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Abstract—We study a content delivery problem in the context
of a K-user erasure broadcast channel such that a content
providing server wishes to deliver requested files to users, each
equipped with a cache of a finite memory. Assuming that the
transmitter has state feedback and user caches can be filled
during off-peak hours reliably by decentralized cache placement,
we characterize the achievable rate region as a function of
the memory sizes and the erasure probabilities. The proposed
delivery scheme, based on the broadcasting scheme proposed by
Wang and Gatzianas et al., exploits the receiver side information
established during the placement phase. Our results can be
extended to centralized cache placement as well as multi-antenna
broadcast channels with state feedback.

I. INTRODUCTION

Today’s exponentially growing mobile data traffic is mainly
due to video applications such as content-based video stream-
ing. The skewness of the video traffic together with the ever-
growing cheap on-board storage memory suggests that the
quality of experience can be boosted by caching popular
contents at (or close to) the end-users in wireless networks.
Most of existing works assume that caching is performed
in two phases: placement phase to prefetch users’ caches
under their memory constraints (typically during off-peak
hours) prior to the actual demands; delivery phase to transmit
codewords such that each user, based on the received signal
and the contents of its cache, is able to decode the requested
file. In this work, we study the delivery phase based on a
coded caching model where a server is connected to many
users, each equipped with a cache of finite memory [1]. By
carefully choosing the sub-files to be distributed across users,
coded caching exploits opportunistic multicasting such that
a common signal is simultaneously useful for all users even
with distinct file requests. A number of extensions of coded
caching have been developed, e.g. [1, Section VIII] including
the case of decentralized placement phase, the case of non-
uniform demands, the case in a more general network, as well
as the performance analysis in different regime [11]. Further,
very recent works have attempted to relax the unrealistic
assumption of a perfect shared link by replacing it by wireless
channels (e.g. [4], [5] and references therein). The works [4],
[5] have studied also the role of channel state feedback in the
context of coded caching.

We model the bottleneck link between the server with N
files and K users equipped with a cache of a finite memory

as an erasure broadcast channel (EBC). We assume that the
EBC is memoryless, independently distributed across users
with erasure probabilities {δk} and that user k has a cache
of Mk files. Moreover, the server is assumed to acquire the
channel states causally via feedback sent by users. Under this
setting, we study the achievable rate region of the EBC for the
case of decentralized cache placement [2]. Our contributions
are three-fold and summarized together with the outline of this
paper : 1) characterize the upper bound on the achievable rate
region (section III) ; 2) propose a multi-phase delivery scheme
extending the algorithm proposed by Wang and Gatzianas et
al. [6], [7] to the case of receiver side information and prove
that it achieves the optimal rate region for special cases of
interest (section IV) ; 3) extend the results to centralized cache
placement [1] as well as the multi-antenna broadcast channel
with state feedback (section V). It should be remarked that
the current work is a non-trivial extension of [4] which is
restricted to the symmetric network (with equal erasure prob-
abilities and memory sizes) because the achievability proof
in [4], exploiting the polyhedron structure of the rate region,
cannot be applied to a general network setting considered
here. Finally, the numerical examples in section VI enable
to quantify the benefit of state feedback, the relative merit of
centralized caching to decentralized counterpart, as well as the
gain due to the optimization of memory sizes as a function of
other system parameters.

Throughout the paper, we use the following notations.
Xn and XI denote a sequence (X1, . . . , Xn) and {Xi}i∈I,
respectively. The entropy of X is denoted by H(X). We let
[k] = {1, . . . , k}. Due to the space limitation, detailed proofs
are omitted and will be deferred to the full version [8]. We let
εn denote a constant which vanishes as n→∞.

II. SYSTEM MODEL AND MAIN RESULTS

A. System model and definitions

We consider a cache-enabled network depicted in Fig. 1
where a server is connected to K users through an erasure
broadcast channel (EBC). The server has an access to N files
W1, . . . ,WN where file i, i.e. Wi, consists of Fi packets of
L bits each (FiL bits). Each user k has a cache memory Zk
of MkF packets for Mk ∈ [0, N ], where F , 1

N

∑N
i=1 Fi is

the average size of the files. Under such a setting, consider a
discrete time communication system where a packet is sent in



Fig. 1. A cached-enabled erasure broadcast channel with K = 3.

each slot over the K-user EBC. The channel input Xl ∈ Fq
belongs to the alphabet of size L = log2 q bits. The channel
is assumed to be memoryless and independently distributed
across users so that in a given slot we have

Pr(Y1, Y2, . . . , YK |X) =

K∏
k=1

Pr(Yk|X) (1)

Pr(Yk|X) =

{
1− δk, Yk = X,

δk, Yk = E
(2)

where Yk denotes the channel output of receiver k, E stands
for an erased output, δk denotes the erasure probability for user
k. We let Sl ∈ S = 2{1,...,K} denote the state of the channel
in slot l which indicates the users who received correctly
the packet. We assume that the transmitter obtains the state
feedback Sl−1 at the end of slot l while all the receivers know
Sn at the end of the transmission.

There are two phases for our content delivery problem:
placement phase and delivery phase. In placement phase, the
server fills the caches of all users Z1, . . . , ZK up to the mem-
ory constraint. As in most works in the literature, we assume
that placement phase is performed over an error-free link and
does not incur any resource overhead, since it takes place
usually during off-peak traffic hours. Once each user k makes
a request dk, the server sends codewords so that each user can
decode its requested file as a function of its cache content and
received signals during delivery phase. We provide a more
formal definition below. A (M1, . . . ,MK , Fd1 , . . . , FdK , n)
caching scheme consists of the following components.
• N message files W1, . . . ,WN are independently and

uniformly distributed over W1×· · ·×WN with Wi = FFiq
for all i.

• K caching functions are given by φk : F
∑N
i=1 Fi

q →
FFMk

q map the files W1, . . . ,WN into the cache contents

Zk = φk(W1, . . . ,WN ) (3)

for each user k.
• A sequence of encoding functions which transmit at slot l

a symbol Xl = fl(Wd1 , . . . ,WdK , S
l−1) ∈ Fq , based on

the requested file set and the channel feedback up to slot
l − 1 for l = 1, . . . , n, where Wdk denotes the message
file requested by user k with dk ∈ {1, . . . , N}.

• A decoding function of user k is given by the mapping
ψk : Fnq × FFMk

q × Sn → FFdkq so that the decoded file

is Ŵdk = ψk(Y
n
k , Zk, S

n) as a function of the received
signals Y nk , the cache content Zk, as well as the state
information Sn.

A rate tuple (R1, . . . , RK) is said to be achievable if, for every
ε > 0, there exists a (M1, . . . ,MK , Fd1 , . . . , FdK , n) caching
strategy that satisfies the reliability condition

max
(d1,...,dK)∈{1,...,N}K

max
k

Pr(ψk(Y
n
k , Zk, S

n) 6=Wdk) < ε

as well as rate condition Rk ≤
Fdk
n . Throughout the paper, we

express the entropy and the rate in terms of packets in oder
to avoid the constant factor L.

B. Decentralized cache placement
We consider the decentralized cache placement proposed in

[2]. Under the memory constraint of MkF packets, each user k
independently caches a subset of pkFi packets of file i, chosen
uniformly at random for i = 1, . . . , N , where pk = Mk

N . Let
LJ(Wi) denote the sub-file of Wi stored exclusively in the
cache memories (known) of the users in J. The cache memory
Zk of user k after decentralized placement is given by

Zk = {LJ(Wi) : J ⊆ [K], J 3 k, i = 1, . . . , N}. (4)

The size of each sub-file is given by

|LJ(Wk)| =
∏
j∈J

pj
∏

j∈[K]\J

(1− pj)Fk + εFk (5)

as Fk → ∞. It can be easily verified that the memory
constraint of each user is fulfilled.

C. Main results
In order to present the main results, we specify two special

cases.

Definition 1. The cache-enabled EBC (or the network) is
symmetric if we have δ1 = · · · = δK and p1 = · · · = pK .

Definition 2. The rate vector is one-sided fair in the cache-
enabled EBC if δk ≥ δj and for k 6= j implies

Rk
Rj
≥ max

{
δj
δk
,
(1− pj)/pj
(1− pk)/pk

}
(6)

For the special case without cache memory (pk = 0,∀k),
Definition 2 boils down to the original definition [6], i.e.
Rk/Rj ≥ δj/δk. Such rate vector corresponds to the sub-
region where user k (with the worse channel) requires more
transmission time than user j to receive a common packet (as
it will be clear in subsection IV-B). In the presence of cache
memory, such subregion depends also on the memory size.
We focus on the most relevant case of N ≥ K and assume
further that all demands are distinct.

Theorem 1. For K ≤ 3, or for the symmetric network with
K ≥ 3, or for the one-sided fair rate with K > 3, the
achievable rate region of the cached-enabled EBC with state
feedback under decentralized cache placement is given by

K∑
k=1

∏k
j=1(1− pπj )

1−
∏k
j=1 δπj

Rπk ≤ 1 (7)



for any permutation π of {1, . . . ,K}.

The proof of Theorem 1 is provided in upcoming sections.
Theorem 1 covers existing results as special cases including
the symmetric network [4] and the EBC without cache mem-
ory [6], [7].

Corollary 1. For K ≤ 3, or for the symmetric network with
K ≥ 3, or for the one-sided fair rate with K > 3, the total
transmission duration to deliver a distinct requested file to
each user in the cached-enabled EBC under decentralized
cache placement is given by, as F →∞,

Ttot = max
π

{
K∑
k=1

∏k
j=1(1− pπj )

1−
∏k
j=1 δπj

Fdπk

}
+Θ(1). (8)

Corollary 1 yields existing results for the special cases
without erasure. For the case of no erasure and equal file size
(δk = 0,∀k, Fi = F,∀i), (8) coincides with the rate-memory
tradeoff1 of decentralized coded caching under asymmetric
memory sizes [3, Theorem 3]. Additionally, if we let the
memory size be equal, (8) boils down to the rate-memory
tradeoff of decentralized coded caching [2].

III. CONVERSE

Since the converse of Theorem 1 follows the similar idea
as the one in [4, Section III], we describe only the main steps.
First we recall the two useful lemmas.

Lemma 1. [4, Lemma 1] For the erasure broadcast channel,
if U is such that Xl ↔ UY l−1I Sl−1 ↔ (Sl+1, . . . , Sn), ∀ I,

1

1−
∏
j∈I δj

H(Y nI |U, Sn) ≤
1

1−
∏
j∈J δj

H(Y nJ |U, Sn),

for any sets I, J such that J ⊆ I ⊆ {1, . . . ,K}.

As a straightforward extension of [4, Lemma 2], we have
the following lemma.

Lemma 2. Considering the cache placement in [2], the
following equality holds for any i and K ⊆ [K]

H(Wi | {Zk}k∈K) ≥
∏
k∈K

(1− pk)H(Wi). (9)

Let us focus on the case without permutation and the
demand (d1, . . . , dK) = (1, . . . ,K) without loss of gener-
ality. We create a degraded broadcast channel, by providing
(Wk, Yk, Zk) to receivers k + 1, . . . ,K, and obtain

n

k∏
j=1

(1− pj)Rk =

k∏
j=1

(1− pj)H(Wk) (10)

≤ H(Wk|ZkSn) (11)

≤ I(Wk;Y
n
[k] |W

k−1ZkSn) + nε′n,k (12)

where the second inequality is by applying Lemma 2
and noting that Sn is independent of others; the last in-
equality is from Fano’s inequality and from the fact that

1In [2], [3] the “rate” is defined as the number of files to deliver over the
shared link, which corresponds here to Ttot.

I(Wk;W
k−1 |ZkSn) = 0. Defining εn,k , ε′n,k/

∏k
j=1(1 −

pj), we obtain

n

k∏
j=1

(1− pj)(Rk − εn,k)

≤ H(Y n[k] |W
k−1ZkSn)−H(Y n[k] |W

kZkSn). (13)

Summing up (13) with different weights and applying
Lemma 1 for K − 1 times, it readily follows that

K∑
k=1

∏
j∈[k](1− pj)

1−
∏
j∈[k] δj

(Rk − εn,k)

≤ H(Y n1 |Z1S
n)

n(1− δ1)
−
H(Y n[K] |W

KZKSn)

n(1−
∏
j∈[k] δj)

(14)

≤ H(Y n1 )

n(1− δ1)
≤ 1. (15)

This establishes the converse part, after letting n→∞.

IV. ACHIEVABILITY

A. Revisiting the broadcasting scheme [6], [7]

We provide a high-level description of the broadcasting
scheme [6], [7] by assuming the number of private packets
{Fk} is arbitrarily large so that the length of each phase be-
comes deterministic. The broadcasting algorithm has two main
roles: 1) broadcast new information packets and 2) multicast
side information or overheard packets thanks to state feedback.
From this reason, we can call phase 1 broadcasting phase and
phases 2 to K multicasting phase. Phase j consists of

(
K
j

)
sub-

phases in each of which the transmitter sends packets intended
to a subset of users J for |J| = j. We let LJ(VK) denote the
part of packet VK received by users in J and erased by [K]\J.
Here is a high-level description of the broadcasting algorithm:

1) Broadcasting phase (phase 1): send each message Vk =
Wk of Fk packets sequentially for k = 1, . . . ,K.
This phase generates overheard symbols {LJ(Vk)} to be
transmitted via linear combination in multicasting phase,
where J ⊆ [K] \ k for all k.

2) Multicasting phase (phases 2−K): for a subset J of users,
generate VJ as a linear combination of overheard packets
such that

VJ = FJ

(
{LJ\I∪I′(VI)}I′⊂I⊂J

)
(16)

where FJ denotes a linear function. Send VJ sequentially
for all J ⊆ [K] of the cardinality |J| = 2, . . . ,K.

In order to determine the total transmission duration, we
need to introduce further some notions and parameters.
• A packet intended to J is consumed for a given user
k ∈ J if this user or at least one user in [K] \ J receives
it. The probability of such event is 1−

∏
j∈[K]\J∪{k} δj .

• A packet intended to I creates a packet intended to
users in J for user k ∈ I ⊂ J ⊆ [K] if erased by
user k and all users in [K] \ J but received by J \ I.



The probability of such event is denoted by α
{k}
I→J =∏

j′∈[K]\J∪{k} δj′
∏
j∈J\I(1− δj). We let

N
{k}
I→J = t

{k}
I α

{k}
I→J (17)

denote the number of such packets, where t
{k}
I is the

duration needed by user k during sub-phase J.
• The duration tJ of sub-phase J is given by: tJ =

maxk∈J t
{k}
J where

t
{k}
J =

∑
k∈I⊂JN

{k}
I→J

1−
∏
j∈[K]\J∪{k} δj

. (18)

The total transmission length is obtained by summing up all
sub-phases, i.e. Ttot =

∑
J⊆[K] tJ.

B. Proposed delivery scheme

We describe the proposed delivery scheme for the case2

of K > 3 assuming that user k requests file Wk of size
Fk packets for k = 1, . . . ,K. Compared to the algorithm
[6], [7] revisited previously, our scheme must convey packets
generated in the placement phase as well as all previous phases
in a given phase.

Placement phase: This phase creates equivalently the
“overheard” packets {LJ(Wk)} for J ⊂ [K] \ k and for
k = 1, ..,K.
Phase 1 : The transmitter sends V1, .., VK sequentially
until at least one user receives it, where Vk = L∅(Wk)
corresponds to the order-1 packets created by placement
phase.
Phases 2 . . .K : For a subset J of users, generate VJ
as a linear combination of overheard packets during the
placement phase as well as during phases 1 to j − 1.

VJ = FJ

(
{LJ\I∪I′(VI)}I′⊂I⊂J,LJ\{k}(Wk)

)
(19)

The rest of the subsection is dedicated to the achievability
proof of Theorem 1 for the case of one-sided fair rate vector
defined in Definition 2.

We assume without loss of generality δ1 ≥ · · · ≥ δK ,
δ1R1 ≥ · · · ≥ δKRK , and 1−p1

p1
R1 ≥ · · · ≥ 1−p2

p2
RK . By

incorporating the packets generated during placement phase
in (18), we have for k ∈ J ⊆ [K]

t
{k}
J =

∑
I:k∈I⊂J t

{k}
I α

{k}
I→J + |LJ\{k}(Wk)|

1−
∏
j∈[K]\J∪{k} δj

. (20)

We calculate Ttot in three main steps:
Step 1 We express t

{k}
J as a function of key parameters

{δk}, {pk}, {Fk} in two different ways. By following similar
steps as in [7, Appendix C], we obtain the total duration
needed for user k for a system with a fixed subset J of users
by ∑

I:k∈I⊆J

t
{k}
I =

∏
j∈[K]\J∪{k}(1− pj)

1−
∏
j∈[K]\J∪{k} δj

Fk. (21)

2For K=3 a different algorithm was proposed in [6] that we adapt it with
the presence of cache and readily prove the achievability.

As proved in [8], the above expression can be rewritten as

t
{k}
J =

∑
H⊆J\{k}

(−1)|H|
∏
j∈[K]\J∪{k}∪H(1− pj)

1−
∏
j∈[K]\J∪{k}∪H δj

Fk. (22)

Step 2 The length of a sub-phase J is determined by the user
which requires the maximum length, i.e. argmaxk∈J t

{k}
J . For

the special case of one-sided fair rate vector, by using (22) it
is possible to prove, as in [8], that

argmax
k∈J

t
{k}
J = min{J} ∀J ⊆ [K]. (23)

This means that the user permutation (which determines the
sub-phase length) is preserved in all sub-phases for the one-
sided fair rate vector.
Step 3 By combining the two previous steps, the total
transmission length can be derived as follows

Ttot =
∑

J⊆[K]

max
k∈J

t
{k}
J (24)

=
∑

J⊆[K]

t
{min J}
J (25)

=

K∑
i=1

∑
i∈J⊆{i..K}

t
{i}
J (26)

=

K∑
i=1

Fi

∏i
j=1(1− pj)

1−
∏i
j=1 δj

(27)

where (25) is obtained from (23); the last equality follows
from (21). Dividing both sides by Ttot and letting R

k
=

Fdk
Ttot

,
we readily obtain the RHS of (7) for the identity permutation.
Since under the one-sided fair rate constraint the inequality
corresponding to the identity permutation implies all the other
K! − 1 inequalities of the rate region as proved in [8], this
establishes the achievability.

V. EXTENSIONS

A. Centralized cache placement

We consider centralized cache placement proposed in [1] for
the special case of the symmetric network. Each file is split
into

(
K
b

)
disjoint sub-files of equal size, where b , bpKc.

Each sub-file is cached in a subset of users J of cardinality
|J| = b. The size of any sub-file of file i is given by

|LJ(Wi)| =
1(
K
b

)Fi. (28)

As a rather straightforward extension of Theorem 1 in the
symmetric network, we obtain the following result.

Theorem 2. For the symmetric network, the optimal rate
region of the cached-enabled BEC with state feedback under
centralized cache placement is given by

K−b∑
k=1

(
K−k
b

)
/
(
K
b

)
1− δk

Rπk ≤ 1 (29)

for any permutation π of {1, . . . ,K}.



As a direct consequence, the total transmission length to
deliver a distinct requested file of size F to each user is

Ttot =

K−b∑
k=1

(
K−k
b

)
/
(
K
b

)
1− δk

F +Θ(1), (30)

as F →∞. It is worth mentioning that (30) boils down to the
rate-memory tradeoff under centralized cache placement [1]
for special case of no erasure.

B. MISO broadcast channel

We consider the K-user multi-input single-output broadcast
channel (MISO-BC) with M antennas at the transmitter and
K users each equipped with a singel antenna. The channel
state in slot l is given by the M × K channel matrix. We
define DoFk = limsnr→∞

Rk
log2 snr as the pre-log factor of the

rate of user k. Exploiting the explicit connection between the
EBC and the MISO broadcast channel in [9], the following
theorem can be proved [8].

Theorem 3. The optimal DoF region of the cached-enabled
MISO broadcast channel with M ≥ K−b antennas and under
centralized cache placement is given by

K−b∑
k=1

(
K−k
b

)
/
(
K
b

)
k

DoFπk ≤ 1 (31)

for any permutation π of {1, . . . ,K}.

It can be observed that (31) has the same structure as (29)
where we replace 1− δk by k and replace Rk by DoFk. The
achievability can be proved by modifying the scheme in [10] to
the case of receiver side information. It can be shown that the
optimal total transmission length Ttot =

∑K
k=b+1

1
k obtained

from Theorem 3 coincides with [5, Corollary 2b].

VI. NUMERICAL EXAMPLES

In this section we provide some numerical examples to
show the performance of our proposed delivery scheme.
Fig. 2 plots the normalized total transmission length Ttot/F
versus the memory size M in the symmetric network with
N = 100,K = 10. We compare the performance with
and without feedback under decentralized and centralized
caching for δ = 0 and δ = 0.6. The state feedback is
found useful especially for small memory size. The relative
merit of centralized placement compared to decentralized the
counterpart can be observed. Fig. 3 plots the normalized total
transmission length Ttot/F versus average memory size M
in the asymmetric network with N = 20 and K = 4.
We let erasure probabilities δk = k

5 for k = 1, . . . , 4 and
consider equal file size. We compare “symmetric memory”
(Mk =M, ∀k), “asymmetric memory” obtained by optimizing
over all possible sets of {Mk} using our delivery scheme, as
well as “lower bound” obtained by optimizing all possible of
{Mk} based on (8). This result shows the advantage (in terms
of delivery time) of optimally allocating cache sizes across
users, whenever possible, according to the condition of the
delivery channels.

Fig. 2. Ttot vs. memory size M for N = 100,K = 10.

Fig. 3. Ttot vs. averaged memory size M for N = 20, K = 4.
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