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Abstract 

Graphene nanodiscs (GNDs), functionalized using NH3 plasma, as charge trapping 
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1. Introduction 

Two-dimensional (2D) materials, such as graphene, hexagonal boron nitride (h-BN), 
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and Au [20-26] and charge trapping sites (CTSs) such as a silicon nitride layer [27-29]. It 

has been demonstrated that a large memory window can be obtained using the Ge-NPs 

embedded in dielectrics [20, 21]. Moreover, the spatial distribution of discrete charge 
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storage nodes prevents the lateral migration of charges and reduces the probability of 

leakage through tunnel and/or blocking oxides.  
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2. Experimental 

2.1. Device fabrication 
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The GND-NVM devices have a (n)-c-Si/SiO2/GNDs/SiO2/Al structure. After substrate 

preparation using standard RCA cleaning, a 3-nm-thick tunnel oxide was thermally grown 
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The atomic force microscopy (AFM) profile of GNDs after Au-NP stripping (for an initial 

Au film thickness of 3 nm) is displayed in Fig. S1 of the Supplementary Information. We 
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observed that the average width of the GNDs is close to 20 nm, as expected from the Au-

NP diameter utilized and the height was an average of ~1 nm. Having defined the GNDs, it 
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pulse generator. All the electrical measurements were performed under ambient conditions 

with a semi-auto cascade system. 
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3. Results and discussion 
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(< 20 nm), and it is possible that the NH3 plasma functionalization has effectively 

transformed the material, as opposed to GND_M3.  



 

9 

Fig. 4(a) presents the FTIR characterization of the GNDs after O2 plasma etching. The 

oxygen functionalities appear at 1720 and 1627 cm-1 (stretching vibrations from C=O), 
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behavior.  

GND-NVMs were fabricated following the procedures depicted in Fig. 2. A control 

metal-oxide-silicon (MOS) capacitor without GNDs was also fabricated similarly. The 
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control MOS exhibits a negligible capacitance-voltage (C-V) hysteresis, i.e., a memory 

window, whereas a ~3 V window is clearly visible because of the larger amount of CTSs 
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4). Note that the erase operation is slower (i.e., the window is smaller for the same time) 

because of the larger effective mass of the hole and a larger energy barrier at the c-Si/SiO2 

interface encountered by the holes at ~4.7 eV, as opposed to the 3.2 eV for the electrons 
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[46]. Furthermore, in Fig. 5(b), even for the GND-NVMs with NH3 plasma 

functionalization, a limited program and erase timing performances of 100 ms are observed. 
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4. Con  

In this study, a charge trapping memory device based on the trapping of carriers in 

NH3 plasma-functionalized graphene nanodiscs, with a diameter of 20 nm, was developed. 

The size and density of the GNDs can be tailored by tuning the Au-NP hard mask. The 
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incorporation of defect sites of the N-H+ groups around the functionalized GNDs was 

identified using Raman and FTIR spectroscopy. As a result, data retention was improved 
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Figure Captions 

Fig. 1(Color online) (a) Au-NP dot density on silicon oxide and graphene layer as a 
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Fig. 5(Color online) (a) P/E characteristics of GND-NVMs without NH3 plasma 

functionalization. The gate voltage (calibrated by initial VFB) is 8 V for program and -8 V 
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for erase, with 10-6 s to 1 s pulse width. (b) P/E characteristics of GND-NVMs with NH3 

plasma functionalization. The memory window enhances significantly. 
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