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Explicit robustness margin for contractive piecewise affine control
laws

Rajesh Koduri1 Pedro Rodriguez-Ayerbe1 Sorin Olaru 1 and Morten Hovd2

Abstract—This paper deals with the class of discrete-time
linear dynamics affected by polytopic uncertainty in closed loop
with contractive piecewise affine (PWA) control law. Starting
from the hypothesis that the synthesis ensures a λ-contractive
PWA control law for the nominal model, the objective is to
calculate the robustness margin guaranteeing the contractivity
(and consequently the asymptotic stability) of the closed loop
dynamics. The robustness margin is represented as a subset of
parameters within the set describing the polytopic uncertainty.
For all these parameters, the λ-contractive behavior of the
trajectories can be certified. This set of parameters is then
compared to the set assuring the invariance of the considered
closed-loop PWA dynamics which represents a limit case of the
robustness study presented here.

I. INTRODUCTION

Model predictive control, possibly the most studied control
law besides the conventional controllers, has the ability to
handle constraints on inputs, states and outputs [7]. How-
ever, standard MPC can face computational difficulties for
calculating the optimal control inputs in an iterative fashion
especially when dealing with fast dynamics. To reduce the
computational complexity faced by MPC, researches have
come up with an Explicit MPC formulation [2], [1] in terms
of a PWA control law. The idea of the Explicit MPC is to
express the on-line quadratic problem in the control design into
a multi-parametric Quadratic Programming (mp-QP) problem
and to reduce the computation of the optimal control inputs
to a simple evaluation of a control law stored in a look-up
table. Such control laws can be easily implemented for real-
time system with fast dynamics and relative small state-space
models.

In the context of stability of the model predictive control,
the terminal cost function and the terminal set is widely
adapted in the problem formulation of the MPC at the design
stage to ensure the state trajectories converge to the origin.
A remarkable study on the control invariant characterization
of linear systems is proposed in [4]. In this reference, the
construction of successively tighter outer approximations for
controlled λ-contractive set is obtained via an iterative algo-
rithm. This approach was further extended to construct a non-
iterative controlled contractive set based on some conservative
assumptions [5]. In this paper, we advocate the use of a
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controlled λ-contractive set that guarantees contractivity for
each time step of the closed loop.

Starting from these framework, from the analysis point of
view, it is important to commensurate the capacity of the
control law to cope with disturbances, neglected dynamics
or uncertain parameters. These characteristics is denoted in
control theory as robustness of the controller. In the context of
robustness analysis of PWA controllers, very few contributions
have been made. Some noticeable recent works include an
analysis procedure proposed in [8] and [11], which handles the
robustness/fragility of the positive invariance for the dynamics
affected by uncertain parameters. On the other hand, the
robustness analysis can be connected to the works on the
robustification of the explicit controllers. The reference [10]
for example shows how to improve the robustness of the
controller by retuning.

It is worth to be mentioned that the analysis of a nominal
PWA control and its retuning is essentially different approach
from a robust control design. It is known that a robust
PWA control as for example robust explicit predictive control
synthesis [12] can account for uncertainties based on dynamic
programming approach but the associated computational com-
plexity is exponential with respect to the nominal case. The
same thing can be said about the robust explicit model pre-
dictive control with contractive set based on variable-structure
control law for linear polytopic uncertain system as presented
in [13].

In this paper, a multi-parametric quadratic programming
problem is formulated in order to compute a PWA control
law which enforces contractivity for the class of linear
discrete-time systems. Starting from the λ-contractive control
law, we present two robustness margins for the system
stabilized by a contractive piecewise affine control law. First,
the robustness margin for a discrete-time system affected by
polytopic uncertainty is presented. The robustness margin
denoted Ωrob and defined as a subset of the parametric
uncertainty set Ω and is shown to take the form of polyhedral
set. For all the models belonging to the polyhedral set Ωrob,
the contractivity of the state trajectories are guaranteed in the
presence of time-varying uncertainties. Second, we propose
a numerical method to compute a gain margin set for a
discrete-time system stabilized by a contractive PWA affine
control. The desired gain margin takes the form of a set
which characterizes admissible variations of system gains
preserving the contractive characteristics of the controller.

The paper is organized as follow: First the definition of
the basic notions on the explicit MPC is presented, and the



properties of the λ-contractive explicit MPC are detailed. In
section IV the construction of the λ-contractive controller
via multi-parametric programming problem is presented.
In section V the computation of robustness margin against
parametric uncertainties is presented. The gain margin set for
the contractive piecewise affine controller is shown in section
VI. Examples at the end of sections V and VI illustrates the
obtained robustness margins.

BASIC NOTATIONS AND PRELIMINARIES

This section addresses some basic notations and definitions.
A vector is defined as x ∈ Rn, x = [x1, x2, · · · , xn]T and
a matrix as A ∈ Rn×m, A = [aij]. An identity matrix
is represented by In, where the subscript n denotes the
dimension of that matrix. The sets R, R+, Z, N and N+

denote set of real numbers, set of non-negative real numbers,
set of integers, set of non-negative integers, set of positive
integers respectively. We denote Rn a Euclidean space. Given
a set S, we denote by Card(S) its cardinal number.

A set S ⊂ Rn is a proper C-set if it is convex, closed,
compact and contains the origin in its interior. A polyhedron
is the (convex) intersection of a finite number of open or
closed half-spaces and a polytope is a bounded and closed
polyhedron. A mapping function f : Rn → Rm is said to be
positively homogeneous of the first degree, if f (αx) = αf(x),
∀ α ∈ R+ and ∀ x ∈ Rn. The set of vertices of a polytope M
⊂ Rn is denoted V(M ). The unit simplex in RL is defined as
SL = {x ∈ RL

+ | 1T x = 1}. 1 is a vector with all its elements
equal to 1. For a N ∈ N+, IN denotes the set of integers,
IN := { i ∈ N+ | i ≤ N }. Let P be a symmetric convex
set in Rn, then a function Mp(x) is a Minkowski function
of P , if Mp(x) = inf {γ ∈ R+: x ∈ γP}. ProjRc2S is a
projection mapping of a set S onto a subset, S ⊂ Rc1 → Rc2

for c1 > c2 and will be considered to operate on the first c2
coordinates of Rc1. Finally, Conv denotes the convex hull.

II. BACKGROUND AND OBJECTIVES

Consider the discrete-time linear time-invariant system
given by,

xk+1 = Axk +Buk (1)

at all time instants k ≥ 0. Here, xk ∈ Rn is the state
vector, uk ∈ Rm is the control vector, A ∈ Rn×n and
B ∈ Rn×m. The system states and inputs variables are subject
to constraints,

Xc = {x : Hxx ≤ hx, Hx ∈ Rnx×n, hx ∈ Rnx} (2a)
Uc = {u : Huu ≤ hu, Hu ∈ Rmu×m, hu ∈ Rmu}, (2b)

where the matrices Hx, Hu and the column vectors hx, hu
are assumed to be constant, and Xc ⊂ Rn and Uc ⊂ Rm.
The state and input constraint sets Xc and Uc are polytopes
containing the origin in their interior.

For the PWA control design, a quadratic cost of standard
MPC with the terminal cost and stage cost is considered and
subsequently transformed into a multi-parametric Quadratic

Programming (mp-QP) problem [2]. Considering the discrete-
time system in the form (1) subject to the constraints (2), the
equivalent mp-QP problem is written after algebraic manipu-
lations as

J(x, U∗) = min
U∗

1

2
U∗THU∗ + xTFTU∗ +

1

2
xTY x (3a)

s.t GU∗ ≤ D + Sx. (3b)

In (3), x = x0, the column vector U∗ =
[u∗0

T , · · · , u∗Np−1
T ]T∈ RmNp is the optimization vector

and Np is the prediction horizon length. The matrices
H,F, Y,G,D, S are easily derived from the standard MPC
cost (see [2] for the definition of the matrices and further
details).

The optimal solution for (3) is represented by a finite set
of affine functions defined over the polyhedral partition of
the set X , X = ∪Ni=1Xi. The polyhedral Xi ⊂ Rn are called
critical regions or components of the partition. The polyhedral
regions Xi are non overlapping i.e., Int(Xi) ∩ Int(Xj) =
∅, ∀i 6= j. Furthermore, two neighboring regions Xi and Xj

share some vertices or facets. The proof of the properties of
the mp-QP solution is presented in [2].

Definition 1: A function

fpwa : {Rn → Rm|Aix+ bi,∀x ∈ Xi, i ∈ IN} (4)

defined over the polyhedral partition of the set X is called a
piecewise affine function of the polyhedral partition.

The explicit control law, solution of (3), is synthesized in
terms of a continuous piecewise affine function defined over
the polyhedral partition of the set X and it can be described
by

upwa(xk) = Fixk + gi, ∀xk ∈ Xi. (5)

Definition 2: A closed and bounded set P ⊆ X is called
positively invariant with respect to the system (1) in closed
loop with the control law upwa(xk) if for any x0 ∈ P , it
follows xk ∈ P , ∀k ∈ N+.

Considering the class of PWA feedback laws, we are
interested in defining the notion of λ-contractiveness.

Definition 3: A C-set P ⊆ X is called controlled λ-
contractive with contraction factor λ ∈ [0,1) if and only if
there exists an admissible control law upwa(xk) such that
∀xk ∈ αP then Axk + Bupwa(xk) ∈ λαP , ∀α ∈ [0, 1].

The controlled λ-contractive set represent an important
notion that can be employed for stabilizing a constrained
discrete-time linear systems. The properties of λ-contractive
sets are enhanced versions of the positively invariant set. The
polytopes generated from the contractive set are simpler than
the reachable set and provide compact representations for the
optimization based control design.



In this paper, we consider parametric uncertainty on the A
and B matrices of the system model (1). A set Ω is introduced
in the parameter space,

Ω = Conv{[A1 B1] · · · [AL BL]}. (6)

The nominal system is given by a convex combination,

[A B] =

L∑
i=1

ζi[Ai Bi] (7)

where ζ = [ζ1, · · · , ζ]T ∈ SL and ζi is a non-negative scalar.

Definition 4: Consider a polytopic set Ω, the robustness
margin problem is to compute the largest subset Ωrob ⊂ Ω
such that a given PWA control law upwa(x) defined over the
polyhedral set X for the system model (1) is controlled λ-
contractive.

III. PRELIMINARIES

In the following, we introduce few matrix notations which
will be used throughout the paper in relationship with the gen-
erators of the polytopic sets. Recall the polyhedral set X , and
its partition X=∪i∈INXi. The set X and each of the regions
composing the partition Xi are closed and bounded polyhedral
sets and can be described by the vertex representation,

X = Conv{v1, v2, · · · , vr} (8)

Xi = Conv{wi1, wi2, · · · , wiri} (9)

where r and ri, for i ∈ IN denote the number of vertices for
X and Xi respectively.

The vertex representation of the polytope X with the
corresponding sets of vertices V(X ) given in (8) define a finite
subset of Rn. Consequently, these vertices can be stored as
columns of a matrix W ∈ Rn×r.

W = [v1, v2, · · · , vr]. (10)

The vertices given in (9), form a different subset of vectors
in Rn. The vertices associated with each polytope Xi is
referred as V(Xi). It should be noted that a region and
its neighboring region may have some vertices in common.
Therefore, the vertices are arranged with a cardinal number p
= Card(V(Xi)), thus avoiding the column wise redundancies,

V = [V(Xi)] = [w1, w2, · · · , wp] (11)

here V ∈ Rn×p. Finally, the knowledge of an admissible input
for each vertex stored in the matrix V allows the construction
of a matrix U ∈ Rm×p,

U = fpwa(V ) (12)

where the application of the function fpwa(.) should be
interpreted column wise.

IV. CONTROL DESIGN FOR CONTROLLED λ-CONTRACTIVE
SET

In this section, we discuss control design based on the
explicit MPC law, but with an additional λ-contractive con-
straint imposed on the problem formulation. To facilitate an
explicit control with controlled λ-contractive, it is desirable
to compute an initial contractive set that does not violate the
original state constraints. The controlled contractive sets of the
shape specified in [5] are considered. To calculate an initial set,
let us consider the system (1) and the state constraints, with a
matrix A = VADAV

−1
A . Here VA and DA denote the matrices

of eigenvectors and diagonal eigenvalues matrix corresponding
to the Jordan decomposition of matrix A. The obtained initial
set is symmetric and can be represented as,

P =

{
x :

[
V −1A

−V −1A

]
x ≤

[
kx
kx

]
, VA ∈ Rn×n, kx ∈ Rn

}
.

(13)
The contractiveness does not inherently require the set to

be described in the form (13), it was just one approach to find
a particularly simple controlled contractive set. The quadratic
cost function for the controller stabilizing a linear discrete-time
system given by (1) subject to constraints (2) is formulated as,

J(xk, U
∗) = min

U∗

Np∑
i=1

||Qxk+i||22 +

Np−1∑
i=0

||Ruk+i||22 (14a)

s.t. xk+1 = Axk +Buk, k = 0, · · · , Np − 1 (14b)
x0 = x(0) (14c) V −1A

−V −1A

xk+1 ≤ λα

kx
kx

 (14d)

uk ∈ Uc, k = 0, · · · , Np − 1 (14e)
xk ∈ Xc, k = 1, · · · , Np (14f)

Here λ is a pre-defined contractive factor, λ ∈ [0, 1) and α ∈
[0, 1] will be considered as a parameter. The weight matrices
Q = QT ≥ 0 and R = RT > 0 are positive semi-definite
and positive definite respectively which define the performance
index of the optimization problem (14)[7].

In (14a) we use an optimization criterion spanning over
a multiple-time step horizon, while the contraction is only
imposed for the first time step. Anyhow, the contractive
set constraint in (14d) should be designed to make (14f)
redundant.

Now, one has to transform the problem (14) into multi-
parametric programming problem including the full vector of
parameters. This complete mp-QP problem is formulated for
the state vector x and α as an augmented parameter vector x̂
= [x, α]T leading to the compact cost formulation:

J(U∗(x̂)) = min
U∗

1

2
U∗THU∗ + x̂TFTU∗ +

1

2
x̂TY x̂. (15)

The constraints for the state and input variables can be
appended to the inequality constraint given below,

GU∗ ≤ D + Sx̂. (16)



In (15) and (16), x̂ = x̂0. Subsequently, the initial contrac-
tive set given in (13) is also extended to x̂ space, by setting the
bounds of α parameter between 0 and 1. This set is herewith
denoted as P̂ ∈ Rn+1. It inherits the polyhedral structure and
will be included in the problem formulation via a set of linear
constraints with a linear dependence of the right hand side on
the extended parameter vector x̂.

The contractive set (14d) represented by the inequality
constraints can be written within (16):

G =


 V −1A

−V −1A

 ∗B,
0

0


2n×Np−1



S =

−V −1A

V −1A

 ∗A, λ
kx
kx

 and D =

0

0


2n×1

From the problem formulation it can be noted that the state
vector x and α are the new parameters of the mp-QP problem.
The state space partition obtained from the problem (15) and
(16) can be represented as a finite collection of regions in the
extended [x, α] space. This will be denoted next as

X̂ = ∪i∈IN̂ X̂i (17)

The control law obtained from the mp-QP formulation is given
by,

ûpwa(x̂k) = F̂ix̂k + ĝi, i ∈ IN̂ (18)

In the following, we further explore the parametric depen-
dence on α with the aim to reduce the extended vector [x,
α]-space to the initial x-space by preserving the piecewise
affine formulation. This can be done with a particular choice
of α which can be interpreted as an implicit function of x
using in practice the Minkowski function Mp with respect to
the initial contractive set P . We recall here some of the basic
properties.

Lemma 1: Let P be a convex set containing 0 as an interior
point. Then the Minkowski function Mp of P satisfies:
1) MP is continuous,
2) MP is piecewise linear,
3) MP (x1 + x2) = MP (x1) + MP (x2).

Now, introduce a subset H ⊂ Rn+1 defined as the graph of
the Minkowski function with respect to the set P ⊂ Rn.

H =

{[
x
α

]
:MP(x) = α

}
(19)

The PWA function (18) can be restricted to the subsetH∩X̂
and subsequently projected onto the original state space. This
results in an explicit PWA function:

upwa(xk) = Fixk + gi, i ∈ IN , for xk ∈ Xi (20)

defined over a partition X , X =
⋃

i∈IN Xi. This design
procedure is resumed in Algorithm 1.

Algorithm 1 Algorithm for the control law in x space

Input: X̂ ∈ Rn+1, H ∈ Rn+1, F̂j ∈ Rm×n+1, ĝj ∈ Rm, i
Output: X ∈ Rn, Fi ∈ Rm×n, gi ∈ Rm

Initialization : i = 0
1: Obtain the polyhedral regions,
X̂ =

⋃
j∈IN̂

X̂j , X̂j ∈ Rn+1

LOOP Process
2: for j = 1 to N̂ do
3: Pint = X̂j

⋂
H.

4: Pproj = Proj(Pint, 1 : n)
5: if (dim(Pproj == n)) then
6: i = i + 1
7: Xi = Pproj

8: Fi = F̂j(:, 1 : n) + Mp(x) * F̂j(:, n+ 1)
9: gi = ĝj

10: end if
11: end for

V. ROBUSTNESS MARGIN FOR λ-CONTROLLED
CONTRACTIVE SETS

The robustness margin for the projected polyhedral set X
can be constructed by using the vertex and half-space repre-
sentation. In this paper we focus on the vertex representation
and start by recalling the nominal system (1) subject to the
constraint (2) used for the design of a contractive piecewise
affine control law. The matrices [A B] belong to the polytopic
uncertain set Ω as defined in (6). The robustness margin
problem is to compute the subset Ωrob ⊂ Ω such that the
closed loop dynamics obtained with the PWA control law
defined over X is λ-contractive, that is:

xk+1 = (A+BFi)xk +Bgi ∈ λαX (21)

and i ∈ IN .
Let us define few important matrices which will be used in
the following.

Recall the matrix V defined in (11) which stores all the
non-identical vertices of the Xi with a cardinal number p. The
value of α parameter is computed for each column vector in
the matrix V ,

αi(wi) =MP(wi), i ∈ Ip. (22)

It is possible to express (21) as a convex combination of
the vertices of the polyhedral set X ,

r∑
j=1

γjvj , γ = [γ1, · · · , γr]T ∈ Sr, 1T γ = 1.

Rewriting (21) we obtain:

(A+BFi)xk +Bgi = λα(xk)Wγk. (23)

Replacing (22) within (23) one can compute for each
column vector in the matrix V with the corresponding vector
γi. Storing the column vectors γi, i = 1, . . . , p, a matrix
Γ ∈ Rr×p will be obtained

Γ = [α1γ1, α2γ2, · · · , αpγp]. (24)



Finally, after defining a matrix M ∈ Rn×r as a simple
scaling of the vertices of the feasible set M = λW one can
state the main result with respect to the robustness margin
characterization.

Theorem 1: Consider a discrete-time system (1) subject to
a polytopic uncertainty and subject to the states and input
constraints. The robustness margin for a given contractive
piecewise affine control law is given by

Ωrob = ProjSLT (25)

where T represents the polyhedral set,

T =


{(ζ,Γ) ∈ SL × Rr×p|1T Γ = [α1, · · · , αp],∑L

j=1 ζj(AjV +BjU) = MΓ}.

 . (26)

Proof: To prove the existence of robustness margin for
the polyhedral set X whose control law is associated with
controlled λ-contractive set, let us consider the closed loop
formulation of the piecewise affine control law with the
λ-contraction.

(A+BFi)x+Bgi ∈ λαX (27)

where λ denotes the contractive factor and the parameter
α(x) = MP(x). We recall that ∀(A,B) ∈ Ωrob,∀x ∈ Xi,
∀i ∈ IN and considering the polytopic uncertainty set Ω we
can show that Ωrob ⊂ Ω. And clearly, (27) can be written as

L∑
j=1

ζj(Aj +BjFi)x+ ζjBjgi ∈ λαX . (28)

Now, simply the state vector, x ∈ Xi, can be expressed as a
convex combination of the vertices, x =

∑ri
l=1 βlwil for

∑ri
l=1

βl = 1, with ζj the elements of a vector ζ ∈ SL, ∀i ∈ IN and
∀l ∈ Iri .

Subsequently replacing x with wil, the α parameter for the
vertex wil is computed by αil =MP(wil). Equivalently (28)
is followed by,

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi ∈ λαilX . (29)

Moreover, the inclusion can be explicitly described by the
existence of yil ∈ λαilX such that:

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi = yil. (30)

The vector yil ∈ Rn can be expressed as,

yil = λαil[V(X )]γil for γil ∈ Sr. (31)

Substituting (31) in (30) and introducing a matrix M ∈
Rn×r, where M = λW we obtain,

L∑
j=1

ζj(Aj +BjFi)wil + ζjBjgi = Mαilγil. (32)

From (32) it can be stated that if it holds ∀l ∈ Iri ,
consequently it will hold for all the columns of the matrix
V as given in (11). Exploiting the admissible input mapping
of the columns of V as in U leads to the matrix formulation,

L∑
j=1

ζjAjV + ζjBjU = MΓ. (33)

It can be noticed that γil ∈ Sr, that is, each column of
matrix Γ is restricted to the simplex Sr multiplied by αi,
∀i ∈ Ip. The above derivations prove that the polyhedral
set T in (26) represents a parametrized set of all the model
uncertainties guaranteeing the controlled λ-contractivity of the
closed loop for the dynamical system affected by uncertainties.
Further the polyhedral set T is projected on the simplex
function SL.

A. Example

Consider a discrete-time linear system constructed from the
uncertainty set described by:

Ω = conv



[A1 B1] =

[
0.4546 −0.0913 0.0849
0.1836 0.5389 0.0064

]
,

[A2 B2] =

[
0.7326 −0.0767 0.0609
0.1557 0.9909 0.0114

]
,

[A3 B3] =

[
1.0866 −0.0861 0.0823
0.1722 1.4323 0.0076

]


with the nominal model chosen to be:

xk+1 = Axk +Buk (34)

with A = 0.3A1 + 0.2A2 + 0.5A3 and B = 0.3B1 + 0.2B2

+ 0.5B3.
The input constraint is given by −2 ≤ uk ≤ 2 and the state

constraints are -100 ≤ [0 1]xk ≤ 100. The contractive factor
λ chosen is 0.99. Unity weights are applied on the inputs and
states penalties and the prediction horizon chosen is 2. Multi-
Parametric Toolbox is used to obtain the state space partition
[9].

Fig. 1: State space partition with α as parameter



Fig. 1, shows the state space partition of the above system
and it has 11 regions. Fig. 2, shows the regions of the initial
contractive set with the projected states [x1, x2]. Here the
initial contractive set is divided into four regions and the
hyperplane for the α parameter is calculated for each region.
The projection is done using the proposed algorithm in section
IV.

Fig. 2: Projected state space partition x1, x2.

Fig. 3: Robustness margin for contractive and invariant set in
the plane of ζ1, ζ2.

Fig. 3, shows the robustness margin Ωrob for the controlled
λ-contractive set presented by the blue polytope and robustness
margin for the controlled positively invariant set by the green
polytope. The red dot denotes the considered nominal system
where ζ1 = 0.3 and ζ2 = 0.2. For simplicity, the simplex
function is presented only for ζ1 and ζ2 such that ζ3 = 1 -
ζ1 - ζ2. It is observed that the given control law guarantees
the contractivity of the feasible region X only if the system
is inside the blue polytope. Similarly, the control law cannot
guarantee either the positive invariance or contractivity of X
if the system is away from the blue and green polytopes. For
system inside the green polytope and outside the blue polytope
the control law guarantees the invariance of the operating
region X . Fig. 4, shows the state trajectories for the same
initial state x0 = [−70 98]T for different nominal systems.

Fig. 4: Trajectories for different nominal systems for the same
initial state.

Fig. 5: Simulation for the state trajectories and control input
for an initial state x0 = [60 − 80]T .

Fig. 5, depicts the simulation for the state trajectories and
control input for a nominal system with ζ1 = 0.3, ζ2 = 0.2
and ζ3 = 0.5 and, for an initial state x0 = [60 − 80]T .

VI. GAIN MARGIN FOR λ-CONTROLLED CONTRACTIVE
SETS

In the following, we describe an analysis of the gain
margin set for the system (1) stabilized with the help of a
state feedback contractive PWA control law. The construction
of the gain margin is similar with the one presented in the
previous section and the proofs will be omitted.

Definition 5: Consider a discrete time linear system
(1) with a continuous contractive PWA control law, such
that the state space set X is controlled λ-contractive. The
Gain Margin is represented by the set K ⊂ Rm, such that
xk+1 = Axk + B(Im + diag(δK))upwa(xk) ∈ X , ∀xk ∈ X
and δK ∈ K, δK ∈ Rm.

The set K ⊂ Rm is a set which contains the input channels
gain variations δK such that for any point inside the set K,
the λ-contractive characteristics of the set X is preserved.



Theorem 2: Consider a discrete-time linear system (1) with
a contractive piecewise affine state feedback control. The gain
margin K of the controller is defined by the set,

K = ∩pq=1Kq, (35)

where K represents the gain margin set and Kq the local
gain margin for the vertex wq for some q ∈ Ip.

Kq = {z ∈ Rm|∃u ∈ ∆Uq, Mz = u} (36)

with

∆Uq = {u |Ĥuu ≤ ĥu} (37)

where Ĥu ∈ Rdu×m and ĥu ∈ Rdu . ∆Uq represents the set
of admissible input variation for the vertex wq preserving the
contractivity.

The collection of sets Kq are independent for each vertex
of the set in Xi and the intersection of these independent set
gives the global set K. In order to compute Kq , we first need
to compute explicitly the sets ∆Uq .

Theorem 3: Consider a linear discrete-time system (1)
stabilized by a contractive piecewise affine control law. The
set ∆Uq of admissible input variations at the vertex wq is
obtained by

∆Uq = ProjUcHq (38)

Uc ∈ Rm denotes the input constraint set. The polyhedral set
Hq is described by:

Hq =

(δu, γ) ∈ Rm × Rr, and [A B]

[
xk

upwa(xk)

]
+Bδu = λαWγ


(39)

Proof: The proof is similar to the one presented in the
previous section.

A. Example

Consider a discrete-time linear system,

xk+1 =

[
0.9 0.5
0.2 0.8

]
xk +

[
1.0
0.2

]
uk

The input constraint is given by −2 ≤ uk ≤ 2 and state
constraint by −5 ≤ [0 1]xk ≤ 5. The prediction horizon
chosen is 2 and unity weights are applied on the inputs and
states penalties . The contraction factor λ = 0.98 is considered.

The gain margin set K in (35) is computed for the PWA
control law assuring the contractivity characteristics of the
controller. As a term of comparison, with respect to the
invariance, the value of δK lies between [−0.524, 1.554] while
for the contractive controller, the value of δK lies between
[−0.467, 1.445]. Fig. 6 shows the projected state partition on
the x−plane with state simulations in closed loop for an initial
state x0 = [0.355 5.0]T for different δK values.

Fig. 6: Projected state space partition with state trajectories
for different δK values.

State trajectories, control inputs and α values are simulated
in closed loop for an initial state x0 = [0.355 5.0]T with differ-
ent δK values, such that xk+1 = Axk +B(1 + δK)upwa(xk),
for the contractive controller and it is shown in Fig. 7. It is
observed that the trajectories are λ-contractive thus confirming
the theoretical result.

Fig. 7: Simulation for state trajectories, control input and α
for different δK values.

VII. CONCLUSIONS

In this work the robustness margin assuring the contractivity
of trajectories for a linear uncertain system controlled by a
piecewise affine control law has been deduced. Starting with
a nominal contractive PWA control law, this robustness margin
consists in a subset of the uncertain polytopic description
of the plant. For all the systems described in this set the
trajectories are contractive. Moreover a gain robustness margin
have also been computed.
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