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Assume that a N -dimensional noisy measurement vector is available via a N × R linear random sensing operation of a R-dimensional Gaussian signal of interest, denoted by s. The problem statement being addressed here is the study of the minimal Bayes' error probability for the detection of s where

When the exact derivation of this probability is intractable, statistical similarity metrics, nourishing their roots in the information geometry theory, are useful to characterize the exponential rate of the error probability. More precisely, the Chernoff information is asymptotically given by the minimum over s ∈ (0, 1) of the s-divergence. In many applications, it is hard to evaluate the s-divergence. Worse, due to the asymmetry of the s-divergence for the considered detection problem, the Bhattacharyya divergence (s = 1/2), cannot circumvent this problem. As a consequence, the derivation of the optimal value of s requires a costly numerical optimization strategy. In this work, we propose two contributions. The first one is to provide a closed-form expression of the asymptotic normalized s-divergence. The second contribution is to provide an analytic expression for the optimal value of s.

INTRODUCTION

Evaluate the performance limit for the "Gaussian information plus noise" detection problem is a challenging research topic, see for instance [START_REF] Baik | Eigenvalues of large sample covariance matrices of spiked population models[END_REF][START_REF] Loubaton | Almost sure localization of the eigenvalues in a gaussian information plus noise modelapplication to the spiked models[END_REF][START_REF] Bianchi | Performance of statistical tests for single-source detection using random matrix theory[END_REF][START_REF] Silverstein | Signal detection via spectral theory of large dimensional random matrices[END_REF][START_REF] Besson | Matched direction detectors and estimators for array processing with subspace steering vector uncertainties[END_REF][START_REF] Kay | Fundamentals of statistical signal processing: Detection theory[END_REF]. Given a binary hypothesis problem, the Bayes' decision rule is based on the principle of the largest posterior probability. Specifically, the Bayesian detector chooses the alternative hypothesis H1 if Pr(H1|yN ) > Pr(H0|yN ) for a given N -dimensional measurement vector yN and the null hypothesis H0, otherwise. Consequently, the optimal decision rule can often only be derived at the price of a costly numerical computation of the log posterior-odds ratio [START_REF] Kay | Fundamentals of statistical signal processing: Detection theory[END_REF] but an exact calculation of the minimal Bayes' error probability P (N ) e is often intractable [START_REF] Kay | Fundamentals of statistical signal processing: Detection theory[END_REF][START_REF] Diep | Arbitrarily tight upper and lower bounds on the Bayesian probability of error[END_REF]. To circumvent this problem, it is standard to exploit well-known information theory based bounds on P (N ) e [START_REF] Sinanović | Toward a theory of information processing[END_REF][START_REF] Kailath | The divergence and Bhattacharyya distance measures in signal selection[END_REF][START_REF] Cover | Elements of information theory[END_REF][START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF][START_REF] Hellman | Probability of error, equivocation, and the Chernoff bound[END_REF]. In particular, the Chernoff information [START_REF] Chernoff | A measure of asymptotic efficiency for tests of a hypothesis based on the sum of observations[END_REF][START_REF] Nielsen | Chernoff information of exponential families[END_REF] is asymptotically (in N ) relied to the exponential rate of P (N ) e . Due to its strong link to the powerful Amari's divergence in information geometry [START_REF] Nielsen | Chernoff information of exponential families[END_REF][START_REF] Amari | Methods of information geometry[END_REF][START_REF] Nielsen | Matrix information geometry[END_REF][START_REF] Yang | Riemannian median, geometry of covariance matrices and radar target detection[END_REF][START_REF] Formont | On the use of matrix information geometry for polarimetric sar image classification[END_REF], the Chernoff information turns out to be useful in many problems of practical importance as for instance, distributed sparse detection [START_REF] Chepuri | Sparse sensing for distributed detection[END_REF], sparse support recovery [START_REF] Tang | Performance analysis for sparse support recovery[END_REF], energy detection [START_REF] Lee | Generalized Chernoff information for mismatched Bayesian detection and its application to energy detection[END_REF], MIMO radar processing [START_REF] Sen | OFDM MIMO radar with mutualinformation waveform design for low-grazing angle tracking[END_REF][START_REF] Grossi | Space-time code design for MIMO detection based on Kullback-Leibler divergence[END_REF], network secrecy [START_REF] Boyer | Relative-entropy based beamforming for secret key transmission[END_REF], Angular Resolution Limit in array processing [START_REF] Tran | Angular Resolution Limit for array processing: Estimation and information theory approaches[END_REF], detection performance for informed communication systems [START_REF] Katz | Joint estimation and detection against independence[END_REF], etc. In addition, the Chernoff information can be tight for a maximal s-divergence over parameter s ∈ (0, 1). Generally, this step requires to solve numerically an optimization problem [START_REF] Nielsen | An information-geometric characterization of Chernoff information[END_REF] and often leads to a complicated and uninformative expression of the optimal value of s. To circumvent this difficulty, a simplified case of s = 1/2 is often used corresponding to the well-known Bhattacharyya divergence [START_REF] Sinanović | Toward a theory of information processing[END_REF] at the price of a less accurate estimation of P (N ) e . In this work, our primary goal is to derive a closed-form expression of the Chernoff information for any s ∈ (0, 1) for the detection of a R-dimensional Gaussian signal acquired via a N × R linear random sensing operation corrupted by an additional N -dimensional Gaussian noise for N → ∞ with N/R → β ∈ (1, ∞). A secondary contribution is to derive a simple approximated analytical expression for the optimal value of s. To reach this goal, it turns out that the large Random Matrix Theory (RMT) framework [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF][START_REF] Couillet | Random matrix methods for wireless communications[END_REF][START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF][START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] will be relevant.

CHERNOFF INFORMATION FRAMEWORK

The Bayes' detection theory

Let Pr(Hi) be the a priori hypothesis probability with Pr(H0) + Pr(H1) = 1. Let Pr(yN |Hi) and Pr(Hi|yN ) be the i-th conditional hypothesis and the posterior probabilities, respectively. The Bayes' detection rule chooses the hypothesis Hi associated with the largest posterior probability Pr(Hi|yN ). Introduce the indicator hypothesis function according to φ(yN ) ∼ Bernou(α) where Bernou(α) stands for the Bernoulli distribution of success probability α = Pr(φ(yN ) = 1) = Pr(H1). Function φ(yN ) is defined on X → {0, 1} where X is the data-set enjoying the following decomposition X = X0 ∪ X1 where X0 = {yN : φ(yN ) = 0} = X \ X1 and

X1 = {yN : φ(yN ) = 1} = yN : Ω(yN ) = log Pr(H1|yN ) Pr(H0|yN ) > 0 = yN : Λ(yN ) = log Pr(yN |H1) Pr(yN |H0) > log τ
in which τ = 1-α α , Ω(yN ) is the log posterior-odds ratio and Λ(yN ) is the log-likelihood ratio. The average error probability is defined as

P (N ) e = E{Pr(Error|yN )} (1) 
with

Pr(Error|yN ) = Pr(H0|yN ) if yN ∈ X1, Pr(H1|yN ) if yN ∈ X0.
The standard strategy to minimize Pr(Error|yN ) for a given yN is min {Pr(H0|yN ), Pr(H1|yN )} [START_REF] Kay | Fundamentals of statistical signal processing: Detection theory[END_REF]. So using eq. ( 1), the minimal average error probability can be expressed according to

P (N ) e = E min {Pr(H0|yN ), Pr(H1|yN )} = X min (1 -α)Pr(yN |H0), αPr(yN |H1) dyN (2)
using the Bayes' relation.

Chernoff Upper Bound (CUB)

Using min {a, b} ≤ a s b 1-s with a, b > 0 and s ∈ (0, 1) in eq. ( 2), the minimal error probability is upper bounded according to

P (N ) e ≤ α τ s X Pr(yN |H0) s Pr(yN |H1) 1-s dyN def. = α τ s • exp[-µN (s)] (3) 
where

µN (s) = -log M Λ(y N |H 1 ) (-s) (4) 
is the (Chernoff) s-divergence and MX (t) = E exp[t • X] is the moment generating function (mgf) of variable X. Term µN (s) characterizes the exponential rate of the error exponent of P

(N ) e

. The Chernoff information, denoted by µ(s), is an asymptotic characterization on the best achievable Bayes' error probability and is derived according to [START_REF] Sinanović | Toward a theory of information processing[END_REF][START_REF] Cover | Elements of information theory[END_REF][START_REF] Ali | A general class of coefficients of divergence of one distribution from another[END_REF][START_REF] Dembo | Large deviations techniques and applications[END_REF] :

-lim N →∞ log P (N ) e N = lim N →∞ µN (s) N def. = µ(s). (5) 
As parameter s is free, the Chernoff information can be retrieved as the unique minimizer:

s = arg min s∈(0,1) µ(s). (6) 
Finally using eq. ( 3), eq. ( 5) and eq. ( 6), we obtain the Chernoff Upper Bound (CUB). The Bhattacharyya Upper Bound (BUB) is obtained by eq. ( 3) and eq. ( 5) and by fixing s = 1/2 instead of solving eq. ( 6).

INFORMATION GEOMETRY FOR LARGE RANDOM SENSING MATRICES

Model definition and associated binary hypothesis test

Assume that we dispose of N noisy measurements collected in vector yN via a linear random sensing operation where the i.i.d. noise n ∼ N (0, σ 2 IN ) is assumed to be statistically independent of the i.i.d. signal of interest s ∼ N (0, σ 2 s IR) where N > R. The random sensing system is modeled thanks to the N × R matrix Φ whose each entry is an i.i.d. random variable generated as an observable/known single realization of an unspecified probability distribution function parametrized by a zero-mean and a variance of 1/R. Let SNR = σ 2 s /σ 2 be the signal to noise ratio. The detector chooses the null hypothesis H0 for a null SNR and chooses H1, otherwise. More formally, the considered binary hypothesis test is

H0 : yN ∼ N 0, Σ0 = σ 2 IN , H1 : yN ∼ N 0, Σ1 = σ 2 SNR • ΦΦ T + IN . (7) 
The data-space for hypothesis H1 is given by

X1 = yN : y T N (Σ -1 0 -Σ -1 1 )yN > τ (8) 
with τ = log detΣ 0 τ 2 detΣ 1 where det(•) stands for the determinant. The performance of the above detection problem is clearly related to the question: "How can the covariance matrices Σ0 and Σ1 be discriminated ? ". This is a canonical problem in the context of the theory of information geometry for covariance matrices.

Chernoff information for a large sensing matrix

In this section, we derive a closed-form expression the CUB for the test of eq. ( 7) in the regime

N → ∞ with N/R → β ∈ (1, ∞).
Lemma 3.1 The log-mgf given by eq. (4) for test of eq. ( 7) is given by

µN (s) = 1 -s 2 log det SNR • ΦΦ T + I - 1 2 log det SNR • (1 -s)ΦΦ T + I . ( 9 
)
Proof See Appendix 6.1

Result 3.2 Using Lemma 3.1, the Chernoff information defined in eq. (5) takes the following simple expression:

µN (s) N a.s -→ µ(s) = (1 -s) 2β Ψ β (SNR) - 1 2β Ψ β SNR • (1 -s) (10) 
with a.s standing for "almost sure convergence" and

Ψ β (x) = β log 1 + x - Φ 2 β (x) 4 + log 1 + βx - Φ 2 β (x) 4 - Φ 2 β (x) 4x , Φ β (x) = x(1 + β) 2 + 1 -x(1 -β) 2 + 1.
Proof See Appendix 6.2.

Using Result 3.2, the Bhattacharyya information is given by

µ 1 2 = Ψ β (SNR) 4β - 1 2β Ψ β SNR 2 . ( 11 
)

Chernoff information in the high SNR regime

The derivation of an analytic expression for µ(s) allows to obtain for an insignificant computational cost the CUB. This is crucial for large sensing systems. Another advantage is that given an analytic expression for µ(s), it is possible to derive in closed-form s and thus to avoid the costly numerical optimization step of eq. ( 6). The following Results provide analytic expressions for s and for the Chernoff information in the high SNR regime.

Result 3.3 In the high SNR regime, the optimal parameter s is obtained analytically according to

s SNR 1 ≈ 1 - 1 Ψ β (SNR) . ( 12 
)
Proof See Appendix 6.3.

Result 3.4 The Chernoff information takes the following simple expression:

µ(s ) SNR 1 ≈ 1 2β 1 -Ψ β SNR Ψ β (SNR) . ( 13 
)
Proof The proof is straightforward using eq. ( 10) and eq. ( 12).

NUMERICAL ILLUSTRATIONS

In this simulation part, the sensing matrix Φ is generated as a prescribed single 60 × 10 Gaussian realization with E[Φ]n,r = 0 and E[Φ] 2 n,r = 1 R δn-r. We fix α = 1/2. On Fig. 1, the Chernoff information (using Result 3.2) and the normalized s-divergence with respect to parameter s are drawn. First, we can see that the numerical and closed-form expressions are almost merged. In addition, the Chernoff information is asymmetric. This means that s = 1/2 and thus the Bhattacharyya information cannot be considered as the best strategy. On Fig. 2, the closed-form expression of eq. ( 12) obtained in the high SNR regime is illustrated by comparison with the numerical optimization of eq. ( 6) involving eq. ( 9). We can note that the proposed analytical expression of eq. ( 12) accurately predicts the coefficient s for a wide range of SNR greater than approximatively 10 dB. We can also note that the BUB is interesting only in the very low SNR regime. To study the detection performance, the upper bound on P (N ) e has been drawn in linear (resp. log) scale on Fig. 3 (resp. Fig. 4) for a wide range of SNRs. On these figures, several configurations of CUB and BUB are compared and detailed in Table 1. We can check that the BUB2 given by eq. ( 11) as a closed-form expression is an efficient and low cost upper bound for negative SNRs. Fig. 3 and in particular Fig. 4 illustrate that the BUB is a relaxed upper bound in the high SNR regime. As expected, the CUB3 which is derived in the high SNR regime is not informative for negative SNRs. But, we can observe that the CUB3 given by eq. ( 13) provides a very accurate and low cost solution to upper bound the error probability P (N ) e for positive SNR.

CONCLUSION

In the Bayes' detection framework, the performance in term of the minimal error probability, P (N ) e , for the detection of a randomly acquired R-dimensional Gaussian signal corrupted by a Ndimensional Gaussian noise is a canonical problem in the framework of the geometry information of covariance matrices. Indeed, P In many applications, it is hard to obtain closed-form expressions of the s-divergence for any s ∈ (0, 1) and of the optimal parameter s in a realistic computational time. The default choice s = 1/2 corresponding to the Bhattacharyya information is shown to be not the optimal strategy since the s-divergence is asymmetric for the detection problem of interest. In this work, we propose two contributions. The first one is to provide a closed-form expression of the Chernoff information for linear random sensing systems. The derivation of such analytic expressions has two mains advantages. Firstly, the Chernoff information for any s ∈ (0, 1) and Bhattacharyya information can be evaluated thanks to an analytic expression and thus for a very low computational cost. Secondly, the Normalized log-mgf s Comput. cost CUB1 Numeric with eq. ( 9) Numeric Highest CUB2 Analytic with eq. ( 10) Numeric Medium CUB3 Analytic with eq. ( 13) Analytic Lowest BUB1 Numeric with eq. ( 9) 1/2 High BUB2 Analytic with eq. ( 11 1 optimal parameter s is derived analytically in the high SNR regime. The log-mgf in eq. ( 4) for the following binary hypothesis test H0 : yN ∼ N (0, Σ0) , H1 : yN ∼ N (0, Σ1) is given by [START_REF] Nielsen | Chernoff information of exponential families[END_REF]:

µN (s) = 1 2 log det(sΣ0 + (1 -s)Σ1) [detΣ0] s [detΣ1] 1-s . ( 14 
)
Using the expressions of the covariance matrices Σ0 and Σ1, the numerator in eq. ( 14) is given by N log σ 2 + log det SNR • (1 -s)ΦΦ T + I and the two terms at its numerator are log[det Σ0] s = sN log σ 2 and

log[det Σ1] 1-s = (1-s) N log σ 2 +log det SNR • ΦΦ T + I .
Using the above expressions, µN (s) is given by eq. ( 9).

Proof of Result 3.2

For N, R → ∞ with N/R → β ∈ (1, ∞), eq. ( 10) is derived using Lemma 3.1 and the following property (see [START_REF] Tulino | Random Matrix Theory and Wireless Communications[END_REF][START_REF] Couillet | Random matrix methods for wireless communications[END_REF][START_REF] Marčenko | Distribution of eigenvalues for some sets of random matrices[END_REF][START_REF] Silverstein | On the empirical distribution of eigenvalues of a class of large dimensional random matrices[END_REF] for instance):

1 N log det x • ΦΦ T + I a.s -→ 1 β Ψ β (x) where function Ψ β (•) is defined in Result 3.2.

Proof of Result 3.3

The first step of the proof is based on the derivation of an alternative expression of µN (s) given by eq. ( 14) involving the inverse of the covariance matrices Σ0 and Σ1. Specifically, we have

µN (s) = 1 2 log (detΣ0)(detΣ1)det((1 -s)Σ -1 0 + sΣ -1 1 ) [detΣ0] s [detΣ1] 1-s = - 1 2 log det [(1 -s)Σ -1 0 + sΣ -1 1 ] -1 [detΣ0] 1-s [detΣ1] s . ( 15 
)
The second step is to derive a closed-form expression in the high SNR regime using the following the approximation (see [START_REF] Behrens | Signal processing applications of oblique projection operators[END_REF] for instance):

x • ΦΦ T + I -1 x 1 ≈ Π ⊥ Φ = IN -ΦΦ †
where Π ⊥ Φ is an orthogonal projector such as Π ⊥ Φ Φ = 0 and Φ † = (Φ T Φ) -1 Φ T . The numerator in eq. ( 15) is given by

(1 -s)Σ -1 0 + sΣ -1 1 -1 SNR 1 ≈ σ 2 IN -sIN + sΠ ⊥ Φ -1 = σ 2 IN -sΦΦ † -1 .
As sΦΦ † is a rank-R projector matrix scaled by factor s > 0, its eigen-spectrum is given by s, . . . , s R , 0, . . . , 0 N -R . In addition, as the rank-N identity matrix and the scaled projector sΦΦ † can be diagonalized in the same orthonormal basis matrix, the n-th eigenvalue of the inverse of matrix IN -sΦΦ † is given by

λn IN -sΦΦ † -1 = 1 λn {IN } -sλn ΦΦ † = 1 1-s , 1 ≤ n ≤ R, 1, R + 1 ≤ n ≤ N
with s ∈ (0, 1). Using the above property, we obtain

log det [IN -sΦΦ † ] -1 = log N n=1 λn IN -sΦΦ † -1 = -R log(1 -s).
Finally, thanks to eq. ( 15), we have µN (s) N Finally, to obtain s in eq. ( 12), we solve ∂µ(s) ∂s = 0.
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1 .

 1 Proof of Lemma 3.1
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