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Robustness margin for piecewise affine explicit control law

Rajesh Koduri1 Pedro Rodriguez-Ayerbe1 and Sorin Olaru 1

Abstract— Classical robustness margin i.e., gain margin and
phase margin, considers the gain variation and phase variation
of the model preserving the stability of the closed loop. In
this paper, an attempt to find the same kind of margin for
a piecewise affine (PWA) controller is done. This controller
usually obtained in explicit model predictive control (MPC) is
defined over a convex region of the state space X . Starting
from the invariance property of the closed loop obtained
with a discrete dynamic model and PWA controller in a
convex region of the state space, we calculate two robustness
margin preserving this invariance property. The first one will
be denoted as gain margin corresponding to the variation
of the gain of the model guaranteeing the invariance. The
second one, that we call, the robustness margin against first
order neglected dynamics correspond to the smallest first
order neglected dynamic allowed in the system preserving the
invariance property.

I. INTRODUCTION

Explicit model predictive control (MPC) belongs to a class
of constrained model based optimization methods whose
solution is synthesized by a set of piecewise affine (PWA)
dynamics. The idea of the explicit MPC [1][3][2] is to ex-
press the on-line quadratic problem in the control design into
a multi-parametric Quadratic Programming(mpQP) problem
and to reduce the computation of the optimal control inputs
to a simple evaluation of a control law stored in a look-
up table. Such control laws can be easily implemented for
real-time system with fast dynamics and relative small state-
space models. Though explicit control law has favorable
advantages over the standard MPC, it also comes up with
high computational cost for higher order systems and/or for
large prediction horizon.

From the analysis point of view, it is important to take into
account the capacity of the control law that can cope with
disturbances, neglected dynamics or uncertain parameters.
This characteristic is termed in control theory as robustness
of the controller. In the context of robustness analysis of ex-
plicit controller, very few contributions have been made. Few
noticeable works include an analysis procedure proposed in
[4] and [5] handles the robustness/fragility of the positive
invariance for the dynamics affected by uncertain parameters.
On the other hand, there is a substantial work on the
robustification of the explicit controllers. The reference [6]

*The work leading to these results has received funding from the
People Programme (Marie Curie Actions) of the European Unions Seventh
Framework Programme (FP7/2007-2013) under REA grant agreement no
607957 (TEMPO)

1The Authors are with L2S, CentraleSupelec, CNRS,
LIPS, Paris Saclay University, 91192, Gif-Sur-Yvette,
France. rajesh.koduri@centralesupelec.fr,
pedro.rodriguez-ayerbe@supelec.fr,
sorin.olaru@centralesupelec.fr

shows how to improve the robustness of the controller taking
disturbances into account in the design phase. In a different
perspective [7] presented an robust explicit predictive control
synthesis which accounts for uncertainties based on dynamic
programming.

In this paper, we consider the inherent robustness prop-
erties of explicit predictive control described as piecewise
affine (PWA) control laws for a class of linear discrete time
systems. First, we present a numerical method to compute
a gain margin set for a discrete-time system stabilized by
a continuous PWA dynamics with respect to the invariance
property. The desired gain margin set is a polytope which
characterize for variations of system gains preserving the
invariant characteristics of the controller. Second, we analyze
for the dynamic system affected by first order neglected
dynamics. The robustness margin of the controller is defined
by a set which characterize for a range of parameters
preserving the invariance of the controller.

The paper is organized as follows: In section III, the
system description for explicit model predictive control is
briefly discussed. Then in section IV, we introduce some
important notations and tools which are used throughout the
paper. In section V, we discuss about the gain margin set
for a given PWA control law with two examples. In section
IV, we present the robustness margin of the PWA control
law affected by the first order neglected dynamics. Finally,
in section VII, we sum up the paper with conclusion.

II. BASIC NOTATIONS

This section addresses some basic notations and defi-
nitions. A vector is noted x ∈ Rn, x = [ x1 · · · xn]T

and a matrix A ∈ Rn×m, A = [aij]. An identity matrix
is represented by In, where the subscript n denotes the
dimension of that matrix. The sets R, R+, Z, N and N>0

denote set of real numbers, set of non-negative real numbers,
set of integers, set of non-negative integers, set of positive
integers, respectively. We denote Rn a Euclidean space and
x ∈ Rn a vector with n elements.
A polyhedron is the (convex) intersection of a finite number
of open or closed half-spaces and a polytope is a bounded
and closed polyhedron. A mapping function f : Rn → Rm
is said to be positively homogeneous of the first degree, if
f (αx) = αf(x), ∀ α ∈ R+ and ∀ x ∈ Rn. 1 is a vector
with its elements equal to 1. For a N ∈ N+, IN denotes
the set of integers, IN := { i ∈ N+ | i ≤ N }. ProjRc2S
is a projection mapping of a set S onto a subset, S ⊂ Rc1
→ Rc2 for c1 > c2 and will be considered to operate on
the first c2 coordinates of Rc1. Finally, convh denotes the
convex hull.



III. SYSTEM DESCRIPTION

Consider a linear discrete-time system given by,

x(k + 1) = Ax(k) +Bu(k) (1a)
y(k) = Cx(k) (1b)

Where, x(k) ∈ Rn, u(k) ∈ Rm and y(k) ∈ Rs denote the
state vector, input variables and output variables respectively
at time k. The constraints on the system states and input
variables are represented by,

X = {x : Hxx ≤ hx, Hx ∈ Rnx×n, hx ∈ Rnx} (2a)
U = {u : Huu ≤ hu, Hu ∈ Rmu×m, hx ∈ Rmu} (2b)

The state and input constraints are bounded polytopic sets.
For explicit MPC, the quadratic cost function of the standard
MPC with the terminal and stage costs is transformed into a
multi-parametric Quadratic Programming (mp-QP) problem
[2]. Considering a discrete-time system given by (1) subject
to constraints (2), the equivalent mp-QP problem is given as

J(x, z) = min
z

1

2
zTHz + xTFT z +

1

2
xTY x (3a)

s.t Gz ≤W + Sx. (3b)

The optimal solution for (3) is represented by a finite set
of affine functions defined over the polyhedral partition of
the set X , where PN (X )= [X1,X2 · · · XN ] is called the
polyhedral partition of the set X . The polyhedral Xi ⊂ Rn
are called critical regions or components of the partition. The
polyhedral regions Xi are non overlapping i.e., Xi ∩ Xj = ∅,
for i 6= j. The non-overlapping property ensures the unique
solution for the state x(k) ∈ Xi, ∀i ∈ IN . Two neighboring
regions Xi and Xj share some vertices or facets and thus
the optimal solution over the set X exhibits the continuity
property.

Definition 1: A mapping function

fpwa : {Rn → Rm|Aix+ bi,∀x ∈ Xi, i ∈ IN} (4)

defined over the polyhedral partition of the set X is called a
piecewise affine function of the polyhedral partition.
The explicit control law, solution of (3), is synthesized
in terms of the piecewise affine function defined over the
polyhedral partition of the set X and it can be described by

upwa(x(k)) = Fix(k) + gi, ∀x(k) ∈ Xi. (5)

Definition 2: A closed and bounded set P ⊂ X is called
positively invariant with respect to the system (1) in closed
loop with the control law upwa(x(k)) if for any x(0) ∈ P ,
it follows x(k) ∈ P , ∀k ∈ Z[1;∞].

IV. PRELIMINARIES

This section introduces few matrices which will be used
throughout the paper. The vertex representation of the poly-
hedral sets X and Xi are given by

X = convh{w1, w2 · · ·wr} (6a)
Xi = convh{wi1, wi2 · · ·wiri} (6b)

A matrix W ∈ Rn×r stores the vertices of the polyhedron
X ∈ Rn.

W = [w1, w2, · · · , wr] (7)

We introduce a matrix V ∈ Rn×
∑N

i=1 ri to store the vertices
of all the partition in the state space Xi ⊂ X , ∀i ∈ IN .

V = [w11, w12, · · · , wiri , · · · , wNrN ] (8)

Like stated before, neighboring partitions have vertices in
common, and therefore, the repeated vertices are removed
from the matrix V and therefore the matrix V contains non-
identical column vectors.

V = [w1, w2, · · · , wp] ∈ Rn×p (9)

With the help of affine mapping f(x(k)) = upwa(x(k)), a
matrix U ∈ Rm×p is used to store the control input for each
column of matrix V .

U = upwa(V ) (10)

V. GAIN MARGIN

In the following, we describe the gain margin set for the
system (1) stabilized with the help of a state feedback explicit
control laws. The construction of the gain margin set is based
on vertex representation of the regions forming the partition
X .

Definition 3: Consider a discrete time linear system (1)
with a continuous PWA control law (5), such that the state
space set X is positively invariant. The Gain Margin is
represented by the set K ⊂ Rm, such that x(k + 1) =
Ax(k) + B(Im + diag(δK))upwa(x(k)) ∈ X , ∀x(k) ∈ X
and δK ∈ K, δK ∈ Rm.

The set K ⊂ Rm is a set which contains the input channels
gain variations δK such that for any point inside the set K,
the invariance characteristics of the set X are preserved.

Theorem 1: Consider a discrete-time linear system (1)
with a piecewise affine state feedback control law defined
in (5). The gain margin K of the controller is defined by the
set,

K = ∩pq=1Kq (11)

Where K represents the gain margin set and Kq the local
gain margin for the vertex wq for some q ∈ Ip.

Proof: Starting from the PWA closed loop dynamics
assuring the invariance of the set X given by,

x(k + 1) = Ax(k) +Bupwa(x(k)) ∈ X (12)

with the addition of δK in (12), ∀δK ∈ K we obtain:

x(k + 1) = Ax(k) +B(Im + diag(δK))upwa(x(k)) ∈ X
(13)

It is also possible to exploit the structure of the PWA closed-
loop dynamics, by introducing the parametric variations on
the control gains preserving the invariance and boundedness
properties of the controller. Suppose that û = upwa(x(k)) +
δu, where the term δu ∈ Rm describes admissible control
input variations,

x(k + 1) = Ax(k) +Bupwa(x(k)) +Bδu ∈ X (14)



By relating (13) and (14) we obtain:

Ax(k) +Bupwa(x(k)) +Bδu =

Ax(k) +B(Im + diag(δK))upwa(x(k))
(15)

And,

upwa(x(k)) + δu = (Im + diag(δK))upwa(x(k)) (16)

By rewriting (16) with analogy to each column vectors of
the matrix V , ∀q ∈ Ip(vertices in the set Xi), we obtain:

δuq
= diag(δKq

)upwa(wq) (17)

The admissible input δuq
belongs to a set ∆Uq ⊂ Rm and

δKq
∈ Kq . A matrix Mq = diag(upwa(wq)) ∈ Rm×m is

uniquely defined based on the value of the control action
upwa(wq) such that

∆Uq ⊇MqKq (18)

Exploiting the polyhedral structure of the admissible input
variations,

∆Uq = {u : |Ĥuu ≤ ĥu} (19)

where Ĥu ∈ Rdu×m and ĥu ∈ Rdu one can obtain the local
set of gain variation for the vertex wq as:

Kq = {z ∈ Rm|∃u ∈ ∆U ,Mqz = u} (20)

Finally,
Kq = {z ∈ Rm|ĤuMqz ≤ ĥu}. (21)

The collection of sets Kq are independent of each vertices
of the set in Xi and the intersection of these independent set
gives the global set K. In order to compute Kq , we first need
to compute explicitly the sets ∆Uq .

Remark 1: Even if no control gain variation is admissible
in (13), the null vector 0m ∈ K is admissible as long as it
corresponds to the set invariance of the original PWA control
law.

A. Construction of ∆Uq set:

In this subsection, a description for the ∆Uq set is con-
structed based on forward mapping of the vertex in the PWA
partition.

Theorem 2: Consider a linear discrete-time system (1)
stabilized by a piecewise affine control law (5). The set ∆Uq
of admissible input variations at the vertex wq is obtained
by

∆Uq = ProjUHq (22)

U ∈ Rm denotes the input constraint set. The polyhedral set
Hq is described by:

Hq =

(δu, λ) ∈ Rm × Rr, and [A B]

[
x(k)

upwa(x(k))

]
+Bδu = Wλ


(23)

Proof: Let us recall the equation (14) which resumes
the positive invariance for the set X ,

[A B]

[
x(k)

upwa(x(k))

]
+Bδu ∈ X (24)

From the definition of invariance, (24) can be expressed
using the vertices of the set X as convex combination and
corresponding variables λ = [λ1, λ2, · · · , λr] and equality
constraints 1Tλ = 1 such that

[A B]

[
x(k)

upwa(x(k))

]
+Bδu = Wλ. (25)

B. Computation of ∆Uq set:

Based on the value of the control action upwa(wq). Con-
sider the objective of finding the ∆Uq set for each column
vector of the matrix V independently, ∀q ∈ Ip.

Ax(k) +Bupwa(x(k)) +Bδu = Wλ (26)

Where λ = [λ1, λ2, · · · , λr] and 1T λ = 1 with λi ≥ 0
∀i ∈ Ir. Clearly (26) can be represented by a system of
linear equalities with the variable vector Γ, where the vector
Γ contains the required variable δu along with the variables
[λ1 · · ·λr − 1].

Γ = [δu, λ1, λ2, · · · , λr−1] ∈ Rm+r−1 (27a)

λr = 1−
r−1∑
i=1

λi, λi ≥ 0. (27b)

A linear programming problem with (26) and (27) as linear
equality constraints can be setup,
B(1, :)

...
B(n, :)

 − Ŵ

Γ = wr − (Awq +Bupwa(wq)) (28)

where Ŵ is defined by the notion W = [w1 · · ·wr]

Ŵ = [w1 − wr, · · · , wr−1 − wr] ∈ Rn×r−1

The system of linear equalities (28) is defined in the form
HΓ = h, where H ∈ Rn×(m+r−1) and h ∈ Rn×1, and has
the solution

Γ = Hzt+ hz, (29)

where Hz = null(H) is nothing but the orthonormal basis
for the null space of matrix H and hz is the solution
set for the linear programming problem. Subsequently, we
establish two polyhedral sets from the matrices Hz , hz with
a variable t. The first polyhedral set corresponds to the
required set ∆Uq . Recalling the non-negativity constraints
defined in (27), the second polyhedral is defined with the
non-negativity property of the elements in the solution vector
Γ(m+ 1 : m+ r − 1) = [λ1 · · ·λr−1]T ≥ 0,

H(1) = {t | H(1)
z t ≤ h(1)z } (30a)

H(2) = {t | −H(2)
z t ≤ h(2)z }. (30b)

The matrices appearing in (30) are related to a decom-
position H

(1)
z = Hz(1 : m, :), h(1)z = hz(1 : m), H(2)

z =
Hz(m+ 1 : m+ r− 1, :) and h(2)z = hz(m+ 1 : m+ r− 1).
And finally the set ∆Uq is nothing but a linear transformation
of the set H(2),

∆Uq = H(1)
z H(2) + h(1)z . (31)



The vertices of ∆Uq is computed by applying the transfor-
mation to all the vertices of the set H(2).

Corollary 1: The set Kq representing the gain matrix set
is a polyhedral ∀q ∈ Ip.

Proof: The set Hq and ∆Uq used in the description
for Kq are polyhedral and by this virtue Kq inherits this
property.

Remark 2: we note the analogy between the results re-
ported in [5] and (22). The work of [5] focuses on the
computation of fragility margin which is characterized for the
parametric variations in the space of Fi for each individual
regions. However, in the present framework we interpret
those findings to compute the variations in the control input
for each individual vertices in the set X .

Remark 3: Regarding the computation of the set K, one
need to solve p LP problems with a set of linear equations
given in (28), where p is the number of non-identical vertices
in the set X .

C. Examples:

Single Input system:

Consider a linear discrete time system,

x(k + 1) =

[
1.4 0
0.8 −1.1

]
x(k) +

[
0.5
0.7

]
u(k),

y(k) = [1 0]x(k). The weight matrices Q =
[
1 0
0 1

]
and R = 1. The prediction horizon chosen is 2. The
input constraint −5 ≤ u(k) ≤ 5 and the output constraint
−5 ≤ y(k) ≤ 5. Solving the mp-QP yields 13 controllers.
The gain margin set K in (11) is computed and the value of
δK lies between [−0.2178, 0.3051].

Fig. 1: state trajectories for δK = 0.3

State trajectories are simulated in closed loop with δK
value such that x(k+ 1) = Ax(k) +B(1 + δK)upwa(x(k)).

Fig. 2: state trajectories for δK = -0.25

Figure 1 shows the state trajectories for δK = 0.3 which is
a value inside the computed gain margin and it is observed

that the trajectories are inside the invariant set thus confirm-
ing the theoretical result. From figure 2, it is noticeable that
the controller is no more invariant for δK = - 0.25.

Multi Input system: Consider a linear discrete system
with two inputs and two outputs,

x(k + 1) =

1.2 −1. 0
0 −1.2 0.5

0.2 0.4 0

x(k) +

1.0 0.2
0.5 0
0 0.7

u(k),

y(k) =

[
1 0 0
0 0 1

]
x(k). The weight applied on the

control inputs and state vectors are Q =

5 0 0
0 1 0
0 0 1

 and

R =

[
0.5 0
0 1

]
.The input constraint

[
−2
−2

]
≤ u(k) ≤

[
2
2

]
and the output constraint

[
−2
−2

]
≤ y(k) ≤

[
2
2

]
. The

prediction horizon chosen is 2. The resulting controller has
37 regions. Figure 3a shows the set K for (5) assuring the
invariance of the set X . However, the invariance property of
the controller is fragile to unmeasured input perturbation.
For instance, choosing δK = diag(−0.01,−0.01) results in
the controller loosing the invariance. To prove the positive
side of gain margin analysis, a new explicit controller is
chosen by adapting the gain with an admissible variation
from the set K, shown in figure 3a, and which preserves its
definition domain over the set X .

(a) K set for upwa(x(k)) (b) K set for uµpwa(x(k))

Fig. 3: Gain Margin set

The new controller is adapted in a straightforward manner
to uµpwa(x(k)) = (Im + diag(δK)) ∗ (Fix(k) + gi) ∀i ∈ IN
and δK = diag(0.2, 0.2). Subsequently, we computed the
gain margin set for this controller and present an illustration
of its corresponding admissible variation in figure 3b. It is
noticeable from the figure that the new controller is more
robust to input disturbances and practically we obtained
a translation of the point corresponding to the nominal
controller without altering the shape of the set K. The new
controller also violates the input constraints but the violation
can be omitted by saturating the control inputs.

VI. FIRST ORDER NEGLECTED DYNAMICS

In the following, we analyze the robustness of the con-
troller (5) defined over the polyhedral set X affected by a
first order neglected dynamics in closed loop. Our approach



is to present an admissible set for the dynamic variations of
the neglected parameters or variables assuring the invariance
of the set X .

A. Problem Formulation

In this section, a problem is formulated for the first order
dynamics that perturb the closed loop system as shown in
figure 4.

Fig. 4: Closed loop system with first order neglected dynam-
ics

The neglected dynamics can be represented by a first order
equation and it can be written in the form,

xI(k + 1) = αxI(k) + (1− α)u∗(k) (32a)
u(k) = αxI(k) + (1− α)u∗(k) (32b)

The neglected dynamics in closed loop model can be
described by,

x(k + 1) = Ax(k) + αBxI(k) +B(1− α)u∗(k) (33)

The augmented model is

xe(k + 1) = Aexe(k) +Beu(k) (34a)
ye(k) = Cexe(k) (34b)

and,

xe =

[
x
xI

]
, Ae =

[
A αB

01×n α

]

Be =

[
B(1− α)

1− α

]
, Ce = [C, 0]

(35)

where xe ∈ Rne , Ae ∈ Rne×ne and Be ∈ Rne×m.
Starting from a piecewise affine control (5) defined over

the polyhedral partition of the set X with Xi ∈ X ∀i ∈ IN
for the linear discrete time system (1) the aim is to investigate
the robustness of the control synthesis (5) for the system (34)
and (35) affected by the neglected dynamics. The objective
being to find the largest set of α assuring the invariance of
the set X , first we construct vertices for the augmented state
with the help of the vertices in the set Xi ∀i ∈ IN . Second,
we analyze the robustness of the control synthesis (5) with
respect to the invariance characteristics for the set X .

B. Construction of vertices for the augmented state

Before entering into the technical details of the construc-
tion, we discuss about the extension of vertices for the
augmented state.

Recall the vertices of the set X and Xi defined by the
column vectors of matrices (7) and (9). The piecewise affine

control law upwa(x(k)) for the column vectors of the matrix
V is given by the matrix U (10). The construction of vertices
for the augmented state xI can be done in two ways.
• Method 1: Initialize the values of the state xI(k) for

each vertex corresponding to the column vectors of
matrix V with the piecewise affine control law. For
instance, wIp = upwa(wp) ∀p ∈ Ip.

• Method 2: Initialization of the state xI(k) for each
vertex corresponding to the column vectors of matrix
V can be carried out with the help of minimum and
maximum values of the control input.

Method 2 produces twice the number of vertices as com-
pared to method 1. For each column vector of matrix V , we
obtain two different vertices i.e., the values of augmented
state vector xe for each non-identical vertices in Xi is
[wp, umin] and [wp, umax] ∀p ∈ Ip. In the following, we
investigate the robustness problem for method 1.

C. Controller for extended state system

The controller for the extended model (34) can be repre-
sented by,

uepwa(xe(k)) = F ei xe(k) + gei (36)

where F ei = [Fi 0] ∈ Rm×ne and gei = gi ∈ Rm×1.
The controller has no impact on the state xI . This is just

an extension of (5) to accommodate the extended state and
therefore the characteristics of the original controller (5) are
preserved.

D. An admissible set for the first order neglected dynamics:

We introduce few matrices which will be used
in the construction. The extended model (34)-(35)
can be written as a convex combination of the
extreme realization obtained with α = 0 and α = 1.

For α = 0,

Ae1 =

[
A 0n×m

0m×n 0m×m

]
, Be1 =

[
B

1m×m

]
(37)

For α = 1,

Ae2 =

[
A B

0m×n 1m×m

]
Be2 =

[
0n×m
0m×m

]
(38)

Therefore,

Ae = (1− α)Ae1 + αAe2, Be = (1− α)Be1 + αBe2 (39)

Since our objective follows the computation of maximum
α value assuring the invariance of the set X , we just need
the state and input values in order to produce for the state
vector x(k + 1) in (33).
A1 =

[
A 0n×m

]
∈ Rn×ne A2 =

[
A B

]
∈ Rn×ne

B1 = B and B2 = [0n×m].
Similar to (9), we introduce a matrix V (1)

e ∈ Rne×p which
stores the vertices of the state vector x(k) and the PWA
control input associated with it for all the non-identical
vertices in Xi ∈ Rn, i ∈ IN in order to create a matrix
that contains the vertices for the state vector xe.

V (1)
e = [V,U ] (40)



In a second step, the values of the state vector xe(k + 1)
are found by exploiting (40) and (36) for column vectors of
the matrix V (1)

e in a closed loop formulation. This leads to
the matrix V (2)

e ∈ Rne×p.

V (2)
e = AV (1)

e +BU (41)

Similar to the notation in (10), a PWA image for the matrix
V

(2)
e can be found with the control law (36) and stored in a

matrix U (2)
e ∈ Rm×p.

U (2)
e = uepwa[V (2)

e ] (42)

Definition 4: Consider a linear discrete time system af-
fected by the first order neglected dynamics (34)-(35) and
stabilized via a PWA state feedback control law (36). A
margin for first order neglected dynamics is characterized
by a set Ωα ∈ Rm which contains the values of parameter
α (for each input channel) such that the invariance property
of the set X is assured.

Theorem 3: Consider the extended system (34) subject
to first order neglected dynamics stabilized by a piecewise
affine control law (36). The admissible set of parameters for
the neglected dynamics is given as the projection,

Ωα = ProjαT (43)

where T denotes the polyhedral set:

T =

{
(α,Γ) ∈ R× Rr×p| (1− α)(A1V

(2)
e +

B1U
(2)
e ) + α(A2V

(2)
e +B2U

(2)
e ) = WΓ

}
(44)

Proof: If Ωα describes admissible set for neglected
dynamics ∀α ∈ Ωα then ((1 − α)A1 + αA2)xe(k) + ((1 −
α)B1 + αB2)uepwa ∈ X , ∀k ∈ Z[1;K].
We remark that the computation of the admissible set Ωα

corresponds to the variations between the nominal model (1)
and the model affected by the neglected dynamics (34).

(1− α)(A1xe(k + 1) +B1(F ei xe(k + 1) + gei )) +

α(A2xe(k + 1) +B2(F ei xe(k + 1) + gei )) ∈ X
(45)

By replacing xe(k) with the column elements of the matrix
V

(2)
e and similarly the PWA function uepwa = F ei x

e(k+1)+

gei with the column vectors of matrix U (2)
e . Equation (45) is

further modified into:

(1− α)(A1V
(2)
e (:, q) +B1U

(2)
e (:, q)) +

α(A2V
(2)
e (:, q) +B2U

(2)
e (:, q)) ∈ X

(46)

For q ∈ Ip, by representing the state vector x ∈ X as the
convex combination of column vector of the matrix W , one
can write

∑r
l=1 γlW (:, l) and

∑r
l=l γl = 1 and introducing

this term in (46) obtain

(1− α)(A1V
(2)
e (:, q) +B1U

(2)
e (:, q)) +

α(A2V
(2)
e (:, q) +B2U

(2)
e (:, q)) = Wγ

(47)

with a vector γ = [γ1, · · · , γr] ∈ Rr.
If (47) holds for one column vector of matrix V (2)

e , then
it holds for all the column vectors of the matrix V

(2)
e and

with the image of the piecewise affine defined by the matrix
U

(2)
e .
Equation (47) can be written as,

(1− α)(A1V
(2)
e +B1U

(2)
e ) + α(A2V

(2)
e +B2U

(2)
e ) = WΓ

(48)
with Γ ∈ Rr×p and the proof is completed.

Example

For the single input system given in the previous sec-
tion, the margin for the first order neglected dynamics is
represented by the set Ωα= [{0, 0.267}]. The invariance
property of the controller is preserved for any input filter
with parameters in these values.

VII. CONCLUSION

In this work the gain margin set assuring the invari-
ance of the closed loop obtain for a linear discrete time
system controlled by a piecewise affine control law has
been computed. For a discrete time system affected by first
order neglected dynamics, a robustness margin has been also
deduced assuring the invariance property. It is worth to be
mentioned that this analysis procedure proposed does not
extend to analysis to the convergence (asymptotic stability
properties). Future work will include the robustness analysis
for PWA control law assuring the contractivity.
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