight the in-
fluence of each type of uncertainties on the residual depending
on the trajectory and illustrate the level of sensitivity of the
method. These results give an estimate of the uncertainties-
induced errors that can be expected online and allow to choose
the method that will generate the least errors on the detection.
The proposed approach can be extended to other model-based
detection methods.

Section II recalls the inverse dynamic model of both rigid
and elastic-joint serial robot manipulators and investigates
the potential sources of uncertainties. In Section III, after a
description of the problem of residual generation in presence
of uncertainties, induced errors are derived using the inverse
dynamic model for both rigid and elastic-joint cases and
boundaries on each type of uncertainties are proposed. Section
IV is devoted to the presentation of the simulation results.

Mathematical notations: In the following,
def
= means ”by

definition”, a? denotes the measured or estimated value of
any matrix or vector variable a, and δa is defined as the
difference between the measured or estimated value a? and
the exact value a. z and s denote respectively the complex z-
domain variable and the Laplace-domain variable. In discrete
time, Ts is the sampling time. The notation a ∼ N (µ,σ2)
means that a follows a normal distribution with mean µ and
variance σ2.

II. MODEL DESCRIPTION

For serial robot manipulators which dynamic models are
briefly recalled, uncertainties may be at least of two types:
parametric uncertainties due to an imperfect knowledge of the
robot parameters and uncertainties due to numerical differenti-
ation with respect to time (speed and acceleration estimations).

A. Dynamic model for serial robot manipulators
The dynamic behaviour of a serial robot manipulator with

n-rigid links and joints can be described by its inverse dynamic
model [15] as follows

Mrig(q)q̈ +C(q, q̇)q̇ +G(q) + τf (q̇) = τm + τext
def
= τ (1)

where q ∈ Rn is the joint position vector, Mrig(q) =
M(q) + Jmot where M ∈ Rn×n is the robot inertia matrix
and Jmot ∈ Rn×n is the constant diagonal motor inertia
matrix after the reduction stage, C(q, q̇)q̇ ∈ Rn captures the
Coriolis and centrifugal torques, G(q) ∈ Rn represents the
contribution of the gravity torque, τf (q̇) ∈ Rn is the friction
torque which is expressed by τf (q̇) = Fvq̇+Fssign(q̇) in case
of viscous and Coulomb friction with Fv and Fs respectively
the viscous and Coulomb friction coefficients, τm ∈ Rn
denotes the applied motor torque after the reduction stage and
τext ∈ Rn expresses the external torque vector. τ is the global
motion torque. For DC motors, the motor torque τm is related
to the motor currents im by τm = RT

redKemim with Rred

the reduction matrix and Kem the diagonal matrix of torque
constants of the involved motors. In case of backdrivable

robots, the external forces are accurately reflected on the motor
shafts, which allows their detection without any additional
joint torque sensor. If an external force Fext ∈ Rn collides
with the ith link of the robot, then Fext is related to τext by
τext = JT (q)Fext where J(q) is the Jacobian matrix of the
ith link.

For the purpose of human-robot collaboration, lightweight
robot manipulators can be suitable because of their lower
inertia which reduces the maximal torque in case of impact.
The elastic-joint model (2-3) accounts for the elasticity of the
transmissions :

M(q)q̈ +C(q, q̇)q̇ +G(q) + τfa(q̇) +K(q − θ) = τext (2)

Jmotθ̈ + τfm(θ̇)−K(q − θ) = τm (3)

where θ ∈ Rn is the motor position vector after the
reduction stage, K ∈ Rn×n is the stiffness matrix assumed
to be constant and diagonal in this study, τfa(q̇) ∈ Rn
and τfm(θ̇) ∈ Rn are respectively the joint and motor
friction torques which are, considering viscous and Coulomb
friction, τfa(q̇) = Fvaq̇ + Fsasign(q̇) at joint level and
τfm(θ̇) = Fvmθ̇+Fsmsign(θ̇) at motor level, with (Fva,Fvm)
the viscous friction coefficients and (Fsa,Fsm) the Coulomb
friction coefficients. Summing (2) and (3) it follows

M(q)q̈ +C(q, q̇)q̇ +G(q) + τfa(q̇) + Jmotθ̈ + τfm(θ̇)

= τm + τext
def
= τ (4)

Let us note that when the robot is considered as completely
rigid (K →∞), θ = q and we obtain (1).

B. Model uncertainties

For model-based approaches, robot dynamic parameters
can be obtained from the nominal CAD data or identified
experimentally as they can slightly differ from one robot to
another or for different operating conditions. Their experimen-
tal identification [15] uses the fact that the inverse dynamic
model (1) of an n-degrees of freedom rigid serial robot can
be written as a linear regression with respect to the nb rigid
base parameters

τm = ϕrig(q, q̇, q̈)χrig (5)

where ϕrig ∈ Rn×nb is the rigid regression matrix and χrig ∈
Rnb is the vector of rigid base parameters (i.e. the minimal
set of identifiable parameters). For each link, the latter are
obtained by linear combinations of the 6 components of the
inertia tensor, the 3 components of the first moment and the
mass, the total inertia moment for rotor actuator and gears, and
the viscous and Coulomb friction coefficients. For an elastic-
joint robot, the linear regression can be written with respect to
the nb +nf rigid and flexible base parameters [16] as follows(

0n×n
τm

)
= ϕfl(q, q̇, q̈,θ, θ̇, θ̈)χfl (6)

where ϕfl ∈ R2n×(nb+nf ) is the flexible regression matrix
and χfl ∈ Rnb+nf is the vector of the rigid and flexible base
parameters. It is composed of the base parameters distinguish-
ing rigid and flexible parameters, such as viscous and Coulomb



friction at motor and joint levels, and including the stiffness
parameters.

After evaluating the identification model (5) or (6) respec-
tively in the rigid or elastic-joint case at a sufficient number
of points on several exciting trajectories, the vector χ? of the
identified base parameters can be obtained by least squares
minimization of the 2-norm of the residual errors vector. We
denote δχ the vector of estimation errors defined by

δχ
def
= χ? − χ (7)

For the following, we assume that δχ is Gaussian with zero-
mean and standard deviation σχ? which can be obtained
from the estimation of the standard deviation of the errors
vector resulting from the identification. The relative standard
deviation %σχ?,i of the ith identified parameter is defined as

%σχ?,i
= 100

σχ?,i

|χ?,i|
(8)

%σχ?,i is used as a criterion to measure the quality of the
identification of the ith base parameter. Generally, we consider
that the identification is acceptable if the relative standard
deviation of a parameter is less than ten percent.

The resulting model errors are obtained by difference be-
tween the matrices evaluated with the identified parameters
and with the exact parameters. For example for the inertia
matrix,

δMrig(q)
def
= Mrig?(q)−Mrig(q) (9)

with Mrig? and Mrig denoting the inertia matrix evaluated
respectively with the identified parameters and with the exact
parameters. Calculating the difference between the inverse
dynamic model evaluated with the identified and the exact
parameters, an equivalent linear regression with respect to the
estimation errors is obtained. In the rigid case, we obtain

δMrig(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFvq̇ + δFs sign(q̇)
= ϕrig(q, q̇, q̈)δχrig (10)

C. Numerical differentiation errors

Another origin of the errors comes from the numerical
differentiation. Indeed, when only position sensors are inte-
grated into the robot, in an industrial context velocities and
accelerations are often rather approximated by finite differ-
ences from Taylor series than estimated by observers. For this
study, we will consider the example of two common numerical
differentiation methods and study the corresponding errors.
• Method D1 : Fourth-order backward finite difference

G1(z) =
2 + z−1 − z−3 − 2z−4

10Ts
. (11)

• Method D2 : First-order low-pass filtered derivative

G2(z) = α
1− z−1

1− βz−1
(12)

with α = (dωc)/(1 + d), β = (d − 1)/(d + 1) and d =
2/(ωcTs), ωc being the cut-off frequency.

We denote H1(s) and H2(s) the equivalent continuous filters
obtained by bilinear transform of respectively G1(z) and
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Fig. 1: Frequency responses of continuous exact derivative,
first-order backward finite difference and first-order filtered
derivative methods with ωc = 2π110 rad/s and Ts = 1 ms

G2(z). Fig. 1 compares the two numerical derivation scheme
in the frequency domain. For both approaches, the approxi-
mation is significantly deteriorated at high frequencies since
the signal is low-pass filtered and the phase shifted.

More generally, regardless of the chosen numerical dif-
ferentiation filter, when derivatives are estimated from noisy
measurements, the error with respect to the exact derivative
of the signal is twofold: it contains an error term due to the
derivative approximation, and an error term due to filtered
measurement noise. We denote q? the measured joint positions
and define q̇? and q̈? respectively the joint velocities and
accelerations obtained by numerical differentiation of q? (and
similarly for the measured motor positions θ?). We also define
δq̇ the vector of errors due to numerical differentiation of joint
velocities as

δq̇
def
= q̇? − q̇ (13)

Similarly we obtain δq̈, δθ̇ and δθ̈ respectively for the joint
accelerations and the motor velocities and accelerations.

Let q? = q+ ξ be the noisy position measurement affected
by a white bounded noise ξ due for instance to quantization.
In the Laplace-domain, the error δq̇j due to numerical differ-
entiation on the jth axis velocity is given by

∆Qjd(s) = [H(s)− s]Qj(s)︸ ︷︷ ︸
approximated velocity-induced error

+H(s)ξj(s)︸ ︷︷ ︸
filtered noise

(14)

where ∆Qjd(s), Qj(s) and ξj(s) are respectively the Laplace
transforms of δq̇j , qj and ξj for the jth axis. Similarly we
obtain the error δq̈j on the acceleration of axis j in the Laplace
domain

∆Qjdd(s) =
[
H2(s)− s2

]
Qj(s) +H2(s)ξj(s) (15)

with ∆Qjdd(s) the Laplace transform of δq̈j for the jth axis.
We obtain similar expressions for δθ̇ and δθ̈.

From Equations (14) and (15) the errors due to derivative
approximation and the errors due to the filtered noise can be
quantified and bounded (see Section III-C).



III. QUANTIFICATION OF THE INFLUENCE OF
UNCERTAINTIES ON THE RESIDUAL

A. Problem statement

For collision detection, a basic residual generation method
can be based on the difference between the estimated global
motion torque τ? and the applied motor torque τm

r
def
= τ? − τm (16)

The estimated global motion torque τ? is obtained from the
inverse dynamic model with the matrices evaluated with the
estimated parameters and coordinates, that is using (1) in the
rigid case

τ? =Mrig?(q?)q̈?+C?(q?, q̇?)q̇?+G?(q?)+Fv?q̇?+Fs?sign(q̇?)
(17)

For the elastic-joint case we can use either (2-3) or (4) to
estimate the global motion torque τ?.

In the ideal case when the estimated parameters and coor-
dinates are equal to the exact values, then

τ? =
ideal

τ = τm + τext ⇒ r =
ideal

τext (18)

However in the general case the inverse dynamic model (17)
contains errors denoted δτ such that

τ? = τ + δτ ⇒ r = τext + δτ (19)

Therefore in the general case (19), even in the absence of
external torque the residual is non-zero due to the presence
of uncertainties that depend on the robot’s state and affect
the residual in the same structural way as a collision. Thus
bounding the errors due to the uncertainties along the trajec-
tory allows to predict in simulation the minimum threshold
of detectability of a collision. Then an adaptive detection
threshold can be set equal or above this level in order to avoid
false alarms due to uncertainties.

B. Influence of the uncertainties on the residual

In this section, we give an explicit formulation of the
term δτ in (19) that represents all the errors induced by the
uncertainties. For both rigid and elastic-joint cases, it is given
by the difference between the estimated and the exact global
motion torques. For the sake of simplicity, Coulomb frictions
will be neglected here.

For the rigid case, we obtain from (1) and (19)

δτrig = [Mrig?(q?)q̈? +C?(q?, q̇?)q̇? +G?(q?) + Fv?q̇?]

− [Mrig(q)q̈ +C(q, q̇)q̇ +G(q) + Fvq̇] (20)

In (20) the exact matrices will be expressed by the difference
between the matrices evaluated with the identified parameters
and their error estimation term using (9). It is assumed
that Mrig?(q?) ≈ Mrig?(q), C?(q?, q̇?) ≈ C?(q, q̇) and
G?(q?) ≈ G?(q) since small variations in q or q̇ induce
small variations in the trigonometric functions of Mrig?, C?
and G?. Thus the error terms due to numerical differentiation
appear using (13). We finally obtain the theoretical expression
of δτ for the rigid case

δτrig = δτ prig + δτ drig (21)

with

δτ prig = δMrig(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFvq̇

δτ drig = Mrig?(q?)δq̈ +C?(q?, q̇?)δq̇ + Fv?δq̇

The term δτ p can be rewritten in a linear form with respect to
δχrig using (10). A similar expression can also be derived for
the elastic-joint case with the same method using the notations
fl1 and fl2 respectively for the expressions (2) or (4) of the
motion torque in the elastic-joint case. In the first case, we
obtain

δτfl1 = δτ pfl1 + δτ dfl1 (22)

with

δτ pfl1 = δM(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFvaq̇

+ δK(q − θ)

δτ dfl1 = M?(q?)δq̈ +C?(q?, q̇?)δq̇ + Fva?δq̇

In the second case, we obtain

δτfl2 = δτ pfl2 + δτ dfl2 (23)

with

δτ pfl2 = δM(q)q̈ + δC(q, q̇)q̇ + δG(q) + δFvaq̇

+ δJmotθ̈ + δFvmθ̇

δτ dfl2 = M?(q?)δq̈ +C?(q?, q̇?)δq̇ + Fva?δq̇

+ Jmot?δθ̈ + Fvm?δθ̇

Expressions (22) and (23) of the errors in both methods fl1
and fl2 allow to select the method that minimizes the effect of
uncertainties, depending on which flexible parameters generate
less error between stiffness or motor inertia and friction.

Finally, in both the rigid case (21) or in the elastic-joint case
(22-23), the different expressions of δτ are all composed of a
term δτ p due to parametric uncertainties and a term δτ d due
to numerical differentiation errors. Thus, these formulations
allow to evaluate if the parameters estimation errors prevail
or if the numerical differentiation errors are predominant (e.g.
in case of trajectory with rapid changes). They also give a
quantitative evaluation of the influence of uncertainties that
can be expected online for a given trajectory.

C. Bounding the estimation errors

From the expression of uncertainties in both the rigid (21)
and elastic-joint (22-23) cases, the uncertainties-induced errors
on the detection method can be bounded. In the following,
dependencies in motor and joint coordinates are removed in
the notations for the sake of simplicity.

a) Errors δτ p due to parametric uncertainties: It is
assumed in II-B that δχ is Gaussian such that δχ ∼
N (0,σ2

χ?
) with σ2

χ?
the diagonal covariance matrix of

χ?. Thus, the errors δτ p are also Gaussian with δτ prig =

ϕrigδχrig ∼ N (0,ϕrigσ
2
χrig?

ϕTrig) in the rigid case, or
δτ pfl = ϕflδχfl ∼ N (0,ϕflσ

2
χfl?

ϕTfl) in the elastic-
joint case. We denote σp =

√
(ϕrigσ

2
χrig?

ϕTrig) or



√
(ϕflσ

2
χfl?

ϕTfl) the resulting standard deviation of δτ p in
both cases. Consequently, provided a reference trajectory along
which ϕrig or ϕfl can be determined, for a given standard
deviation σχ? of the parameters estimates, and in accordance
with the normal law, confidence intervals can be computed for
the errors δτ p due to parametric uncertainties. For example,
the probability that δτ p belongs to the interval [−3σp, 3σp]
is 99,7%.

b) Errors δτ d due to numerical differentiation: In Sec-
tion II-C, the errors due to the numerical differentiation
were separated in two components, one due to the deriva-
tive approximation, and one due to filtered measurement
noise. Let us first consider the term due to the derivative
approximation in velocities estimates, corresponding to the
transfer function [H(s)− s] between the exact position input
and its filtered derivative error output. For a given position
trajectory characterized by velocities bounded by vmax and
accelerations bounded by amax, the input trajectory can be
approximated for analysis purposes by an equivalent sinu-
soidal signal of amplitude Eeq = v2max/amax and pulsation
ωeq = amax/vmax. Therefore the term due to the derivative
approximation in velocities estimates can be bounded by
Ad = |H(jωeq) − jωeq|Eeq . The term due to the derivative
approximation in accelerations estimates is similarly bounded
by Add = |H(jωeq)

2 − jω2
eq|Eeq .

Let us now consider the term due to filtered measurement
noise in velocities estimates for the jth axis. In discrete time,
if the input noise ξj is white of variance σ2

ξj
(e.g. quantization

noise), the output noise filtered by G(z) (of impulse response
g[k]) is Gaussian of variance σ2

dj
= σ2

ξj

∑∞
k=−∞ g2[k] =

σ2
ξj

∫ 1/2

−1/2 |G(ν)|2dν. For the two considered numerical dif-
ferentiation method, we obtain
• Method D1 :

σ2
dj = σ2

ξj2(a2 + b2) with a =
2

10Ts
, b =

1

10Ts
(24)

• Method D2 :

σ2
dj = σ2

ξj

2α2

1 + β
with α, β defined in (12) (25)

We proceed similarly for the accelerations estimates to find
the output noise variance σ2

ddj
. Similarly than in the previous

analysis of δτ p, it is therefore possible, in accordance with
the normal law, to define confidence intervals for the part of
the errors δτ d due to filtered noise. For the 99,7%-confidence
interval, the upper bound would be 3σd.

Finally, δq̇ can be bounded by ±(Ad + 3σd) and δq̈ can
be bounded by ±(Add + 3σdd). Thus, knowing the bounds
on δq̇ and δq̈, the expression of δτ d detailed in (21) can be
bounded for a given trajectory along which the matrices M
and C are evaluated.

IV. SIMULATION RESULTS
The previously detailed results on the quantification of

errors induced by parametric and numerical differentiation
uncertainties were tested in simulation in the rigid case to

compare their respective contributions to the error torque δτ
in different situations. The case study concerns a 6-DOF robot
manipulator where motor positions are available from encoders
on motor shafts. The structure of the robot is presented in
Fig. 2.

Fig. 2: Kinematics model of the serial robot manipulator with
associated frames by Denavit-Hartenberg convention

For the simulations, each axis is controlled in position
with a proportional-integral-derivative (PID) control law. The
sample time is 1 ms. The studied configurations are the
combinations of [Ti, Uj , Dk] with i, j, k = 1..2 (see Table
I). They are composed of trajectories with different dynamics
(amplitude E0, frequency f0) and with varying accuracy in
parameters estimation or numerical differentiation schemes.
While velocities and accelerations of the sinusoidal trajectory
will be sinusoidal, the triangular trajectory is more unfavor-
able since the acceleration peaks will excite the errors due
to the uncertainties of the inertia matrix. We consider first
favorable identification results where for each parameter i,
%σχ?,i

∈ [−5%, 5%] and then an unfavorable case with
%σχ?,i

∈ [−20%, 20%]. For this purpose, each %σχ?,i
is

fixed randomly and independently within these ranges. Noise
on the position measurement is modeled by a white noise with
zero-mean and variance equal to κ2/12 where κ is the position
sensor resolution.

Trajectory

T1 : Sinusoidal for the 6 axes

E0 = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2] rad

f0 = [0.7, 0.6, 0.5, 0.4, 0.3, 0.2] Hz

T2 : Filtered triangular for the 6 axes

E0 = [0.2, 0.2, 0.2, 0.2, 0.2, 0.2] rad

f0 = [0.7, 0.6, 0.5, 0.4, 0.3, 0.2] Hz

%σχ?,i , U1 : [−5%, 5%]

i = 1..nb U2 : [−20%, 20%]

D1 : Fourth-order backward finite difference

Numerical σ2
dj

= 1.00 · 105 σ2
ξj

; σ2
ddj

= 1.98 · 1010 σ2
ξj

differentiation D2 : First-order low-pass filtered derivative

scheme of cut-off frequency ωc = 2π110 rad/s

σ2
dj

= 3.55 · 105 σ2
ξj

; σ2
ddj

= 1.48 · 1011 σ2
ξj

TABLE I: Simulated configurations

From all combinations of [Ti, Uj , Dk], i, j, k = 1..2, the
maximum error between the exact expression (20) of δτ and
the expression (21) due to the approximation explained in
III-B is ε = 10−2[2.16; 1.66; 1.03; 0.87; 0.57; 0.34] Nm which
is negligible with respect to the applied motor torques. Results



are presented for axis 1 which is the most inertial axis but the
least subject to the effects of gravity and for axes 3 and 4
which are more affected by gravity-related uncertainties, with
axis 4 belonging to the robot wrist.

First, the contribution of each type of uncertainties is exam-
ined without any collision. Simulation results on uncertainties-
induced and numerical differentiation errors are presented
in Fig. 3 for T1 and in Fig. 4 for T2. All the simulations
are realized with the same sets of randomly and normally
distributed parametric uncertainties according to U1 or U2.
Results are presented for numerical differentiation scheme D1

as it filters more high frequencies due to noise than D2 for the
chosen ωc (see Fig. 1). For both T1 and T2 trajectories, the
[−3σp, 3σp]-envelop and the [δτdrig,min, δτ

d
rig,max]-envelop

with δq̇ bounded by ±(Ad + 3σd) and δq̈ bounded by
±(Add + 3σdd), both determined along the trajectory, repre-
sent the worst case of errors respectively due to parametric un-
certainties and to numerical differentiation and give a reliable
boundary of these errors. For favorable identification results
(e.g. for the configurations [T1, U1, D1] or [T2, U1, D1]), the
errors due to model-uncertainties and numerical differentiation
are of the same order of amplitude. However when model
parameters are poorly identified (e.g. for the configurations
[T1, U2, D1] or [T2, U2, D1]), for each axis the error term due
to model-uncertainties becomes dominant over the numerical
differentiation error.

Fig. 3: Uncertainties-induced errors on trajectory T1
The effect of uncertainties on the residual generation is

then studied in presence of an impact for the configuration
[T1, U1, D1]. To simulate a collision, an external torque of
1 Nm during 0,5 seconds is applied on each axis one after
the other in order to emphasize the effects on each axis.
Results are illustrated in Fig. 5. Parameters and numerical
differentiation uncertainties significantly affect the residual
which is not only the external torque as in the ideal case.
Boundaries on δτrig are also represented on Fig. 5 as the sum

Fig. 4: Uncertainties-induced errors on trajectory T2

of the [−3σp, 3σp]-envelop and the [δτdrig,min, δτ
d
rig,max]-

envelop with δq̇ bounded by ±(Ad + 3σd) and δq̈ bounded
by ±(Add + 3σdd), where both envelops are determined
for the configuration [T1, U1, D1] along the trajectory with
collision. For axes 1 and 3, given that the boundaries on the
uncertainties-induced errors are above 1 Nm at the moment
of the collision, the impact can not be detected on these axes,
while on axis 4 the boundaries are smaller than the amplitude
of the collision, which means that the detection method is
sensitive enough to detect the collision. Thus simulating these
boundaries allows to predict the minimum amplitude of the
collision that can be detected, depending on the accuracy of the
parameter estimation and the selected numerical differentiation
scheme. The sensitivity of the detection can be increased
by reducing the width of the envelopes (e.g. considering
[−2σp, 2σp] instead of [−3σp, 3σp]) but at the expense of
increasing the risk of false alarms due to uncertainties.

Fig. 5: Residual generated in presence of a collision on each
axis separately with the configuration [T1, U1, D1]

V. CONCLUSION AND PERSPECTIVES

In this paper, an evaluation of the errors due to uncertain-
ties has been derived for a basic collision detection method
using the inverse dynamic model of both rigid and elastic-
joint robots. These uncertainties-induced errors have been



decomposed into a combination of parameters estimation
and numerical differentiation errors and a method to obtain
their boundaries has been proposed. This approach allows to
quantify the influence of the uncertainties on the collision
detection, to evaluate which uncertainties source will generate
more errors and to determine in simulation the expected
sensitivity of the collision detection method depending on the
uncertainties.

This method can be extended to other model-based collision
detection approaches (e.g. collision detection methods based
on the generalized momentum) in order to compare their
performance in presence of uncertainties in a quantified way
and determine the favorable cases for each method.
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