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Further Results on the Exploration of Combinatorial Tree in
Multi-Parametric Quadratic Programming

Parisa Ahmadi-Moshkenani1 Sorin Olaru 2 and Tor Arne Johansen 1

Abstract— A combinatorial approach has been recently pro-
posed for multi-parametric quadratic programming and has
shown to be more effective in finding the complete solution
than existing geometric methods for higher-order systems. In
this paper, we propose a method for exploring the combinatorial
tree which exploits some of the underlying geometric properties
of adjacent critical regions as the supplementary information in
combinatorial approach to exclude a noticeable number of fea-
sible candidate active sets from combinatorial tree. This method
is particularly well-suited for cases where many combinations of
active constraints are feasible but not optimal. Results indicate
that this method can find all critical regions corresponding
to non-degenerate multi-parametric programming. A post-
processing algorithm can be applied to complete the proposed
method in the cases in which some critical regions might not
be enumerated due to degeneracies in the problem.

I. INTRODUCTION

Using techniques based on multi-parametric quadratic
programming (mp-QP) is a well known method in the area of
explicit model predictive control (EMPC) [1]. By solving the
optimization problem offline, this method allows the appli-
cability of MPC to systems with relatively higher sampling
rates. In the typical mp-QP algorithms, the fixed active set
can be used via the Karush-Kuhn-Tucker (KKT) optimality
conditions to characterize the affine local parametric optimal
solution and a representation of its polyhedral critical region
(CR). Most algorithms for exact mp-QP that have been
proposed, iteratively build a partition of the parameter space
based on geometric (polyhedral) computations that keeps
track of which part of the parameter space has been explored,
e.g. [2], [3] and [4]. These are referred to as geometric mp-
QP algorithms. A benefit of this approach is that mostly
optimal combinations of active sets are considered, avoiding
unnecessary computations and storage due to the combina-
torial number of possible active sets. A drawback, on the
other hand, is that for problems of high dimension of the
parameter space, or with many constraints, the geometric
computations become complex and numerically sensitive.
Moreover, the problem of keeping track of the geometric
relationships between the explored and unexplored regions
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becomes complex due to the large number of facets of
each polyhedral critical region. Hence, these algorithms tend
to become slow, unreliable, or run out of memory as the
problem complexity grows. In order to avoid some of the
drawbacks of geometric mp-QP algorithms, a combinatorial
approach has been recently proposed in [5] and [6]. By
an implicit enumeration of possible combinations of active
constraints in a combinatorial search tree, this method avoids
geometric computations and manages the combinatorial na-
ture of the computational complexity by using a pruning rule
to simultaneously cut off branches with several infeasible
active sets represented in the implicit enumeration. This
allows the algorithm to deal quite effectively and efficiently
with mp-QP problems having a higher number of parameters,
when the geometric methods tend to fail [7]. However, it
has been noted in [7] that similar to the geometric methods,
the enumeration-based method does not scale well towards
problems with a large number of constraints, due to exponen-
tially increasing number of possible combinations of active
constraints, i.e. the number of LPs that are needed to be
solved offline. To decrease the computational complexity of
combinatorial approach, [8] has proposed to use a saturation
matrix pruning criterion to exclude infeasible candidate ac-
tive sets a priori and hence, decreasing the number of LPs.
The main drawback of this method is that computing all the
vertices of the constraint polyhedron and constructing the
saturation matrix may become computationally demanding
or even prohibitive when the size of the mp-QP increases.
Hence its applications is limited to small-scale problems
[8]. The work reported in [6] suggests another method for
decreasing the computational complexity based on exploiting
symmetry in the problem. However, the maximal complexity
reduction using this method is about 50% for systems with
complete symmetry which does not hold in many cases.

The common feature of all combinatorial algorithms
proposed so far is that feasible but not optimal combinations
of active constraints are never pruned and they remain
in the combinatorial tree while in many cases they do
not contribute to any optimal set in lower levels. Since
these methods ignore which combinations of active
constraints can potentially be optimal in the adjacent
CRs, it seems advantageous to exploit the supplementary
information available about the adjacent CRs from geometric
approaches. Therefore, in this paper we develop a method for
exploring the combinatorial tree by only keeping the track
of optimal active sets and propose a joint downward-upward
exploration method to find the optimal active sets by solving
a significantly smaller number of LPs. In regular cases



with no degeneracies, this method can successfully find all
possible optimal active sets and thus construct the explicit
solutions and the corresponding CRs. For cases presenting
degeneracies with respect to the constraints qualifications,
simulation results have shown that a great percentage of
CRs are found. Moreover, a post-processing algorithm is
suggested to find missed CRs if there are any. Hence, this
paper is structured as follows. The combinatorial approach
towards solving a mp-QP is briefly explained in section
II. The new algorithm together with some examples are
presented in section III. In section IV the post-processing
algorithm for ensuring that all optimal active sets and their
corresponding CRs and control laws are found is proposed
in conjunction with the simulation results and finally the
paper is concluded in section V.

II. COMBINATORIAL APPROACH TOWARDS
MULTI-PARAMETRIC QUADRATIC

PROGRAMMING
A. Multi-Parametric Quadratic Programming

Consider the standard multi-parametric quadratic program:

V ∗N (x) = min
z

1

2
zTHz (1a)

s.t. Gz ≤ Sx+W (1b)

where z ∈ Rm and x ∈ Rn denote the optimization variables
and parameters, respectively. Assume that the problem is
strictly convex, i.e. H > 0 and all constraints are irredundant
(see [9] for more details on redundancy removing). As shown
by [1], the Karush-Kuhn-Tucker (KKT) optimality conditions
can be used to characterize the analytic solutions to mp-QP
problem in (1):

Hz +GTλ = 0, λ ∈ Rq, (2a)

λi(Giz −W i − Six) = 0, i = 1, . . . , q, (2b)
λ ≥ 0, Gz ≤ Sx+W (2c)

Defining Q = {1, . . . , q} as the index set of all constraints
in (1b), we recall that a constraint among q constraints in
(1b) is said to be active if it holds with equality for a given
z and x and inactive if it holds with strict inequality. Thus
the active set A(z, x) can be described as A(z, x) := {i ∈
Q | Giz − Six−W i = 0} while the corresponding inactive
set J (z, x) is given by the set difference of Q and A i.e.
J (z, x) := Q\A(z, x). Furthermore, for an index set A ⊆ Q
the linear independence constraint qualification (LICQ) holds
if the gradients of the corresponding constraints are linearly
independent, i.e., if GA, referring to the submatrix of G that
contains the constraints associated to the indices in A, has
full row rank. Assuming that we know the optimal active set
A and that LICQ holds for this combination, we can use (2a)
and (2b) to derive the parameter-dependent optimizer [1].

zA(x) = H−1(GA)TH−1
GA(W

A + SAx) (3)

where the existence of H−1
GA := (GAH−1(GA)T )−1 is

guaranteed due to the LICQ and positive definiteness of

H . The set of inequalities in (2c) characterize the critical
region for the assumed optimal active set A. The CR is in
the form of a polyhedron in the parameter space defined by
the following inequalities

H−1
GA(W

A + SAx) ≤ 0 (4a)

GH−1(GA)TH−1
GA(W

A + SAx) ≤W + Sx (4b)

This polyhedron is the largest set of parameters for which
the combination of active constraints at the optimizer
remains unchanged.

B. Combinatorial Approach
In this section, we briefly summarize the main idea of

the combinatorial approach which is based on the implicit
enumeration of all possible combinations of active con-
straints. From the definition of the power set, all possible
combinations of active constraints are included in power set
P(Q). To consider all optimal active constraints, [5] suggests
to choose the candidate active sets from P ′(Q) which is a
subset of P(Q) including all the sets with maximum m̃ =
min{m, q} members (note that as pointed by [5], for a mp-
QP with m decision variables (z ∈ Rm) and q constraints,
only a maximum of m̃ linearly independent constraints can
be strongly active at the optimal solution [10]) in the order
of increasing cardinality and use the following LP to check
whether the candidate set is indeed optimal or not.

max
z,x,λAi ,sJi

t (5a)

s.t. te1 ≤ λAi , te2 ≤ sJi (5b)

t ≥ 0, λAi ≥ 0, sJi ≥ 0 (5c)

Hz + (GAi)TλAi = 0 (5d)

GAiz − SAix−WJi = 0 (5e)

GJiz − SJix−WAi + sJi = 0 (5f)

Here t is a scalar optimization variable and e1 =
[1, . . . , 1]T and e2 = [1, . . . , 1]T are vectors of appropriate
sizes corresponding to the vector of Lagrangian multipliers
λAi and the vector of slack variables sJi , respectively. The
pruning criterion in the combinatorial approach is based on
infeasibility of the combination of active constraints and the
following theorem from [5].

Theorem 1: If an optimization problem P consisting
of inequalities and equalities is infeasible, then the new
optimization problem P ′ formed by treating some of the
inequality constraints as equality constraints will also be
infeasible.

A graphical illustration of the combinatorial enumeration
strategy and the involved pruning process is given in the
form of a tree diagram in Fig. 1. As depicted, when a
combination of active constraints is infeasible, that and
all its supersets can be pruned due to Theorem 1. This
pruning criterion is crucial for achieving optimal efficiency
in the enumeration. Based on the above explanations, the
combinatorial approach proposed by [5] and [6] can be
summarized as in Algorithm 1.



Fig. 1. Combinatorial enumeration strategy used in [5]

Algorithm 1 Combinatorial mp-QP algorithm from [5], [6]
1) choose A ∈ P ′(Q) in the order of increasing cardin-

ality
2) if Ai is not pruned and GAi has full row rank, solve

(5)
x if feasible, use (3) and (4) to construct zAi

and CRAi

x if infeasible, solve (5) without optimality constraints
x if infeasible, add all Aj ⊃ Ai to the pruned sets

3) Return to 1) until the whole set P ′(Q) is explored

III. EXPLOITING SUPPLEMENTARY
INFORMATION

In this section we propose a new algorithm for explor-
ing the combinatorial tree to avoid solving a significant
number of LPs by exploiting supplementary information
about adjacent CRs for non-degenerate cases. While the
existing combinatorial approach proceeds through the tree
only in downward direction, our algorithm requires some
joint downward and upward explorations. For cases with no
degeneracies, identification of all optimal active combina-
tions of constraints and hence their corresponding CRs is
guaranteed. In the next section, we relax the assumption and
extend the study by suggesting a post-processing algorithm
to find the missed CRs that may occur in degenerate cases.
To begin with, we recall the the following definitions from
[3].

Definition 1. Let a polyhedron X ∈ Rn be represented
by the linear inequalities A0 ≤ b. Let the ith hyperplane
Ai0x = bi be denoted by H . If X∩H is (n−1)-dimensional
then X ∩H is called a facet of the polyhedron.

Definition 2. Two polyhedra are called neighbouring or
adjacent polyhedra if they have a common facet.

The supplementary information on which this algorithm is
based is the following theorem from [3].

Theorem 2: Consider an optimal active set {i1, i2, . . . , ik}
and its corresponding minimal representation of the full-
dimensional critical region CR0. Let CRi be a full-
dimensional neighbouring critical region to CR0 and assume
LICQ holds on their common facet F = CR0 ∩H where
H is the separating hyperplane between CR0 and CRi.
Moreover, assume that there are no constraints which are
weakly active at the optimizer z∗(x) for all x ∈ CR0. Then:

Type I: If H is given by Gik+1z∗0(x) = W ik+1 +
Sik+1x, then the optimal active set in CRi is

{i1, i2, . . . , ik, ik+1}.
Type II: If H is given by λik0 (x) = 0, then the optimal

active set in CRi is {i1, i2, . . . , ik−1}.
Theorem 2 indicates that if there are no degeneracies, i.e.

LICQ holds in the common facet between two CRs and
there are no weakly active constraints at the optimizer, the
optimal active sets in two adjacent CRs differ only in one
constraint. Based on this, assume that we have found the
candidate set Ai consisting of l constraints (which belongs
to level-l in the combinatorial tree) to be optimal and the
corresponding critical region CRAi

is constructed. If the
conditions in theorem 2 hold, all optimal active sets in
the adjacent critical regions to CRAi can have only one
constraint more or less than the constraints in set Ai. Coming
back to the combinatorial tree interpretation, this means that
we can explore the combinatorial tree from top to bottom
by starting from optimal active sets with minimum number
of constraints and then trying to find their adjacent CRs by
adding feasible constraints to those optimal active sets one by
one which generates the lower levels. Algorithm 2 shows the
new strategy that is based on downward exploration of the
combinatorial tree in which, we do not check the feasibility
of any candidate active set that is not optimal (except for
the first level), and the construction and exploration of the
combinatorial tree is only based on the optimal active sets.
This leads to a noticeable reduction in the number of LPs
needed to be solved which typically arise from the feasible
but not optimal combinations of active constraints. Next, the
simulation results for two systems using this new algorithm
are presented.

Algorithm 2 Downward exploration of the combinatorial
tree

Phase I (initialization):
1) i = 1, explore the entire level-1, use (5) to check

for optimality of each constraint. If the constraint
is not optimal, use (5) without optimality conditions
to check for feasibility of that constraint. Store all
optimal constraints in “optimal set” and all feasible
constraints, whether they are optimal or not, in
“feasible set”. All constraints in “feasible set” are
manipulated during the iterations in 2);
x if no constraint is found to be optimal in 1
x while optimal set is empty, explore the entire

level-(i+ 1), check only for the optimality
of the combinations;
i := i+ 1;

Phase II (iterations):
2) while i < m̃ = min{m, q}, construct level-(i + 1)

by adding one feasible constraint from level-1 to all
found optimal sets in level-i and check only for the
optimality of new combinations;
i := i+ 1;

Example 1. As a first numerical test, we applied algorithm
2 to the four tank system from [11] with 4 state variables



and 2 inputs. The simulation results for this system are
summarized in Table I where N , q, nz , nCR and nLP
represent the prediction (and control) horizon, number of
constraints, number of optimization variables, number of
found CRs and number of solved LPs, respectively. The last
column shows the ratio of the number of solved LPs using
Algorithm 2 to the number of solved LPs using Algorithm
1. It can be seen that this ratio decreases dramatically as
the prediction horizon increases. This is due to the fact
that by increasing the number of constraints, the number of
candidate active sets increases exponentially, while most of
them are only feasible but not optimal.

Example 2. As a second example, we considered the
fuel cell breathing control system in [12] and [7] with 8
state variables and 1 input and prediction horizon N = 6
and discretized the model with sampling time Td = 1 sec.
Table II provides an insightful illustration of the particular
situation that Algorithm 2 may encounter. It can be observed
that 6 critical regions are not found using Algorithm 2
although conditions in Theorem 2 holds for this system.
This observation is due to the fact that a critical region
may be entirely surrounded by critical regions corresponding
to combinations of active constraints from lower levels of
the combinatorial tree. In such cases, the critical region
will not be enumerated using Algorithm 2 with downward
exploration. In this example, one of the CRs which is not
enumerated using algorithm 2 corresponds to Ai = [9, 10, 17]
since none of the combinations Ai = [9, 10], Ai = [9, 17]
and Ai = [10, 17] in the upper level are found to be optimal.
The black CRs in Fig. 2 are found during downward explo-
ration via different branches while the grey CRs are missed.
To cope with such particular situation, we propose a modified
version of the Algorithm 2 which exploits the principle of
a upward exploration of the combinatorial tree. This means
that for all found optimal combinations of active constraints
with k elements, we check all subsets with k−1 elements that
have not been already enumerated to see if they are optimal
or not. Any newly found optimal combination should also be
considered in downward exploration recursively. Doing this,

TABLE I
COMPARISON BETWEEN ALGORITHM 1 AND ALGORITHM 2 FOR FOUR

TANK SYSTEM FROM [11]

Method N q nz nCR nLP
nLP,Alg.2

nLP,Alg.1

Alg. 1 1 14 2 11 22
Alg. 2 11 21 0.9545
Alg. 1 2 20 4 62 679
Alg. 2 62 223 0.3284
Alg. 1 3 26 6 221 18558
Alg. 2 221 1306 0.0703
Alg. 1 4 32 8 605 466652
Alg 2 605 5245 0.0112
Alg. 1 5 38 10 804* 2751780*
Alg. 2 1393 16273 0.0059

* The code execution is manually stopped after 24 hours. Only 804 CRs
were found by solving 2751780 LPs while the actual number of LPs to be
solved for the complete solution will be substantially larger.

TABLE II
NUMBER OF SOLVED LPS AND FOUND CRS FOR FUEL CELL

BREATHING SYSTEM WITH N = 6, USING DIFFERENT ALGORITHMS

Method N q nz nCR nLP

Alg 1 6 30 6 230 22264
Alg 2 224 1483
Alg 3 230 2197

the optimal combination Ai = [9, 10, 17] will be found in
upward exploration as a subset of Ai = [9, 10, 13, 17] and
Ai = [9, 10, 17, 19] will be found in downward exploration
as a superset of Ai = [9, 10, 17]. Hence, the modified version
of Algorithm 2 can be presented as in Algorithm 3.

The following theorem proves that Algorithm 3 will enu-
merate all critical regions for non-degenerate cases.

Theorem 3: Algorithm 3 guarantees the enumeration of
all optimal sets in the absence of degeneracy.

Proof: The theorem can be proved in a similar way to
[2]. Feasible space of the mp-QP is a polyhedron that is
partitioned in a finite number of fully connected critical
regions. There is no isolated region that could not be reached
starting from any region and passing through adjacent CRs.
Thus we can explore the entire feasible space starting from
any region (any combination of optimal active constraints
from a combinatorial point of view), and find all the adjacent
critical regions until the entire feasible space is explored. For
non-degenerate cases, the combination of optimal active con-
straints in all adjacent CRs to a CR have only one constraint
less or more than combination of optimal active constraints
in that CR. Both cases are considered in Algorithm 3 by
enumerating the subsets and supersets of each optimal active
set. Hence Algorithm 3 guarantees finding all neighbouring
CRs to any CR and thus, all optimal active sets will be
enumerated in a recursive routine.

The graphical representation for the exploration of the
combinatorial tree in example 2 using Algorithm 3 is shown
in Fig. 3. Table II implies that while all critical regions
are found, the number of LPs which should be solved
slightly increases in comparison to Algorithm 2, but it is
still in practice considerably diminished with respect to the

Fig. 2. Schematic representation of neighbouring CRs for example 2 in 2−
D. Regions in black are found during downward exploration in Algorithm
2 while regions in grey are not found



Algorithm 3 Downward-upward exploration of the combi-
natorial tree

Phase I (initialization):
1) i = 1, explore the entire level-1, use (5) to check

for optimality of each constraint. If the constraint
is not optimal use (5) without optimality conditions
to check for feasibility of that constraint. Store all
optimal constraints in “optimal set” and all feasible
constraints, whether they are optimal or not, in
“feasible set”;
x if no constraint is found to be optimal in 1)
x while optimal set is empty explore the entire

level-(i+ 1), check only for optimality of the
generated combinations;
i := i+ 1;

Phase II (recursive exploration):
2) (downward exploration) construct level-(i + 1) by

adding one feasible constraint from level-1 to all
found optimal sets in level-i and check only for the
optimality of new combinations;

3) (upward exploration) for all found optimal active
sets with k elements, check the optimality of all
its subsets with k − 1 elements that have not been
enumerated yet;

4) if a new optimal set is found, go to 3), else go to 5)
5) add all optimal active sets that are found at the

steps 3) and 4) to the appropriate levels in the
combinatorial tree and complete the exploration of
tree up to current level using downward exploration;
i := i+ 1;
if i < m̃ = min{m, q} go to 2), else stop;

number of LPs in Algorithm 1. As all other combinatorial
approaches, the number of LPs needed to be solved in
algorithm 3 is problem dependent. An upper bound for the
number of LPs can be given in terms of the number of
CRs (nCR), the total number of constraints (q), the number
of feasible constraints (nfeas) and the number of levels in
combinatorial tree (m̃ = min{m, q}) in the following form.

nLP,max = 2.q + nCR ∗ nfeas + nCR ∗ (m̃− 1) (6)

Here the first two terms are the maximum number of
LPs that should be solved in downward exploration as in
Algorithm 2. The maximum number of 2.q LPs are needed
in initialization phase and nCR ∗ nfeas indicates the worst
case number of LPs in the iteration phase. The third term
in (6) is the worst case number of LPs that are added
due to upward exploration. Since the maximum number of
elements in each optimal active set is m̃, the maximum
number of subsets with only one element less than the
original set is m̃. The number of subsets is reduced by one
because at least one of these subsets is already enumerated
in the downward exploration.

Fig. 3. Downward-upward exploration of combinatorial tree using Algo-
rithm 3 for example 2

IV. POST-PROCESSING ALGORITHM FOR
DEGENERATE CASES

The results of the previous section are achieved assuming
the absence of degeneracies in the problem as underlined in
Theorem 2. When degeneracy happens in the form of weakly
active or weakly inactive constraints at the optimizer or
failure of LICQ on the common facet between two CRs, the
combinations of optimal active constraints in two adjacent
CRs may differ in two or more constraints (see Theorem
5 and Lemma 1 in [3] for more details). Consequently,
Algorithm 3 fails to find the optimal sets in the adjacent
CRs of a CR if degeneracy occurs on all its facets. In other
words, only one non-degenerate facet for each CR is enough
for enumerating its corresponding optimal set. Simulation
results show that the situation for which a part of feasible
domain is isolated with facets such that degeneracy occurs
on all these facet is not very common. However, since we do
not have any a priori information about whether this situation
happens or not, one way to handle such cases is to assume
that the system has no degeneracies and first use Algorithm
3 to find as many CRs as possible, then to ensure that all
critical regions are indeed found, and find the missed CRs if
there are any, a post-processing procedure can be exploited
which is based on geometric exploration of the unexplored
parts. The main task of post-processing procedure is to search
for any possible unexplored part within the feasible space
to ensure that all CRs are found. To do this, one way is
to check for every found CR whether all full-dimensional
adjacent CRs along all its facets are found or not. If facet-
to-facet property holds for a system [13], every facet that
is not located on the boundary of feasible space belongs to
exclusively two neighbouring CRs. Hence every inner facet
should appear exactly two times among all the facets of all
found CRs. Therefore, the first step in the post-processing
algorithm is to determine whether there exists a facet, or
a part of a facet in cases for which facet-to-facet property
fails, among all the inner facets of found CRs that appears
only once. This means that the adjacent CR which shares
the corresponding facet or part of the facet with current CR
to which the facet belongs is not found. As mentioned in
Definition 1, a facet is the intersection of a CR with one of
the corresponding hyperplanes that define the polyhedron.



Since operations on hyperplanes represented by the corre-
sponding coefficients in its inequality are computationally
less complex and quite faster than facets, it is beneficial to
first check for all coinciding hyperplanes. Hence the main
steps of the post-processing algorithm will be as follows.
First, we consider all facets of found CRs using Algorithm
3 and check whether they are located inside the feasible set
or not. To do this, we can exploit a similar method to what is
done in [2] i.e., for every facet we choose an arbitrary point
in the interior of the facet and generate a new parameters by
moving a small step from the chosen point in the direction
of the normal to the facet and check for feasibility of this
new parameter. Feasibility of the new parameter indicates
that the facet is located within the feasible parameter set.
Next, we consider the corresponding hyperplanes for all
inner facets and for each hyperplane we find all coinciding
hyperplanes by some simple matrix operations. The results
are then stored in a binary matrix in which both rows and
columns relate to the indices of hyperplanes. By definition,
the (i, j) entry is set to 1 if hyperplanes i and j coincide
and 0 otherwise. Since coincidence of hyperplanes is mutual,
this matrix is symmetric and it is sufficient to find just the
elements of the lower or upper triangular part of the matrix.
Nonzero elements in each row show a group of coinciding
hyperplanes. Then for every group of coinciding hyperplanes
we consider corresponding facets and for every facet we
check whether the set difference of that facet with union of
all the rest facets is empty or not, using polyhedral operations
available in MPT3 [14]. An empty set difference means
that all the adjacent CRs along that facet are found. On
the other hand, a non-empty set difference means that some
adjacent CRs are not found using Algorithm 3. To identify
the combination of active constraints in the unexplored part,
we can choose any point in the interior of the remained set
from the set difference operation (for example the Chebyshev
center), generate a new parameters by moving a small step
from the chosen point in the direction of the normal to
the facet and find the corresponding optimal active set by
solving a QP as in [1]–[3]. Once we know the optimal active
set, we can use that to construct the control law and CR
using equations (3) and (4).The post-processing algorithm is
outlined below as Algorithm 4.

Table III shows the computation time for Algorithm 1
and for Algorithm 3 in conjunction with the post-processing
Algorithm 4 for example 1 on a 3.2 GHz core i5 CPU
running MATLAB 2014a, using MATLAB’s “linprog” with
“simplex algorithm” for solving the LP (5). It should be
noted that choosing appropriate LP solver has a considerable
impact on the accuracy and speed of the algorithm. However,
comparison between different LP solvers is beyond the scope
of this paper. As it can be seen from Table III, no new
CRs are found after applying post-processing algorithm since
there are no degeneracies in this case. It can be seen that as
the prediction horizon increases the the ratio of the computa-
tional time using the suggested method to the computational
time using Algorithm 1 decreases significantly. This is due
to the fact that the number of candidate active sets increases

Algorithm 4 Post-processing algorithm

Phase I (initialization):
1) for every facet of all found critical regions using

Algorithm 3, check whether the facet is located
inside the feasible parameter space or not.

2) for all inner facets consider hyperplanes and find all
coinciding hyperplanes.

Phase II (iterations):
3) for every hyperplane in a group of coinciding hy-

perplanes, consider the facet and check whether the
union of the rest of facets in that group overlaps with
the entire interior of the facet or not.

x if part(s) of the facet is not coinciding with ot-
her facets, choose an arbitrary point on that p-
art and generate a new parameter by stepping a
a small distance from the facet in the direction
of the normal to the facet. Find the combination
of active constraints at the new parameter by
solving a QP from [1]–[3], construct the cont-
rol law and corresponding CR.

exponentially as the number of constraints increases, while
the number of CRs and hence the corresponding geometric
computations in post processing algorithm usually increases
quite slower.

Example 3. As an example to check the efficiency of
post-processing algorithm in finding missed CRs, consider
again the fuel cell breathing control system with prediction
horizon N = 3 and discretization time Td = 1 sec. This in
an example in which Algorithm 3 is not able to find all CRs.
In fact 2 among the total 71 CRs are missed using Algorithm
3. One of the missed CRs in this example is related to
Ai = [11, 13, 16] (since none of its subsets are found to
be optimal in the previous level). The neighbouring critical
regions are those corresponding to the optimal active sets
Ai = [3, 11, 13], Ai = [6, 11, 13], Ai = [7, 11, 13] and Ai =
[10, 11, 13]. It can be seen that two full-dimensional adjacent
CRs differ in more than one constraints. The combination of
optimal active constraints in the common facets between the
adjacent CRs in this case are Ai = [3, 11, 13, 16], Ai =
[6, 11, 13, 16], Ai = [7, 11, 13, 16] and Ai = [10, 11, 13, 16]
which are all low-dimensional CRs due to LICQ failure
(n(Ai) > m̃ = min{m, q}, refer to [1] for more details).

TABLE III
COMPUTATIONAL TIME USING DIFFERENT METHODS FOR DIFFERENT

PREDICTION HORIZONS FOR FOUR TANK SYSTEM

N 1 2 3 4 5
tAlg.1[s] 0.9337 8.2482 251.5 9475.5 > 486400
tAlg.3[s] 0.6836 3.5643 25.1 129.7 530.6
tAlg.4[s] 10.4695 96.2353 455.9 1619.4 4723.5
tAlg.3,4[s] 11.1531 99.7996 481 1749.1 5254.1
tAlg.3,4

tAlg.1
11.8184 12.0995 1.91 0.1846 < 0.0608



TABLE IV
COMPUTATIONAL TIME USING DIFFERENT METHODS FOR DIFFERENT

PREDICTION HORIZONS FOR FUEL CELL SYSTEM

N 3 4 5 6 7 8
tAlg.1[s] 5.64 35.91 131.78 457.62 981.49 3329.6
nCR,Alg.1 71 133 186 230 261 277
tAlg.3[s] 4.31 13.23 24.43 40.40 50.10 68.61
nCR,Alg.3 69 131 184 230 261 277
tAlg.3[s] 4.31 13.23 24.43 40.40 50.10 68.61
nCR,Alg.3 69 131 184 230 261 277
tAlg.3,4[s] 72.90 192.43 283.61 156.38 407.12 460.34
nCR,Alg.3,4 71 133 186 230 261 277
tAlg.5[s] 5.78 10.15 6.79 13.89 24.79 28.88
nCR,Alg.5 23 26 4 1 1 3
tAlg.3,4

tAlg.1
12.94 5.36 2.15 0.34 0.41 0.14

Alg.5: Enumeration-based approach suggested in [15]

Algorithm 3 does not find these combinations since we
typically explore the tree up to level m̃ in combinatorial ap-
proach as mentioned before. The results of applying different
algorithms on this system with different prediction horizons
are presented in Table IV. It can be seen again that Algorithm
3 together with the post-processing algorithm can find all
CRs while the ratio of the required time using the suggested
method to the required time using Algorithm 1 decreases
as the prediction horizon increases. Table IV includes also
the simulation results using the enumeration-based approach
suggested in [15] for solving the associated parametric linear
complementarity problem which is implemented in MPT3.
It can be seen that this method, although quite faster, is not
able to find the complete solution while the correctness of the
algorithm is usually more important than the computational
time and complexity.

The computation time for different tasks in Algorithm
4 is shown in Fig. 4. It can be seen that the operations
on the facets are the most time consuming tasks, while
the matrix operations for polyhedra and finding the optimal
active sets by solving QPs are executed relatively fast. Table
IV indicates that the ratio of the computational time using the
suggested method to the computational time using Algorithm
1 has a decreasing trend in general as the prediction horizon

Fig. 4. Computational time for different tasks in Algorithm 4 for fuel
cell system with 3 different prediction horizons (Task1: Extracting facets
from polyhedra, Task2: Finding inner facets, Task3: Finding coinciding
hyperplanes, Task4: Checking for each inner facet if it is entirely covered
by other facets, Task5: Finding the optimal set in the adjacent CR)

increases. This is because the number of feasible combina-
tions of active constraints which are not optimal increases as
the prediction horizon increases.

V. CONCLUSIONS
In this paper, a new downward-upward strategy for ex-

ploring the combinatorial tree was suggested. This method
exploits the supplementary information from geometric ap-
proaches and ignores all feasible combinations of active
constraints that are not optimal. Therefore, the suggested
method solves a relatively smaller number of LPs than the
existing combinatorial approaches and is particularly well-
suited for problems with large number of feasible but not
optimal active sets. In the non-degenerate cases, identifying
all critical regions is guaranteed. To ensure that all CRs are
found and find any missed CR due to degeneracies in the
problem, a post-processing algorithm was suggested based
on the geometric exploration of unexplored parts in feasible
space.
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[2] M. Baotić, “An efficient algorithm for multiparametric quadratic
programming,” Technical Report AUT02-05, ETH Zürich, Institute für
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