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Abstract—In this paper, we extend the answer for the question:
Do the gains from massive MIMO and coded caching cumulate? in
a simple setting of downlink MIMO channel with Rayleigh quasi-
static fading. Under some practical assumptions, the scalability
of massive MIMO and coded caching alone with the number of
users does not hold. On the other hand, we show that in this
setting, the combination of both provides a scalable solution in
most practical scenarios. Therefore, MIMO and coded caching
are indeed complementary, especially under an optimal power
allocation.

I. INTRODUCTION

In the near future, content delivery is about to take up more
than 50% of the mobile traffic. To accommodate the traffic
expansion, massive MIMO, using a huge number of antennas
at the base station to create a large number of degrees of
freedom, is a promising solution to increase substantially the
spectral efficiency [1]. If the number of transmit antennas can
scale with the number of users K, then the total transmission
time for all the K requested files does not increase with K
since simultaneous transmission can be done in the parallel
channels created by precoding (e.g. zero forcing). Another
solution is caching, that is, exploiting the on-board memory to
prefetch popular contents at (or close to) the end users of the
network during off-peak hours so that the traffic during peak
hours is significantly reduced. Recently, it has been shown that,
with the so-called coded caching, the minimum number of
total multicast transmissions to satisfy the demand of K users
goes to constant when K →∞ [2]. Instead of sending parallel
streams as in MIMO, the single stream (multicast) transmission
in coded caching conveys information that is simultaneously
useful to a large subset of users. A common perception is that
both massive MIMO and coded caching are potentially scalable
solutions alone with respect to (w.r.t.) the number of users.
However, the scalability relies on some ideal assumptions that
may not hold in real systems as discussed shortly. Therefore, it
is of practical and theoretical interest to address the following
question from the engineering perspective: is it beneficial to
use both technologies?

We first argue that neither of the solutions is indeed scalable
in wireless channels under some practical assumptions. The
scalability of massive MIMO, w.r.t. the number of users (K →
∞), relies on the vanishing error of channel state information
at the transmitter’s side (CSIT), whereas the scalability of
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coded caching hinges on a non-vanishing multicast rate of the
channel.

In [3], we partially answered the above question positively
in the particular setting of an i.i.d. quasi-static MISO downlink
channel with a multi-antenna base station and K single-antenna
receivers. We analyzed the content delivery rates of two
schemes and the relative merit of coded caching w.r.t. massive
MIMO in various regimes of interest, as the number of users K
grows. Results suggest that coded caching shall be preferred to
massive MIMO when the per-user power decreases or remains
constant, or equivalently when the error variance increases or
remains constant, w.r.t. the number of users. Such behavior is
expected because it is well known that the gain of massive
MIMO vanishes in these cases.

To the best of our knowledge, the work in [3] is the first
study that quantifies the relative merit between massive MIMO
and coded caching. Among a number of recent works studying
coded caching in wireless channels [4], [5], [6], [7], [8], the
works [6], [7] also consider MISO broadcast channel. However,
these works are conceptually different because their scope is
on the interplay between the CSI feedback and coded caching.

In this paper, we still use the same quasi-static channel
model and extend the answer by considering the mixed strategy
of both massive MIMO and coded caching. We first recall
the achievable rates of both schemes derived in [3] for this
channel, and propose a scalable solution by combining both
schemes with simultaneous multicast and unicast with a power-
splitting approach. This combination is first proposed in [9]
and then investigated in [10] (and the references therein). We
then analyse the asymptotic behaviors of this mixed delivery
in large K regime, which suggests that to achieve the maximal
rate, the coded multicasting should be allocated the majority
of power budget. This is validated by numerical examples.

The remainder of the paper is organized as follows. We
describe the system model in Section II and the mixed MIMO
transmission in Section III. It is followed by the equivalent
sum content delivery rate in the MISO broadcast channel in
Section IV. Section V provides the asymptotic analysis of the
equivalent content delivery rate and Section VI provides some
numerical examples. Finally, we conclude the paper with some
discussion in Section VII.

Throughout the paper, we use the following notational
conventions. For random quantities, we use upper case non-
italic letters, e.g., X, for scalars, upper case letters with bold and



non-italic fonts, e.g., VVV, for vectors, and upper case letter with
bold and sans serif fonts, e.g., MMM, for matrices. Deterministic
quantities are denoted in a rather conventional way with italic
letters, e.g., a scalar x, a vector vvv, and a matrix MMM . Logarithms
are in base 2. The Euclidean norm of a vector and a matrix
is denoted by ‖vvv‖ and ‖MMM‖, respectively. The transpose and
conjugated transpose of MMM are MMM T and MMMH, respectively.

II. SYSTEM MODEL

In this paper, we consider a MISO downlink channel where
a base station with nt transmit antennas communicate with
K single-antenna users. The channel HHH ∈ CK×nt is assumed
to be a quasi-static fading channel, i.e., remains unchanged
during the transmission of a whole coded block. For tractability,
we assume that the channel is independent and symmetric
across users with i.i.d. Rayleigh fading, i.e., HHHk ∼ CN (0, IIInt),
k = 1, . . . ,K, with HHH = [HHH1 · · · HHHK ]T. The channel
state information (CSI) is assumed to be known perfectly
at the receiver side, the transmitter only knows an estimate ĤHH.
Receiver k at time t has the observation

Yk[t] = HHHT

k xxx[t] + Zk[t], t = 1, 2, . . . , n, (1)

where xxxt ∈ Cnt×1 is the input vector at time t, with the average
power constraint 1

n

∑n
t=1 ‖xxxt‖2 ≤ P ; the additive noise

{Zk[t]} is assumed to be spatially and temporally white with
normalized variance, i.e., Zk[t] ∼ CN (0, 1), k = 1, . . . ,K.
Since the additive noise power is normalized, the transmit
power P is identified with the total SNR throughout the paper.

In practice, imperfect CSIT is due to a limited resource for
downlink channel training and channel feedback in a FDD
system, while it is due to the channel estimation error at the
base station and/or imperfect calibration in a TDD system. A
common model for the imperfect CSIT is

HHH = ĤHH + H̃HH (2)

where ĤHH and H̃HH are the mutually uncorrelated estimated channel
and channel estimation error and have variances 1− σ2 and
σ2, respectively. Since we assume Rayleigh fading, ĤHH and H̃HH
are independent and circularly symmetric Gaussian distributed.

III. MIMO MIXED TRANSMISSION

A. Transmission of mixed common and private information

We consider the transmission of signal carrying both common
information interested by all the users and a set of private
information required by each user individually. Given the
common signal XXX0 intended for all users and the private signal
Xk intended for user k, k = 1, . . . ,K, the transmit signal is

XXX = XXX0 +

K∑
k=1

WWWkXk, (3)

under the total power constraint P , where we omit the time
index for simplicity and {WWWk} is the precoder to be defined
shortly. Denote the power of common signal as P0 and the
power of private signal Xk as Pk, then

∑K
k=0 Pk ≤ P . Note

that the two extreme cases P0 = 0 and P0 = P correspond

to the transmission of private information only and common
information only, respectively. We describe the common signal
and private signal in the following.
• Common signal: Common signal carries the message to be

decoded at each receiver. The maximum common information
rate is the minimum of the achievable rate among all users.
We assume isotropic signaling, i.e., XXX0 ∼ CN (0, P0

nt
III).

• Private signal with zero-forcing precoding: In order to
avoid the inter-user interference, we employ zero-forcing (ZF)
precoding scheme, which is commonly used for MISO
downlink, such that the private signal for each user should
be sent in the null space of the other users’ signal space.
For ZF to work, we assume that the number of users that
can be simultaneously served is smaller than the number
of antennas, i.e. K ≤ nt. This is our assumption whenever
ZF is used in the following. Under imperfect CSIT (2), the
private signal of user k is precoded in the direction WWWk of
unit norm, satisfying the following constraints:

ĤHH
T

lWWWk = 0,∀ l 6= k. (4)

The overall precoded private signal is therefore
K∑
k=1

WWWkXk. (5)

We use i.i.d. Gaussian signaling for tractability, i.e., {Xk}
are i.i.d. ∼ CN (0, Pk).
The received signal at user k is

Yk = HHHT

kXXX0 + GkXk +
∑
l 6=k

G̃k,lXl + Zk (6)

where

Gk := HHHT

kWWWk ∼ CN (0, 1), (7)

G̃k,l := H̃HH
T

kWWWl ∼ CN (0, σ2). (8)

Note that the above equivalent channel coefficients are not
independent between each other.

The signal-to-noise-ratio (SINR) of the common signal at
the receiver k is

SINR
(0)
k (HHH) :=

P0

nt
‖HHHk‖2

1 + |Gk|2Pk +
∑
l 6=k |G̃k,l|2Pl

. (9)

For any realization HHH = HHH , the rate of common signal is

R0 = log

(
1 + min

k

{
SINR

(0)
k (HHH)

})
. (10)

Remark III.1. The rate (10) can be regarded as the upper
bound on the rate of a quasi-static channel. For this rate to
be achievable, it is implicitly assumed that the transmitter is
aware of the value of this rate and use the corresponding
capacity-achieving channel code.

To avoid using the outage formulation, we consider the
long-term average common throughput

R̄0 = E
[
log

(
1 + min

k

{
SINR

(0)
k (HHH)

})]
. (11)



Note that this is merely a statistical measure and is essentially
different from the ergodic rate.

After successfully decoding the common signal, the receiver
can then substract this signal and decode its private information
from the remaining. Thus, the SINR of the private signal at
receiver k is

SINRk(HHH) :=
|Gk|2Pk

1 +
∑
l 6=k |G̃k,l|2Pl

, (12)

and the long-term average private throughput is

R̄k = E [log (1 + SINRk(HHH))] . (13)

In this system, power allocation is important. By optimally
allocating the power {Pk}, k = 0, ...,K, we can achieve the
maximal transmission rate. This problem will be studied later
in this paper.

In the following, we focus on the symmetric power allocation
of the private signal:

Pk =
P − P0

K
=: p, k = 1, . . . ,K (14)

and the achievable rate of private signal is symmetric too,

R̄k = R̄sym, k = 1, . . . ,K. (15)

The SINR of the common and private part can be written in
this case, respectively,

SINR
(0)
k =

P0

nt
‖HHHk‖2

1 + p (Ak + (K − 1)σ2Bk)
, (16)

SINRk =
Ak

p−1 + (K − 1)σ2Bk
(17)

where Ak := |Gk|2, Bk := 1
(K−1)σ2

∑
l 6=k |G̃k,l|2 with

E [Ak] = E [Bk] = 1. The marginal distribution of SINRk

does not depend on k. In this setting, the power allocation
problem is equivalent to power splitting, which is to fraction
the common signal power P0 from total power budget P .

Next, we describe two extreme operating configuration when
all the power is allocated to either common signal or private
signal. These two cases were studied separately in [3].

B. Transmission of common information only

This is the case when we set P0 = P , or equivalently p = 0.
The common SINR becomes the common signal-to-noise ratio
(SNR)

SNRmc-(0)
k (HHH) :=

P

nt
‖HHHk‖2. (18)

And the total long-term average throughput is

R̄mc
0 = E

[
log

(
1 + min

k

{
SNRmc-(0)

k

})]
. (19)

C. Transmission of private information only

This is the case when we set P0 = 0, or equivalently, p =
P/K. The private SINR is still written as

SINRuc
k =

Ak
p−1 + (K − 1)σ2Bk

(20)

where Ak and Bk are defined earlier. The total long-term
average throughput of user k is

R̄uc
sym = R̄k = E [log (1 + SINRuc

k (HHH))] . (21)

Remark III.2. Consider two MISO downlink systems under
the same channel condition and symmetric private power
allocation:

1) System 1 transmits private information only with total
power P .

2) System 2 uses mixed transmission with total power P ′ >
P and allocates the power P for private signal.

Then the total long-term average throughput of System 1 is
equal to the private long-term average thoughput of System 2.
This does not hold for common transmission.

IV. CODED CACHING WITH MIMO DELIVERY

A. Coded caching

Let us consider the scenario with a content server with
N equally popular files of F bits. Each user has a cache of
size MF bits, where M denotes the cache size measured in
files. Further, each user can prefetch their cache during off-
peak hours, prior to the actual request. Then, using coded
caching [2], [11] under error-free channel, the number of
multicast transmissions needed to satisfy K distinct demands
from K users, denoted as T (N,M,K) is

(
1− M

N

)
1

1/K+M/N , centralized caching(
1− M

N

) 1−
(

1−M
N

)K
M/N , decentralized caching

(22)

where we assume that K ≤ N ; T is normalized by F , the
number of bits to transmit is T (N,M,K)F . In the following,
we focus on centralized coded caching, the behavior for
decentralized caching is essentially the same as it can be readily
shown by doing the same exercise. Since T only depends on
the normalized memory m := M

N , we use the notation T (m,K)
whenever confusion is not likely. In the rest of the paper, we
assume that nt ≥ K.

B. Equivalent content delivery rate

Let us assume that the channel between the content server
and the K users is the MIMO channel described in the previous
section. We define the equivalent content delivery rate as the
number of total demanded information bits (including those
already in the cache) that can be delivered per unit of time
in average. For instance, when M = N , then the equivalent
content delivery rate is∞, since each user can have any content
instantly. We consider the following cases:
• Spatial multiplexing: sending only private streams to serve

different users in parallel. In this case, we try to exploit



the multiplexing gain offered by the MIMO channel. To
satisfy the demand of user k, i.e., complete the F demanded
bits (considering some bits may already be inside the
user’s cache), we need to send (1−m)F bits, which takes
(1 −m)F/R̄k unit of time in average. It follows that the
equivalent sum content delivery rate of the system is simply

Runi-c =
K R̄uc

sym(K,P, σ2)

1−m
bits/second/Hz. (23)

• Coded caching: sending only common coded streams to
serve all users simultaneously. In this case, we try to exploit
the global caching gain offered by the Maddah-Ali Niesen
scheme. To satisfy the demand of K users, i.e., complete in
total KF demanded bits, we need to send T (m,K)F bits,
taking T (m,K)F/R̄mc

0 unit of time. It means that the sum
content delivery rate of the system is

Rmul-c =
KR̄mc

0 (K,P )

T (m,K)
bits/second/Hz. (24)

• Mixed delivery: sending the mixed common and private
streams to serve the common request to all user simultane-
ously, and at the same time serve the individual request to
defferent users in parallel. In this case, we try to cumulate
the multiplexing gain and the global caching gain. We need
to send (1−m)F bits in private streams to each user, which
takes (1 − m)F/R̄sym unit of time, and send T (m,K)F
bits in common coded streams to every user, which takes
T (m,K)F/R̄0 unit of time. It follows that the equivalent
sum content delivery rate of the system is

Rmix-c =
KR̄sym(K,P, P0, σ

2)

1−m
+
KR̄0(K,P, P0)

T (m,K)

bits/second/Hz. (25)

Let Rmix
uni-c :=

KR̄sym(K,P,P0,σ
2)

1−m and Rmix
mul-c := KR̄0(K,P,P0)

T (m,K) .
Note that the power splitting P0/P is critical to Rmix-c. We
would like to find the optimal power splitting to maximize
this equivalent mixed sum rate.

V. ASYMPTOTIC BEHAVIORS AND POWER SPLITTING

The regime of interest is with a large number of users, i.e.,
K →∞. The asymptotic behaviors of Runi-c, Rmul-c, and Rmix-c
depend on (m,P, σ2). On top of that, the behaviors of Rmix-c
depends also on P0. In the following, the asymptotic notations
O, o,Ω,Θ are w.r.t. K, unless explicitly stated.

A. Asymptotic behaviors of spatial multiplexing Runi-c and
coded caching Rmul-c

In [3], we studied the asymptotic behaviors of Runi-c, Rmul-c
when K is large in different regimes of total power P . We
summarize these results as follows.

1) Power-limited regime: P = Θ(1), σ2 = Θ(1)

Runi-c = Θ
( 1

1−m
)
, (26)

Rmul-c = Θ

(
1 +Km

1−m

)
. (27)

2) Fixed per-user power: P = Θ(K), σ2 = Θ(1)

Runi-c = Θ
( 1

1−m
)
, (28)

Rmul-c =
1 +Km

1−m
log(K) +O(1). (29)

3) Increasing per-user power: p = Θ(Kα), σ2 =
Θ(p−1) = Θ(K−α)

Runi-c =

{
Θ
(

1
1−mK

α
)
, if α ≤ 1

1
1−m (α− 1)K log(K) +O(1), if α > 1

(30)

Rmul-c =
1 +Km

1−m
(α+ 1) log(K) +O(1). (31)

The proof of the scaling of Runi-c can be derived by
establishing the upper and lower bounds. Details are omitted
due to the lack of space. The scaling of Rmul-c can be trivially
derived from the following lemma.

Lemma 1. When nt = 1, E
[
mink

{
SNR

mc−(0)
k

}]
= P

K .
For a fixed total transmit power P , R̄0 = Θ(1/K), i.e.,
the multicast rate is vanishing with K with single transmit
antenna. When nt scales at least logarithmically with K,
E
[
mink

{
SNR

mc−(0)
k

}]
= PΘ(1) when K is large, i.e., the

multicast rate is non-vanishing when the number of transmit
antennas scales up with K.

This lemma can be proved using the Chernoff bound for
the random variable ‖HHHk‖2

nt
. Details are omitted due to the lack

of space. Lemma 1 shows that a large number of transmit
antennas are necessary to achieve non-vanishing multicast rate,
which is essential for the scalability of coded caching.

Remark V.1. We see that with a fixed amount of cache memory
M , the typical regime in which coded caching is beneficial is
when α ∈ (−1, 0]. The gain is Θ ((α+ 1) log(K)). If either
the per-user power blows up with K or the total power shrinks
with K, then coded caching is not useful. Such regimes are
however not representative in a wireless communication system.

B. Asymptotic behaviors of mixed delivery

Remark V.2. Rmix-c scales at least as the maximum of Rmix
uni-c

and Rmix
mul-c.

Now, we analyse the asymptotic behaviors of Rmix
uni-c and

Rmix
mul-c. Let the total power scale up with K as P = Θ(Kη)

for some η ≥ 0 and the power budget for private signal scale
as P −P0 = Θ(Kβ) for some β ≤ η. Then P0 = Θ(Kη) and
p = Pk = Θ(Kβ−1), k = 1, . . . ,K.

First, we see that for a given η, we have no interest of letting
the private power decrease as K, i.e. β < 0. Thus, we look
into the following regimes:

1) Non-increasing per-user total power regime: In this
regime, 0 ≤ η ≤ 1, and the total power scales with
K as P = Θ(Kη). The two extreme cases η = 0 and
η = 1 correspond to the total power limited regime and
fixed per-user total power regime, respectively. The estimation



error is bounded away from zero, i.e. σ2 = Θ(1). We let
0 ≤ β ≤ η, then P0 = Θ(Kη) and p = Θ(Kβ−1). According
to (17), SINRk = Θ(1/K) with high probability (w.h.p.),
and hence R̄sym = Θ(1/K) from the linear approximation of
log(1 + x) = x log e + o(1) when x → ∞. From (16) and
Lemma 1, mink

{
SINR

(0)
k

}
= Θ(Kη−β) w.h.p., and hence

R̄0 = log(1 +Kη−β) +O(1). Thus, it follows that

Rmix
uni-c = Θ

(
1

1−m

)
, (32)

Rmix
mul-c =

1 +Km

1−m
log(1 +Kη−β) +O(1). (33)

We see that in this regime, the private rate is negligible to the
common rate and has no contribution to the scaling of Rmix-c.
In addition, the scaling of Rmix-c is decreasing with β.

2) Increasing per-user total power regime: In this regime,
η > 1, P = Θ(Kη) and the total power per user P/K scales
up with K.

a) Non-increasing per-user private power regime: In this
sub-regime, the private power per user is not increasing, i.e.
p = Θ(Kβ−1) for 0 ≤ β ≤ 1. P0 = Θ(Kη) and the estimation
error is still bounded away from zero, i.e. σ2 = Θ(1). Then,
according to (17), SINRk = Θ(1/K) w.h.p. due to the CSIT
error, and as in the previous regime R̄sym = Θ(1/K). On
the other hand, from (16) and applying Lemma 1 to the
righthand side numerator, mink

{
SINR

(0)
k

}
= Θ(Kη−β) w.h.p.,

and hence R̄0 = (η − β) log(K) +O(1). Thus, we have

Rmix
uni-c = Θ

(
1

1−m

)
, (34)

Rmix
mul-c =

1 +Km

1−m
(η − β) log(K) +O(1). (35)

Again, we see that the private rate does not contribute to the
scaling of the total sum rate. In this sub-regime, the scaling of
Rmix-c decreases with β.

b) Increasing per-user private power regime: In this sub-
regime, the private power per user can also scale up with K,
i.e. p = Θ(Kβ−1) for some η ≥ β > 1. The common power
is still P0 = Θ(Kη). We let the estimation error decrease with
p as σ2 = Θ(p−1) = Θ(K−β+1), assuming that a training-
based scheme is used for channel estimation (see e.g. [12]).
In this case, SINRk = Θ(Kβ−2) w.h.p.. If β < 2, the SINR
still vanishes and R̄sym = Θ(Kβ−2). If β = 2 and R̄sym
is also Θ(Kβ−2). If β > 2, the SINR scales up and R̄sym
becomes logarithmic (β − 2) log(K) + O(1). On the other
hand, according to (16) and Lemma 1, mink

{
SINR

(0)
k

}
=

Θ(Kη−(β−2)+−1) w.h.p., and R̄0 = (η−(β−2)+−1) log(K)+
O(1) where (β − 2)+ := max(β − 2, 0). Thus, it follows that

Rmix
uni-c =

{
Θ
(

1
1−mK

β−1
)
, if 1 < β ≤ 2

1
1−m (β − 2)K log(K) +O(1), if β > 2

(36)

Rmix
mul-c =

1 +Km

1−m
(η − (β − 2)+ − 1) log(K) +O(1), (37)

and in particular if β > 2

Rmix-c =
1

1−m
[(β − 2)K + (η − β + 1)(1 +Km)] log(K)

+O(1). (38)

In this sub-regime, provided that the per-user cache memory
is nonzero and fixed, the private rate is still dominated by the
common rate if 1 < β ≤ 2. The sum rate scaling is independent
of β given that 1 < β ≤ 2 and increasing with β given that
2 < β ≤ η.

The above asymptotic behaviors can also be proved by
establishing the upper and lower bounds. Details are omitted
in this paper.

C. Optimal power splitting

We are interested in finding the optimal power splitting P0

from the total power P which maximizes the sum content
delivery rate Rmix-c. From the scaling of Rmix

uni-c and Rmix
mul-c,

we can summarize the optimal power splitting in assymptotic
regime in the following proposition.

Proposition 1. Consider a content delivery system with a base
station with nt transmit antennas and N files, and K single-
antenna receivers each with normalized cache memory M files,
adapting a mixed common and private transmission. Then, the
optimal power splitting when K →∞ is

Ppriv =

Θ(1), if η ∈
[
0, 1 + 1

1−m

]
Θ(Kη), if η ∈

(
1 + 1

1−m ,∞
) (39)

where Ppriv is the power budget for the private signals, m :=
M/N and we assume that the total power P = Θ(Kη), K ≤
min{N,nt} and σ2 = Θ

(
K

P−P0

)
.

In particular, when K is finite, we can write the sum rate
in empirical form for an approximation, and then apply the
gradient descent method to derive the optimal operating point.

VI. NUMERICAL RESULTS

We show an example to illustrate the equivalent con-
tent delivery rate and optimal power splitting with finite
(M,N,K,P, σ2): N = 2000, nt = K = 100, P/K = 20 dB,
and σ2 =

(
P
K

)−1
. First, in Figure 1, we plot the equivalent

sum content delivery rate of mixed delivery as a function
of common power fraction P0/P in different cases of cache
memory size M . In general, the sum rate increases with M ,
and for a fixed M > 0, the sum rate achieves its maximum
at P0/P close to 1. This behavior is predicted in Section V-C
about optimal power splitting and can also be verified with the
asymptotic analysis of Rmix-c. In this figure, we also show the
optimal operating points computed by gradient descent method,
which agree with the sum rate curves.

Next, in Figure 2, we compare the equivalent sum rate of
spatial multiplexing, coded multicasting and mixed delivery
with optimal power splitting, as a function of cache memory M .
We observe that optimal mixed transmission is always optimal
in general. For example, we can achieve more than 150% gain
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Fig. 1. The equivalent sum content delivery rate as a function of common signal
power fraction P0/P , and the optimal operating point computed by gradient

descent method for N = 2000, K = 100, P/K = 20 dB, σ2 =
(

P
K

)−1
.

by combining both schemes w.r.t. either one when M is about
140. When M is smaller than that, spatial multiplexing is better
than coded multicasting. On the other hand, when M is larger,
coded caching is better and is optimal when M is over a certain
ratio of library, namely 22%.
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Fig. 2. The equivalent sum content delivery rate of optimal mixed transmission,
spatial multiplexing and coded multicasting with user cache as a function of

cache memory M for N = 2000, K = 100, P/K = 20 dB, σ2 =
(
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)−1
.

Finally, to depict the optimal power splitting, we plot the
optimal common power fraction P0/P , as a function of cache
memory M in Figure 3. As M increases, the figure suggests
us to allocate more power to the common signal, and even
give all the power P to the common signal when M is larger
than a certain ratio of the library as named above.

VII. CONCLUSION

In this paper, we have extended positively the answer for
the opening question w.r.t. [3] by showing that massive MIMO
and coded caching are indeed complementary to provide a
scalable solution for content delivery. They can be combined
to improve the equivalent content delivery rate. Several further
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Fig. 3. The optimal power splitting, interpreted by the common power fraction
P0/P , as a function of cache memory M for N = 2000, K = 100, P/K =
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(
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)−1
.

extensions of this work are still open. First, we can consider
more practical channel model with high asymmetry according to
the user location and antenna correlation, and propose clustering
algorithms to maximize the equivalent content delivery rate.
Then, coded caching is performed within each cluster but not
across different ones. Next, also in the asymmetric channel
setting, we can derive the rate regions and provide a utility
optimization framework to guarantee the fairness between users.
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