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Abstract—Do the gains from massive MIMO and coded caching
cumulate? In this paper, we try to answer the question in a
simple setting of downlink MIMO channel with Rayleigh quasi-
static fading. While it is generally perceived that each of massive
MIMO and coded caching is scalable alone with the number of
users, we show that in this setting MIMO and coded caching are
indeed complementary and the combination of both provides a
scalable solution in most practical scenarios.

I. INTRODUCTION

Content delivery is about to take up more than 70% of the
mobile traffic in the near future. To accommodate the traffic
expansion, massive MIMO, using a huge number of antennas
at the base station to create a large number of degrees of
freedom, is a promising solution to increase substantially the
spectral efficiency [1]. If the number of transmit antennas can
scale with the number of users K, then the total transmission
time for all the K requested files does not increase with K
since simultaneous transmission can be done in the parallel
channels created by precoding (e.g. zero forcing). Another
solution is caching, that is, exploiting the on-board memory to
prefetch popular contents at (or close to) the end users of the
network during off-peak hours so that the traffic during peak
hours is significantly reduced. Recently, it has been shown that,
with the so-called coded caching, the minimum number of
total multicast transmissions to satisfy the demand of K users
goes to constant when K →∞ [2]. Instead of sending parallel
streams as in MIMO, the single stream (multicast) transmission
in coded caching conveys information that is simultaneously
useful to a large subset of users. A common perception is
that both massive MIMO and coded caching are potentially
scalable solutions alone with respect to the number of users.
However, the scalability relies on some ideal assumptions that
may not hold in real systems as discussed shortly. Therefore, it
is of practical and theoretical interest to address the following
question from the engineering perspective: is it beneficial to
use both technologies?

Before trying to answer the question, we shall first argue
that neither of the solutions is indeed scalable in wireless
channels under some practical assumptions. The scalability of
massive MIMO, with respect to the number of users (K →
∞), relies on the vanishing error of channel state information
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at the transmitter’s side (CSIT), whereas the scalability of
coded caching hinges on a non-vanishing multicast rate of the
channel. In our investigation, we consider an i.i.d. quasi-static
MISO downlink channel with a multi-antenna base station
and K single-antenna receivers. Unfortunately, the underlying
conditions for the scalability are hard to be fulfilled in this
setting. Then, we show that the combination of both schemes
actually provides a scalable solution, which answers the above
question positively in this particular setting. Here, we define
an equivalent content delivery rate as a unified metric of the
throughput performance. We analyze the content delivery rates
of two schemes as well as the relative merit of coded caching
with respect to massive MIMO in various regimes of interest,
as the number of users K grows. The asymptotic analysis
validated by numerical examples suggests that coded caching
shall be preferred to massive MIMO when the per-user power
decreases or remains constant, or equivalently when the error
variance increases or remains constant, with respect to the
number of users. Such behavior is expected because it is well
known that the gain of massive MIMO vanishes in these cases.
As a final remark, our work appears to be the first study that
quantifies the relative merit between massive MIMO and coded
caching to the best of our knowledge. Among a number of
recent works studying coded caching in wireless channels
[3], [4], [5], [6], [7], the works [5], [6] consider the MISO
broadcast channel as the current work. However, these works
are conceptually different because their scope is on the interplay
between the CSI feedback and coded caching.

The remainder of the paper is organized as follows. The
system model is presented in Section II, followed by the unicast
rate and the multicast rate in the MISO broadcast channel in
Section IV. Section V provides the asymptotic analysis of the
unicast/multicast rates and Section VI provides some numerical
examples. Finally, we conclude the paper with some discussion
in Section VII.

Throughout the paper, we use the following notational
conventions. For random quantities, we use upper case non-
italic letters, e.g., X, for scalars, upper case letters with bold and
non-italic fonts, e.g., VVV, for vectors, and upper case letter with
bold and sans serif fonts, e.g., MMM, for matrices. Deterministic
quantities are denoted in a rather conventional way with italic
letters, e.g., a scalar x, a vector vvv, and a matrix MMM . Logarithms
are in base 2. The Euclidean norm of a vector and a matrix



is denoted by ‖vvv‖ and ‖MMM‖, respectively. The transpose and
conjugated transpose of MMM are MMM T and MMMH, respectively.

II. SYSTEM MODEL

In this paper, we consider a MISO downlink channel where
a base station with nt transmit antennas communicate with
K single-antenna users. The channel HHH ∈ CK×nt is assumed
to be a quasi-static fading channel, i.e., remain unchanged
during the transmission of a whole coded block. For tractability,
we assume that the channel is independent and symmetric
across users with i.i.d. Rayleigh fading, i.e., HHHk ∼ CN (0, IIInt),
k = 1, . . . ,K, with HHH = [HHH1 · · · HHHK ]T. The channel
state information (CSI) is assumed to be known perfectly
at the receiver side, the transmitter only knows an estimate ĤHH.
Receiver k at time t has the observation

Yk[t] = HHHT

k xxx[t] + Zk[t], t = 1, 2, . . . , n, (1)

where xxxt ∈ Cnt×1 is the input vector at time t, with the
average power constraint 1

n

∑n
t=1 ‖xxxt‖2 ≤ P ; the additive

noise process {Zk[t]} is assumed to be spatially and temporally
white with normalized variance, i.e., Zk[t] ∼ CN (0, 1), k =
1, . . . ,K. Since the noise power is normalized, the transmit
power P is identified with the total SNR throughout the paper.

In practice, imperfect CSIT is due to a limited resource for
downlink channel training and channel feedback in a FDD
system, while it is due to the channel estimation error at the
base station and/or imperfect calibration in a TDD system. A
common model for the imperfect CSIT is

HHH = ĤHH + H̃HH (2)

where ĤHH and H̃HH are the mutually uncorrelated estimated channel
and channel estimation error and have variances 1− σ2 and
σ2, respectively. Since we assume Rayleigh fading, ĤHH and H̃HH
are independent and circularly symmetric Gaussian distributed.

III. MIMO TRANSMISSION

A. Transmission of private information: Zero-forcing precoding

A commonly used precoding algorithm for MISO downlink
is the zero-forcing (ZF) precoding scheme such that the signal
for each user should be sent in the null space of the other users’
signal space. For ZF to work, we assume that the number of
users that can be simultaneously served is smaller than the
number of antennas, i.e., K ≤ nt. This is our assumption
whenever ZF is used in the following. Under imperfect CSIT
(2), the signal of user k is precoded in the direction WWWk,
satisfying the following constraints:

‖WWWk‖ = 1 (3)

ĤHH
T

lWWWk = 0, ∀ l 6= k. (4)

The precoded signal is therefore

XXX =

K∑
k=1

WWWkXk (5)

where we omit the time index for simplicity. Here Xk is the
private signal for user k. We use i.i.d. Gaussian signaling

for tractability, i.e., {Xk} are i.i.d. ∼ CN (0, Pk), with power
constraint

∑K
k=1 Pk ≤ P .

The received signal at user k is

Yk = HHHT

kWWWkXk +
∑
l 6=k

H̃HH
T

kWWWlXl + Zk (6)

= GkXk +
∑
l 6=k

G̃k,lXl + Zk (7)

where

Gk := HHHT

kWWWk ∼ CN (0, 1), (8)

G̃k,l := H̃HH
T

kWWWl ∼ CN (0, σ2). (9)

Note that the above equivalent channel coefficients are not
independent between each other. The signal-to-interference-
and-noise ratio (SINR) at receiver k

SINRk(HHH) :=
|Gk|2Pk

1 +
∑
l 6=k |G̃k,l|2Pl

. (10)

Assuming that each user k knows SINRk, for any realization
HHH = HHH , we are interested in the following rate

Rk(HHH) = log (1 + SINRk(HHH)) . (11)

Remark III.1. The rate (11) can be regarded as an upper
bound on the rate of a quasi-static channel. For this rate to
be achievable, it is implicitly assumed that the transmitter is
aware of the value of this rate and uses the corresponding
capacity-achieving channel code.

To avoid using the outage formulation, we consider the
long-term average throughput

R̄k = E [log (1 + SINRk(HHH))] . (12)

Remark III.2. Note that this is different from the ergodic rate
in that the ergodic rate is actually achievable by assuming that
a single transmission spans over an infinite number of channel
state realizations in an ergodic way (fast fading or block fading
model). Here, the average throughput is merely a statistical
measure, i.e., the mean of the state-dependent throughput of
a quasi-static channel (slow fading model). The two types of
models are essentially different. In this paper, we are more
interested in the low mobility case and thus the quasi-static
channel.

In the following, we focus on symmetric power allocation,

Pk =
P

K
=: p. (13)

Thus, the achievable rate is symmetric too,

R̄k = R̄sym, k = 1, . . . ,K, (14)∑
k

R̄k = KR̄sym. (15)

The SINR is simplified in this setting

SINRk =
Ak

p−1 + (K − 1)σ2Bk
(16)



where Ak := |Gk|2, Bk := 1
(K−1)σ2

∑
l 6=k |G̃k,l|2 with

E [Ak] = E [Bk] = 1. The marginal distribution of SINRk

does not depend on k.

B. Transmission of common information
Common information is the message to be decoded at

each receiver. The maximum common information rate is
the minimum of the achievable rate among all users. Let
X0 ∼ CN (0,QQQ0) be the signal carrying common information,
then the common rate is

R0(HHH) = max
QQQ0:tr(QQQ0)≤P

min
k∈{1...K}

log(1 + hhhT

kQQQ0hhh
∗
k). (17)

Assuming isotropic signaling, i.e., X0 ∼ CN (0, Pnt
III), we

have R0(HHH) = log

(
1 + P

nt
mink{‖hhhk‖2}

)
. Let us define the

common signal-to-noise ratio (SNR) as

SNR
(0)
k (HHH) :=

P

nt
‖hhhk‖2. (18)

And the long-term average throughput is

R̄0 = E
[
log

(
1 + min

k

{
SNR

(0)
k

})]
. (19)

Lemma 1. When nt = 1, E
[
mink

{
SNR

(0)
k

}]
= P

K . For a
fixed total transmit power P , R̄0 = Θ(1/K) when K is large,
i.e., the multicast rate is vanishing with K with single transmit
antenna. When nt = K, E

[
mink

{
SNR

(0)
k

}]
= PΘ(1) when

K is large, i.e., the multicast rate is non-vanishing when the
number of transmit antennas scales up with K.

This lemma can be proved using extreme value theory [8].
Details are omitted due to the lack of space. The above lemma
shows that a large number of transmit antennas are necessary
to achieve non-vanishing multicast rate, which is essential for
the scalability of coded caching.

IV. CODED CACHING WITH MIMO DELIVERY

A. Coded caching
Let us consider the scenario with a content server with N

equally popular files of F bits. Each user has a cache of size
MF bits, where M denotes the cache size measured in files.
Further, each user can prefetch their cache during off-peak
hours, prior to the actual request. Then, using coded caching [2],
[9], the number of multicast transmissions needed to satisfy
K distinct demands from K users, denoted as T (N,M,K) is

(
1− M

N

)
1

1/K+M/N , centralized caching(
1− M

N

) 1−
(
1−M

N

)K
M/N , decentralized caching

(20)

where we assume that K ≤ N ; T is normalized by F , the
number of bits to transmit is T (N,M,K)F . In the following,
we focus on centralized coded caching, the behavior for
decentralized caching is essentially the same as it can be readily
shown by doing the same exercise. Since T only depends on
the normalized memory m := M

N , we use the notation T (m,K)
whenever confusion is not likely. In the rest of the paper, we
assume that nt = K.

B. Equivalent content delivery rate

Let us assume that the channel between the content server
and the K users is the MIMO channel described in the previous
section. We define the equivalent content delivery rate as the
number of total demanded information bits (including those
already in the cache) that can be delivered per unit of time
in average. For instance, when M = N , then the equivalent
content delivery rate is∞, since each user can have any content
instantly. We consider the following two extreme cases:
• Spatial multiplexing: sending only private streams to

serve different users in parallel. In this case, we try
to exploit the multiplexing gain offered by the MIMO
channel. To satisfy the demand of user k, i.e., complete
the F demanded bits (considering some bits may already
be inside the user’s cache), we need to send (1 −m)F
bits, which takes (1−m)F/R̄k unit of time in average.
It follows that the equivalent sum content delivery rate of
the system is simply

Runi-c =
K R̄sym(K,P, σ2)

1−m
bits/second/Hz (21)

where we write R̄sym as a function of (K,P, σ2).
• Coded caching: sending only common coded streams

to serve all users simultaneously. In this case, we try to
exploit the global caching gain offered by the Maddah-Ali
Niesen scheme. To satisfy the demand of K users, i.e.,
complete in total KF demanded bits, we need to send
T (m,K)F bits, which takes T (m,K)F/R̄0 unit of time.
It means that the sum content delivery rate of the system
is simply

Rmul-c =
KR̄0(K,P )

T (m,K)
bits/second/Hz (22)

where we write R̄0 as a function of (K,P ).
We are particularly interested in the ratio γ between Rmul-c
and Runi-c:

γ =
Rmul-c

Runi-c
=

(1−m)K

T (m,K)

R̄0(K,P )

R̄sum(K,P, σ2)
(23)

= (1/K +m)
R̄0(K,P )

R̄sym(K,P, σ2)
. (24)

We observe that the gain only depends on the quadru-
ple (m,P,K, σ2).

V. LARGE K REGIME

The regime of interest is the one with a large number of
users, i.e., K →∞. The asymptotic behaviors of Runi-c, Rmul-c,
and γ depend on (m,P, σ2). In the following, the asymptotic
notations O, o,Ω,Θ are with respect to K, unless explicitly
stated.

A. Power-limited regime

In this regime, the total power P is fixed P = Θ(1), so
is the estimation error σ2 = Θ(1). Then, according to (16),
SINRk = Θ(1/K) with high probability (w.h.p.), and hence



R̄sym = Θ(1/K) from the linear approximation of log(1+x) =

x log e + o(1) when x → 0. Since SNR
(0)
k = Θ(1) w.h.p.,

R̄0 = Θ(1). Thus, it follows that

Runi-c = Θ
( 1

1−m
)
, (25)

Rmul-c = Θ

(
1 +Km

1−m

)
, (26)

γ = Θ (1 +Km) . (27)

We see that in this regime, unless the cache memory per user
vanishes with the number of users as m = O(1/K), coded
caching is beneficial.

B. Fixed per-user power p

In this regime, the total power P is increasing with P =
Θ(K) in such a way that for any K each user receives a
constant amount of power p when perfect ZF is applied. The
CSI estimation error is still bounded away from zero, i.e.,
σ2 = Θ(1)). Then, according to (16), SINRk = Θ(1/K)
w.h.p. due to the CSIT error, and as in the previous regime
R̄sym = Θ(1/K). On the other hand, since the total power
is increasing with K, SNR

(0)
k = Θ(P ) = Θ(K) w.h.p., thus

R̄0 = log(K) +O(1). We have

Runi-c = Θ
( 1

1−m
)
, (28)

Rmul-c =
1 +Km

1−m
log(K) +O(1), (29)

γ = Θ
(
(1 +Km) log(K)

)
. (30)

We see that in this regime, the gain is increasing with K even
without cache (m = 0). Essentially, this is because multicast
rate can scale up with K as log(K) regardless of CSIT error,
while the unicast rate is limited by the interference caused by
imperfect CSIT.

C. Increasing per-user power

In this regime, the per-user power can also scale up with K,
i.e., p = Θ(Kη) for some η > 0. We also let the estimation
error decrease with p as σ2 = Θ(p−1) = Θ(K−η), assuming
that a training-based scheme is used for channel estimation (see
e.g. [10]). In this case, SINRk = Θ(Kη−1) w.h.p.. If η < 1, the
SINR still vanishes and R̄sym = Θ(Kη−1). If η = 1, the SINR
is Θ(1) and thus R̄sym is also Θ(Kη−1). If η > 1, the SINR
scales up and R̄sym becomes logarithmic (η−1) log(K)+O(1).
For multicast, SNR

(0)
k = Θ(P ) = Θ(Kη+1) w.h.p., and R̄0 =

(η + 1) log(K) +O(1). Thus, it follows that

Runi-c =

{
Θ
(

1
1−mK

η
)
, if η ≤ 1

1
1−m (η − 1)K log(K) +O(1), if η > 1

(31)

Rmul-c =
1 +Km

1−m
(η + 1) log(K) +O(1) (32)

γ =

{
Θ
(
(1 +Km)(η + 1)K−η log(K)

)
, if η ≤ 1

1+Km
K

η+1
η−1 + o(1), if η > 1

(33)

In this regime, the per-user cache memory plays an important
role. Without cache memory (m = 0), unicast is always better
than multicast with coded caching as long as the per-user power
scales up (η > 0), i.e., γ = O(1). With a constant m > 0, the
situation is reversed, i.e., the gain γ is Ω(1) for any η > 0.

We summarize the asymptotic behavior of the caching gain
in the following proposition. Details are omitted due to the
lack of space.

Proposition 1. Consider a content delivery system with a base
station (content server) with K transmit antennas and N files,
and K single-antenna receivers each with cache memory M
files. Then, the coded caching gain γ in terms of the equivalent
content delivery rate, when K →∞, is

γ =


Θ ((1 +Km)P ) , if η ∈ (−∞,−1]

Θ
(

(1 +Km) log(1+P )
1+P/K

)
, if η ∈ (−1, 1]

1+Km
K

η+1
η−1 + o(1), if η ∈ (1,∞)

(34)

where we assume that the per-user power P/K = Θ(Kη);
m := M/N with N ≥ K.

Corollary 1. With a fixed amount of cache memory M , the
coded caching gain becomes

γ =


Θ (P ) , if η ∈ (−∞,−1],
log(1+P )
1+P/K , if η ∈ (−1, 1],

Θ
(
η+1
η−1

1
K

)
, if η ∈ (1,∞).

(35)

Remark V.1. From the above corollary, we see that with a
fixed amount of cache memory M , the typical regime in which
coded caching is beneficial is when η ∈ (−1, 0]. The gain is
Θ ((η + 1) log(K)). If either the per-user power blows up with
K or the total power shrinks with K, then coded caching is
not useful. Such regimes are however not representative in a
wireless communication system.

Remark V.2. Although we have assumed imperfect CSIT so
far, we can extend our analysis to the case with perfect CSIT
and show that coded caching is never beneficial compared to
massive MIMO. Namely, the relative merit of coded caching
holds only when the normalized cache size m grows as Ω(Kη)
for η > 0. This is impossible under the assumption m ≤ 1.

VI. NUMERICAL RESULTS

We show an example to illustrate the gain γ with finite
(M,N,K,P, σ2). First, we calculate the equivalent sum content
delivery rate of the system as a function of per-user cache
memory size M for N = 2000,K = 100, in different cases of
per-user power p = P/K. We consider p = 10, 20, 30, 40 dB.
In each case, we let the CSIT error, when it is present, σ2 = 1/p
to avoid the excessive number of parameters. The sum rate
of the system with spatial multiplexing Runi-c (21) and with
coded caching Rmul-c (22) are shown in Figure 1 and Figure 2,
respectively. We observe that while spatial multiplexing suffers
from CSIT estimation error, coded caching is robust under
inperfect CSIT. Then, in Figure 3, we plot the coded caching
gain γ (24) as a function of per-user cache memory size M in
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Fig. 1. Spatial multiplexing sum content delivery rate for N = 2000, K =
100: (a) perfect CSIT, (b) imperfect CSIT.
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Fig. 2. Coded caching sum content delivery rate for N = 2000, K = 100.
The result remains for perfect CSIT and imperfect CSIT.

the same setting. Comparing the curves, we confirm that coded
caching can be quite beneficial especially when the CSIT error
is taken into account. For example, for a cache size of 300 files
(15% of the library) and p = 10 dB, coded caching is twice
worse than spatial multiplexing under perfect CSIT, while it
is 8.4 times better than spatial multiplexing under imperfect
CSIT. As we can see, when M is large enough, the coded
caching gain grows linearly with M . This can also be verified
with the asymptotic analysis in Proposition 1. The slope of this
linear behavior is closely related to the per-user power P/K,
as we can see in Proposition 1.

VII. DISCUSSIONS

Until now, we have considered a rather simple setting in
which we investigated the benefit of coded caching in terms
of the equivalent content delivery rate. Several extensions are
foreseen in the future. First, the results rely on the fact that nt =
K or nt = Θ(K). It is sometimes important to measure the
impact of the number of transmit antennas. We may use extreme
value theory [8] to include nt in the analysis. Then, instead of
doing multicast or spatial multiplexing alone, we can combine
both to perform simultaneous multicast and unicast, as it has
been first proposed in [11] and then investigated in [12] (and the
references therein), to optimize the equivalent content delivery
rate. The synergy of coded caching with multicast and spatial
multiplexing can bring a substantial performance gain. Last,
we have considered symmetric downlink channel in this work.
In practice, the channel can be highly asymmetric according
to the location of the users and antenna correlation. In this
case, taking these factors into account (as modeled in [13]), we
can propose clustering algorithms to maximize the equivalent
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Fig. 3. Coded caching gain over spatial multiplexing for N = 2000, K = 100;
(a) perfect CSIT, (b) imperfect CSIT.

content delivery rate. Then, coded caching is performed within
each cluster but not across different ones.
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