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Resilience-Based Component Importance Measures
for Critical Infrastructure Network Systems

Yi-Ping Fang, Nicola Pedroni, and Enrico Zio, Senior Member, IEEE

Abstract—In this paper, we propose two metrics, i.e., the op-
timal repair time and the resilience reduction worth, to measure
the criticality of the components of a network system from the per-
spective of their contribution to system resilience. Specifically, the
two metrics quantify: 1) the priority with which a failed compo-
nent should be repaired and re-installed into the network and 2)
the potential loss in the optimal system resilience due to a time
delay in the recovery of a failed component, respectively. Given
the stochastic nature of disruptive events on infrastructure net-
works, a Monte Carlo-based method is proposed to generate prob-
ability distributions of the two metrics for all of the components
of the network; then, a stochastic ranking approach based on the
Copeland's pairwise aggregation is used to rank components im-
portance. Numerical results are obtained for the IEEE 30-bus test
network and a comparison is made with three classical centrality
measures.

Index Terms—Component importance measures, critical infra-
structure, stochastic ranking, system recovery, system resilience.

ACRONYMS AND ABBREVIATIONS

CI Critical infrastructure.

CIP Critical infrastructure protection.

WCDR World conference on disaster reduction.

CIM Component importance measure.

MIP Mixed integer programming.

CM Copeland's method.

CDF Cumulative distribution function.

ORT Optimal repair time.

RRW Resilience reduction worth.

Manuscript received November 03, 2014; revised April 28, 2015; accepted
January 20, 2016. Associate editor: S. Shieh.
Y.-P. Fang was with the Chair on Systems Science and the Energetic Chal-

lenge, École Centrale Paris and Supélec (CentraleSupélec), 92295 Châtenay-
Malabry, France. He is now with the Department of Mechanical and Process
Engineering, ETH Zürich 8092, Switzerland (e-mail: fangy@ethz.ch).
N. Pedroni is now with the Chair on Systems Science and the Energetic Chal-

lenge, École Centrale Paris and Supélec (CentraleSupélec), 92295 Châtenay-
Malabry, France (e-mail: nicola.pedroni@ecp.fr).
E. Zio is with the Chair on Systems Science and the Energetic Challenge,

92295 Châtenay-Malabry, France, École Centrale Paris and Supélec (Centrale-
Supélec), Paris, France, and also with the Department of Energy, Politecnico di
Milano, Milan 20133, Italy (e-mail: enrico.zio@ecp.fr; enrico.zio@supelec.fr;
enrico.zio@polimi.it).
Color versions of one or more of the figures in this paper are available online

at http://ieeexplore.ieee.org.
Digital Object Identifier 10.1109/TR.2016.2521761

NOTATION

System performance function.

Target system performance function.

Time-dependent system resilience.

Set of nodes.

Set of arcs.

Set of disrupted arcs.

Network comprising a set of nodes
connected by a set of arcs .

Supply, transship, and demand nodes,
respectively.

Capacity of link .

Supply capacity of node .

Demand of node .

Total recovery time.

Flow received by demand node at time .

Flow from node to through arc at
time .

State variable of arc at time .

Failure probability of arc under event .

Optimal repair time of arc .

Resilience reduction worth of arc under
delay .

Copeland score of arc .

Shortest path betweenness centrality.

Flow betweenness centrality.

Random walk betweenness centrality.

I. INTRODUCTION

C OMPLEXITY of critical infrastructures (CIs), such as
power grids, the Internet, transportation networks, and so

forth, is increasing. Disruptive events, whether they are malev-
olent attacks, natural disasters, or human-caused accidents, can
have significant impacts on these real-world complex networks
composed of numerous interconnected functional and structural
elements.

0018-9529 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.
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Justifiably, then, critical infrastructure protection (CIP) has
become a priority for all nations [1]. The focus has been tra-
ditionally placed on physical protection and asset hardening
[2]–[5]. However, in recent years, lessons learned from some
catastrophic accidents have pushed part of the focus on the con-
cept of “resilience” [6], [7]. The outcomes of the 2005 World
Conference on Disaster Reduction (WCDR) witness the signif-
icance of introducing the term “resilience” into the disaster dis-
course, giving birth to a new culture of disaster response [8].
Consequently, government policy has also evolved to encourage
efforts that would allow assets to continue operating at some
level or quickly return to full operation after the occurrence of
disruptive events [9].
“Resilience” comes from the Latin word “resilio” that liter-

ally means “to leap back” and denotes a system attribute char-
acterized by the ability to recover from challenges or disrup-
tive events. The Merriam-Webster dictionary defines resilience
as “the ability to recover from or adjust easily to misfortune or
change.” In this view, systems should not only be reliable, i.e.,
having an acceptably low failure probability, but also resilient,
i.e., having the ability to optimally recover from disruptions of
the nominal operating conditions [10], [11].
In this context, the present paper addresses the issue of quan-

tifying the importance of components in contributing to the re-
silience of a critical infrastructure. Component importance mea-
sures (CIMs) have been thoroughly studied in the field of relia-
bility theory and risk analysis. Various analytical and empirical
CIMs have been proposed in the literature, e.g., Birnbaum [12],
Fussell-Vesely [13], Reliability Achievement/Reduction Worth
[14], [15], Barlow-Proschan [45], Natvig [46], and their exten-
sions [16]–[20], [34], [47], [48]. CIMs have been shown valu-
able in establishing direction and prioritization of actions related
to an upgrading effort (e.g., reliability improvement) in system
design, or in suggesting the most efficient way to operate and
maintain system status. However, none of the existing classical
CIMs based on the reliability concept are directly applicable to
the post-disaster phase, since there is no scope to exhibit relia-
bility after the occurrence of system failure.
The role that a component plays in a network system has been

measured by various so-called centrality measures, looking
from the point of view of the complex interaction and commu-
nication flow in the network [21], [22]. Classical topological
centrality measures are the degree centrality [23], [24], the
closeness centrality [24]–[26], the betweenness centrality [24],
and the information centrality [27]. They specifically rely on
topological information to qualify the importance of a network
component. Additionally, Freeman et al. [28] proposed a flow
betweenness centrality measure based on the idea of maximum
network flow; Newman [29] suggested a randomwalk between-
ness measure that counts essentially all paths between vertices
and which makes no assumptions of optimality; Jenelius et
al. [30] proposed several vulnerability-based importance mea-
sures for transportation networks; Hines and Blumsack [31]
introduced an “electrical centrality” measure for electrical
networks by taking into account the electrical topology of the
network; Zio and Piccinelli [32] provided a randomized flow
model-based centrality measure specifically for electrical net-
works; Zio and Sansavini [33] introduced component criticality

measures from the cascade failure process point of view, for
general network systems. Nevertheless, none of these analyses
takes into account the dynamics of system recovery from the
effects of a disruptive event.
Resilience-based metrics of component criticality with re-

spect to their influence on the overall resilience of the system
(i.e., on the system's ability to quickly recover from a disruptive
event) can be helpful for preparing an efficient component re-
pair checklist in the event of system failure [34]. Natvig et al.
introduced a dual extended Natvig measure for repairable sys-
tems: according to this measure, the components that are con-
sidered important are those whose repair reduces significantly
the expected time of residence of the system in the worst states
[34]. Hence, this dual Natvig measure is a resilience measure
for multistate components in a multistate system. A dual exten-
sion of the Barlow-Proschan measure has also been suggested
for multistate repairable systems, based on the probability that
the repair of the th component is the cause of a system state
improvement, given that this has occurred [48].
Recently, Barker et al. [35] introduced two resilience-based

network component importance metrics. Although the re-
silience definition, which the importance metrics rely on,
actually embraces the temporal dimension of system recovery,
it can be considered “memoryless”: in the sense that the system
resilience metric at a given time does not take
into account the information about the restoration behavior
before time . Thus, it may happen that different restoration
curves with different levels of favorability have the same value
of resilience . In addition, the two metrics introduced
in [35] seek to quantify the effect that the disruption, rather
than the recovery (behavior), of an individual component has
on the system resilience, implying that the resilience improve-
ment is achieved by actions related to system protection and
fortification efforts in system design, although they have also
been applied to compare network recovery strategies [36].
In this study, a new definition of system resilience and a re-

silience optimization framework are first presented, based on
which we then introduce two network components importance
measures, namely, the optimal repair time and the resilience re-
duction worth, useful for prioritizing restoration activities. The
two measures quantify: 1) the priority with which a failed com-
ponent should be repaired and re-installed into the network and
2) the potential loss in the optimal system resilience due to a
time delay in the recovery of a failed component, respectively.
A stochastic ranking technique proposed by Barker et al. [35],
which is based on the Copeland's pairwise aggregation [37], is
applied in this paper to rank the components’ criticalities.
As a case study, the IEEE 30-bus test network is considered:

the criticalities of the components computed by the proposed
indicators are compared with those produced by three classical
measures of betweenness centrality [28], [29], [38].
It is noted that the differences of the resilience-based CIMs

proposed in the present paper with respect to that in [35] mainly
fall into the following two aspects: 1) the concept and defini-
tion of system resilience which the CIMs rely on takes into ac-
count the cumulative restored system functionality and 2) the
focus of the proposed resilience-based CIMs is to quantify the
effect that the recovery, rather than the disruption, of individual
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Fig. 1. Generic system performance transition curve under the occurrence of
disruption.

components has on the global system resilience, for most effec-
tive system (recovery) operation.
The remainder of this paper is organized as follows.

Section II provides the general framework of the study, re-
calling the definition of system resilience and the resilience
optimization model. In Section III, two measures of component
criticality for system resilience, and a simulation methodology
for their calculation and ordering are presented. Section IV il-
lustrates the calculation of the proposed metrics on the IEEE
30-bus test network: the obtained components rankings are
compared with those produced by classical betweenness cen-
trality measures. Concluding remarks are drawn in Section V.

II. METHODOLOGICAL BACKGROUND: SYSTEM RESILIENCE
DEFINITION AND OPTIMIZATION FOR INFRASTRUCTURE

NETWORK SYSTEMS

This section provides the definition of system resilience and
the resilience optimization framework, which serve as method-
ological background for the resilience-based component impor-
tance measures that will be discussed in Section III.

A. System Resilience Definition
As illustrated in Fig. 1, a quantifiable and time-dependent

system performance function (also called system level delivery
function or figure-of-merit) is the basis for the assessment
of system resilience [8], [35], [36]. It has a nominal value
under nominal operating conditions. The system operates at this
level until suffering a disruptive event at time . The disruption
generally deteriorates system performance to some level
at time . Then, recovery action is started, affecting and im-
proving system performance until it achieves, at a later time ,
a targeted level of performance that could be the same,
close to, or better than original system performance , for
which recovery is considered completed. The dotted curve
in Fig. 1 denotes the targeted system performance if not af-
fected by disruption, which is generally evolving due to the dy-
namic nature of service demand and system upgrading; in this
study, it is assumed to be equal to and remain invariant,
for simplicity of illustration. In addition, it is noted that var-
ious strategies exist for recovery activities, and system perfor-
mance is ultimately a function of recovery decisions. The period
of is generally considered as the recovery time [8].

Fig. 2. Conceptual illustration of the proposed resilience measurement.

Let be the resilience of a system at time . In its
basic form, describes the cumulative system functionality
that has been restored at time , normalized by the expected
cumulative system functionality supposing that the system has
not been affected by disruption during this time period and given
as

(1)

Graphically, is quantified by the ratio of the area with di-
agonal stripes to the area of the shaded part , as shown in
Fig. 2.
Note that the formulation in (1) focuses mainly on the recov-

erability dimension of resilience and is in the range of [0,
1]. when , which means that a system
has not recovered from its disrupted state (i.e., there has been no
“resilience” action); when , which cor-
responds to the ideal case where a system recovers to its target
state immediately after disruption. This resilience quantification
is consistent with the original meaning of the concept of re-
silience and is capable of measuring at the same time the magni-
tude and rapidity of system recovery action. More importantly,
this definition of system resilience is not memoryless since it
considers cumulatively the system functionality restored, dif-
ferently from [35].

B. System Resilience Optimization

A disruptive event could impact one or more components of
an infrastructure network system. In the case ofmultiple compo-
nent failures, a systemic recovery action should be undertaken
with the order of failed components to repair such that system
resilience is maximal, i.e., to achieve optimal (restored) cumu-
lative system functionality over the recovery time considered.
A variety of frameworks of optimization for post-disaster re-

covery of an infrastructure network system can be designed, fo-
cusing on different aspects of the restoration strategy, e.g., the
order of repair of the damaged components, where and how to
allocate repair resources and so forth. This study focuses on the
significance of the recovery of a component with respect to the
resilience of the system. Consequently, the optimization is de-
signed to find the optimal order of repair of the set of failed
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components with the objective of achieving maximum system
resilience over the restoration time horizon.
The mathematical model for the resilience optimization con-

cerns a network comprising a set of nodes connected
by a set of links or arcs . The network nodes are distinguished
in supply nodes , transshipment nodes , and demand
nodes . Each arc has an associated
capacity , each supply node has a supply
capacity per time unit and each demand node
has a demand per time unit. Network flow is deliv-
ered from supply nodes to demand nodes respecting the flow ca-
pacities of the links and supply/demand capacities of the nodes.
The performance of the network is evaluated by determining the
maximum amount of flow that can be received by the demand
nodes. Formally, the system performance function is defined as

(2)

where represents the amount of flow received by demand
node at time .
Disruptions happen and create damages to nodes and/or links

in the network, which is modeled as removal of a subset of arcs,
, from the network.1 The arcs in set are viewed as

non-operational immediately after the disruption. System per-
formance achieves its minimum value at this time, which
is seen as the initial stage of system restoration that we focus on
(we set at this time for computational convenience, i.e.,

).
The recovery optimization framework aims at identifying the

subset of links in to repair and the order, in which the links
should be repaired so as to achieve maximum system resilience
over the restoration horizon . In this study, link re-
pairs are assumed to be discrete tasks and only a single arc can
be repaired at a given time period. Thus, discrete time periods

are considered, hereafter, instead of the contin-
uous one in the resilience definition of (1). In addition, we do
not model in detail the mechanisms and procedures according
to which a single failed component is repaired; rather, the focus
is on the identification of the exact (optimal) time when the dis-
rupted arcs should be brought back online and, thus, on the tem-
poral sequence of the restoration actions on all the failed compo-
nents. Obviously, the inclusion of possibly different repair times
for different components may produce a different component
ranking. However, this would be automatically accounted for in
the procedure by the inclusion of proper “hard” constraints and,
thus, it would not impair the applicability and generality of the
approach . By combining (1) and (2), system resilience to be
maximized at time is given by

(3)

1For nodes, they can be converted to equivalent arcs by introducing additional
arcs and nodes into the network, i.e., by “splitting” a node into two nodes and
an arc.

where is the target system performance.
The variables of the resilience optimization problem include: 1)
continuous variables , and ,
that denote the flow moving from node to node through link
at time unit ; 2) continuous variables , ,

that represent the amount of flow received by demand node
at time unit , and 3) binary state variables , and

, such that if arc is operational and
if arc is not operational at time unit . We are

interested in optimizing the resilience over the whole restoration
process: thus, the timespan is the total recovery time, defined
as the period necessary to restore the system functionality to the
same level as the original system. Consequently, the formulation
of the resilience optimization problem is as follows:

(4)

subject to

(5)

(6)

(7)

(8)
(9)
(10)
(11)

(12)

The objective (4) is to maximize the system resilience over
the time horizon of recovery. Constraints (5)–(9) are typical net-
work flow constraints over the links and supply/demand nodes
in the network in period . They ensure that: the flow generated
at a supply node does not exceed its supply capacity (5); the
amount of net injected flow at a transshipment node is zero (6);
the amount of net injected flow at a demand node is equal to the
received flow at the node (7) while not exceeding its requested
demand (8); the flow on an operational link does not exceed its
capacity and there is no flow passing through an arc if the arc
is failed (9). Constraint (10) ensures that once an arc has been
restored at time , it will keep operational thereafter. Finally,
constraint (11) ensures that only a single arc can be repaired at
any given timeslot.
This resilience optimization above defined is a typical mixed

integer programming (MIP) problem. A commercial optimiza-
tion solver Cplex [39] is used in this study for its solution. It is
noted that this resilience optimization model is only applied for
the purpose of illustration of resilience-based component impor-
tance metrics. More complex optimization models (e.g., taking
into account the cost and duration of repairing a particular failed
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link) can be adopted in other application cases. Besides, a spe-
cific application involving the 400-kV French Power Transmis-
sion Network of the proposed resilience (restoration) optimiza-
tion problem has been presented in [49]. While the present study
mainly focuses on the definition of resilience-based CIMs and
the analysis of their properties, as mentioned before.

III. MATH RESILIENCE-BASED CIMS FOR INFRASTRUCTURE
NETWORK SYSTEMS

A. CIM Definition
As described in Section II-B, the analysis concerns a network

comprising a set of nodes and a set of links . The
binary state variable of arc at time is defined by ,

. The initial impact experienced by the network after a
disruptive event at time is represented by the removal of
a subset of arcs from the network, setting ,

. We introduce the failure probability of arc under
event ,

(13)

Equation (13) describes how individual components (links) are
initially affected by a disruptive event . Section II-B explains
how these failed components optimally recover from the dis-
ruption state following the event. Finally, (1) incorporates these
dimensions to quantify system resilience.
When considering component criticality in a resilience set-

ting, we are interested in understanding: 1) the optimal time to
repair the failed components in order to maximize system re-
silience and 2) the effect that the timely recovery of the compo-
nents have on the overall resilience of the system. These con-
cepts are at the basis of the definition of the two resilience-based
importance measures here proposed.
Given a particular initial failure state, the optimal repair time

of a failed arc is defined as the time when the arc is
restored to operating status so to maximize the system resilience
over the recovery time , given by

(14)

It can be obtained by first solving the MIP problem (4)–(12)
and then computing it based on the state variables of the arc
as

(15)

The timespan for restoration is chosen as the time period
necessary to restore the system functionality to the same level
as the original system. It is noted that the optimal repair time

offers an explicit quantification of the priority that should
be given to the reparation and installation of arc into the net-
work. Low values of indicate higher priority of being re-
paired and re-installed into the network, i.e., higher ranking of
the component in the repair checklist.
To account for the delay in the restoration of a particular link
, a resilience reduction worth (RRW) metric is introduced as

(16)

where represents the optimal system resilience at
restoration time , corresponds
to the optimal system resilience at time if link cannot be
repaired until time , where is the delay with
respect to its optimal repair time given by (14). Equation
(16) quantifies the potential (normalized) loss in optimal system
resilience due to a delay in the repair of link . This metric
is comparable to the so-called reliability reduction worth [40],
which measures the potential damage caused to the system
reliability by the failure of a particular component. It can provide
valuable information to guide the recovery process of a partic-
ular component. Components with high values of
should be given high priority in the restoration process, e.g.,
be assigned adequate restoration resources to avoid delays that
would have a more significant impact on system restoration.
It is noted that the resilience-based CIMs in [35] are intro-

duced to quantify the effect that the disruption, rather than the
recovery (behavior), of an individual component has on the
system resilience (represented by the system recovery time).
Specifically, the first metric in [35] measures the contribution
that the disruption of link has on the system recovery time,
weighted by the ratio of system service loss due to the disruption
effect on link to the maximum loss among all of the links. The
second metric in [35] quantifies how the system recovery time
is improved if link is invulnerable. Both definitions imply
that the resilience improvement is achieved by actions related
to system protection and fortification efforts in system design.
However, the two resilience-metrics introduced in the present
paper measure the effect that the recovery of an individual
component has on the global system resilience, by quantifying:
1) the priority with which a failed component should be repaired
and re-installed into the network and 2) the potential loss in the
optimal system resilience due to a time delay in the recovery of
a failed component, respectively. Hence, our resilience-based
metrics are able to suggest the most effective way for system
operation, i.e., to help the implementation of: 1) recovery
schedule planning and 2) restoration resources allocation.

B. Methodology for Component Importance Ordering
Ordering network links recovery on the basis of the values of

the criticality measures described above, i.e., the optimal repair
time and resilience reduction worth (fixed ),
requires quantifying the effect of timely repairing these links
on the overall resilience of the system. Given the stochastic na-
ture of disruptive events in terms of components failures after
the event, the resilience-based criticality measures introduced
are not represented by deterministic values, but rather by proba-
bility distributions. Therefore, given a network under a
disruptive event , we first apply aMonte Carlo-basedmethod to
generate distributions of optimal repair time and resilience
reduction worth for all of the links in the network.
Then, we rank links importance using a Copeland's pairwise ag-
gregation-based stochastic approach proposed by Barker et al.
[35]. The detailed steps of the algorithm are as follows.
1) A network is initially operating with a given pa-

rameters setting: flow demand of all of the demand
nodes in , supplycapacity of all of the supplynodes in

and link capacity for all of the network arcs in .
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2) A failure configuration of the network is randomly sampled
on the basis of the failure probabilities of each arc in the
system given by (13), under a disruptive event at initial
time . The operation state variables of failed links are
set to 0, i.e., , .

3) The resilience optimization model of (4)–(12) is applied
and solved by Cplex to obtain the optimal strategy of net-
work recovery, i.e., the optimal repair time for each
failed arc .

4) In order to evaluate the second importance measure
, for each failed arc , the addi-

tional constraint that the restoration of arc should
not be accomplished earlier than (i.e.,

) is added to the optimization model of
(4)–(12). Then, is obtained
by solving this “modified” optimization model by Cplex.
Finally, the resilience reduction worth for
each arc is recorded.

5) To account for the stochasticity of the disruptive event in
terms of arcs failures, repeat Step 2 to Step 4 for a chosen
number of iterations, generating probability distributions
for and , for all of the links in the
network.

6) Given the distributions of (resp., )
for each arc , perform a stochastic ranking of links
according to ascending (resp., descending) values
(see Section III-C).

C. Stochastic Ranking

In order to rank network links according to the distribution
of their optimal repair time (or resilience reduction worth

) obtained at step 6) of the algorithm above, an
approach based on the Copeland's pairwise aggregation method
[37] is proposed. The Copeland's method (CM) is a simple non-
parametric Condorcet method used in the political field (voting)
that does not require any information about decisionmaker pref-
erence and operates on a multi-indicator matrix formed by
objects characterized by attributes [41]. CM relies on pair-
wise comparisons between objects in the candidate pool, and
the so-called Copeland score is defined for each object as the
difference between the number of times that this object beats
the other objects and the number of times that it is beat by other
objects.
The CM-based ranking approach applied here corresponds to

a modification proposed by Al-Sharrah [42]. It first examines
the CDF of a given variable for all the candidates, e.g., the CDF
of ; then, it compares the CDF of two candi-
dates under analysis, i.e., links and , with respect to specific
attributes of the CDF: for example, attribute may represent
the th percentile. Subsequently, a quantity is calcu-
lated based on a pairwise comparison between links and
with respect to (percentile) of the corresponding distributions

, as

if
if
if

(17)

Fig. 3. Single-line diagram of the IEEE 30-bus test system.

where the sentence means that domi-
nates with respect to the ranking rule of the variable con-
sidered, i.e., for , while
if is considered, while symbol “ ” represents the
opposite meaning. is initialized at zero for the first
(percentile) and (16) is iterated through all attributes (per-
centiles). Then, the Copeland score for each link is defined as

(18)

This Copeland score is finally used to rank all of the links:
the higher , the higher the contribution of link to the
overall resilience of the network.

IV. CASE STUDY

A. Resilience-Based Criticality Measures on the IEEE 30-Bus
Test System
The IEEE 30-bus test system [43] is taken as a reference case

study for the proposed resilience-based component importance
measure approach. This system (Fig. 3) represents a portion of
the American Electric Power System and is composed of 30
buses connected by 41 transmission lines. To carry out the anal-
ysis, each system component is transposed into a node or edge
of the representative topological network, as shown in Fig. 4.
Three different physical types of nodes are considered: gener-
ator nodes (where the electricity flow is fed into the network),
demand nodes (where customers are connected), and transfer or
transmission nodes (without customers or sources).
The simulation procedure introduced in Section III-B is then

used to rank each component of the IEEE 30-bus network ac-
cording to the criticality metrics introduced. In normal condi-
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Fig. 4. Graph representation of the IEEE 30-bus test system. The dark grey
circles labeled with G represent the generator nodes, the white circles labeled
with T represent transmission nodes, and the light grey circles labeled with D
represent the demand nodes.

tions, the network is assumed to operate under the following pa-
rameters setting: the generation capacity is identical for all gen-
eration nodes and equal to 60, in arbitrary units (a.u.); the flow
demands are 20 a.u. for all load nodes; the values of the trans-
mission capacities are 20 a.u. for all of the network links. The
homogeneous assignments of generation capacity, demand, and
link capacity are here applied for the purpose of identifying the
resilience criticalities of all of the network arcs stemming from
their different topological connections. For the same reason, a
constant failure probability is assumed for all of the net-
work links under disruptive event . The roulette wheel selec-
tion method [44] is used in step 2 for sampling a failure con-
figuration by selecting a failed link at each spin until a certain
number of arcs are selected.
Fig. 5 illustrates the cumulative distribution functions (CDFs)

of for five representative links ( , , ,
and ), obtained at step 5) of the procedure by ap-

plying the simulation algorithm proposed in Section III-B (for
samples). The figure illustrates the probability that

is less than or equal to a target value . It can be seen that
the optimal repair time associatedwith link , i.e., , will
never be larger than 5 (square-line curve in Fig. 5). Moreover,
the curve for link always “dominates” the other curves.
Therefore, this link should have the highest priority to be re-
paired in order to maximize system resilience.
However, considering e.g., links (circle line) and

(triangle line) in Fig. 5, it is not evident which one
“dominates” the other, due to the intersection of their CDF
curves. Thus, the CM-based ranking approach introduced in
Section III-C is applied to rank the importance of the links.
Fig. 6 reports the Copeland scores of all the 41 links in the

Fig. 5. Cumulative probability distributions of the optimal repair time for
five representative links.

Fig. 6. Copeland score ranking of the optimal repair time for all IEEE
30-bus network links.

IEEE 30-bus network, ordered in descending order, with link
having the highest score, followed by links , ,

and so forth. Furthermore, Fig. 7 graphically illus-
trates the Copeland score of the optimal repair time for
all IEEE 30-bus network links, where links with higher values
of Copeland score are represented as thicker and darker edges.
It is shown that two types of links are more important in terms
of : 1) the links which connect the generator nodes with
the other two types of nodes (transmission nodes and demand
nodes), e.g., links , , , etc., and 2) the links
which are the only ones connected to demand nodes, e.g., link

. The restoration of these types of links is most likely
able to augment the total amount of flow received by the demand
nodes of the network: thus, high priority should be given to
these links when considering the repair order of the failed links.
Figs. 8 and 9 illustrate the results based on the resilience re-

duction worth for all the links and for a delay time
3 units, i.e., the Copeland score ranking and its graph-

ical representation, respectively. It is noted that different sets
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Fig. 7. Graphical illustration of the Copeland scores of the optimal repair time
for all IEEE 30-bus network links. Links with higher value of Copeland

score are represented as thicker and darker edges.

Fig. 8. Copeland score ranking of the resilience reduction worth
for all IEEE 30-bus network links.

of values of the resilience reduction worth for all
network links can be obtained under different values of delay

; however, the ranking of for all the links
by the Copeland method will keep consistent in our study. It is
shown that is the most critical link in terms of ,
i.e., a delay in its restoration would cause the largest reduction
in system resilience among all the network links; thus, adequate
resources should be given to make sure of its timely restoration.
Besides, it is noted that the links with high Copeland scores in
terms of the optimal repair time also have high Copeland
score ranking in terms of the resilience reduction worth :
the correlation coefficient between the two Copeland scores is

for .

Fig. 9. Graphical illustration of the Copeland scores of the resilience reduction
worth for all IEEE 30-bus network links. Links with higher
values of Copeland score are represented as thicker and darker edges.

B. Comparison With Betweenness Centrality Measures
Betweenness centrality indices have been introduced as mea-

sures of component importance in a network, taking into ac-
count the different ways in which a component interacts and
communicates with the rest of the network [24], [32]. A classical
centrality measure is the topological betweenness centrality in-
troduced in the social network field, which is based on the idea
that a component is central if it is lies between many other com-
ponents, in the sense that it is traversed by many of the shortest
paths connecting pairs of nodes [24], usually called as shortest
path betweenness. The topological betweenness centrality
of a given link in a supply-demand differentiated network

is given by [38]

(19)

where is the number of topological shortest paths between
supply nodes and demand nodes, and is the number of
supply-demand shortest paths passing though link .
To account for the issue that in some cases flow may not

follow the ideal geodesic paths from supply to demand nodes, a
betweenness centrality measure based on the idea of maximum
network flow has been proposed [28], usually known as flow be-
tweenness. The measure counts all independent paths that carry
information when a maximum flow is pumped between each
pair of vertices. The flow betweenness of a component is de-
fined as the amount of flow through it when the maximum flow
is transmitted from source to demand , averaged over all
and . It is quantitatively defined as [28]

(20)
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(a) (b)

Fig. 10. Scatterplot of the Copeland scores of (a) the optimal repair time
and (b) resilience reduction worth with the shortest path betweenness

for the links of the IEEE 30-bus network.

where is the maximum flow from a source node to a
demand node and is the maximum flow from to
that passes through link .
In practical terms, however, neither of the two betweenness

measures introduced above is realistic. Both count only a small
subset of possible paths between vertices, and both assume some
kind of optimality in information transmission (shortest paths
or maximum flow). Therefore, a new betweenness measure that
counts essentially all paths between vertices and which makes
no assumptions of optimality has been suggested, called random
walk betweenness [29]. This measure is based on random walks
between vertex pairs and asks, in essence, how often a given
component will fall on a random walk between another pair of
vertices. Roughly speaking, the random walk betweenness of
a link is equal to the number of times that a random walk
starting at and ending at passes through the link along the
way, averaged over all and . Let be the current flow from
to , through link . Then, the random walk betweenness of

a link is defined as

(21)

We are interested in comparing the ranking results of our
resilience-based component importance measures to these
betweenness centrality indices, i.e., shortest path between-
ness, flow betweenness and random walk betweenness for the
proposed IEEE 30-bus network. Fig. 10 shows the values of
the Copeland scores for the optimal repair time (left
panel) and for the resilience reduction worth (right
panel) plotted with respect to the shortest path betweenness

for all of the links of IEEE 30-bus network. No obvious
correlation can be identified from the figures. Actually, the
correlation coefficients between , , and are

and , respec-
tively. Similarly, Fig. 11 plots the relationship between the
Copeland scores for the optimal repair time (left panel)
and the resilience reduction worth (right panel) with
the flow betweenness ; Fig. 12 shows the same scatter-
plots with respect to the random walk betweenness .
The correlation coefficients are ,

(a) (b)

Fig. 11. Scatterplot of the Copeland scores of (a) the optimal repair time
and (b) resilience reduction worth with flow betweenness for the
links of the IEEE 30-bus network.

(a) (b)

Fig. 12. Scatterplot of the Copeland scores of (a) the optimal repair time
and (b) resilience reduction worth with the random walk betweenness

for the links of the IEEE 30-bus network.

, and
, respectively.

These results show that the betweenness centrality indices
(e.g., shortest path betweenness, flow betweenness and random
walk betweenness) do not capture the component criticality with
respect to resilience for the recovery of the IEEE 30-bus net-
work. This implies that these centrality measures (which are cal-
culated under normal operation condition) are not applicable to
guide the system restoration after a disruptive event, e.g., to pre-
pare an efficient component repair priority checklist in the event
of system failure.

V. CONCLUSION
This paper primarily contributes two metrics to measure the

criticality of network components from the perspective of their
contribution to system resilience, defined as the cumulative
system functionality that has been restored at time , normalized
by the expected cumulative system functionality supposing that
the system has not been affected by disruption during this time
period.
The first resilience-based component importance measure,

i.e., the optimal repair time in (14), offers an explicit quan-
tification of the priority that should be given to arc to be re-
paired and re-installed into the network. Lower values of
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indicate higher priority, i.e., higher rank in the component repair
checklist for system restoration in the event of system failure.
The second resilience-based component importance measure,
i.e., the resilience reduction worth , quantifies the
potential loss in optimal system resilience due to a delay
in the repair time of link . This measure can provide valuable
information to guide the recovery process of a particular compo-
nent: components with high values of should be
given high priority to their timely restoration, e.g., be assigned
with adequate restoration resources.
Given the stochastic nature of disruptive events on an infra-

structure network, a Monte Carlo-based method has been pro-
posed to generate distributions of optimal repair time and
resilience reduction worth for all the components
in the network; then, a stochastic ranking approach based on
the Copeland's pairwise aggregation method has been applied
to rank components importance.
The results of the two measures applied to the IEEE 30-bus

test network demonstrate some non-obvious and meaningful
conclusions about the contributions of certain links to the re-
silience of the network. It is shown that two types of links are
most important in terms of : 1) the links which connect
generator nodes with the other two types of nodes (transmis-
sion nodes and demand nodes), e.g., links , ,
etc., and 2) the link which is the only arc connecting to de-
mand nodes, i.e., link . The restoration of these types of
links is most likely able to augment the total amount of flow re-
ceived by the demand nodes of the network so that high priority
should be given to these links in the reparation list. Besides,
those links with high Copeland scores in terms of also have
high Copeland scores ranking in terms of the resilience reduc-
tion worth : actually, the correlation coefficient between
the two quantities is .
It is noted that the differences of the resilience-based CIMs

proposed in the present paper with respect to that in [35] mainly
fall into the following two aspects: 1) the concept and definition
of system resilience which the CIMs rely on is an non-memo-
ryless one in this study by taking into account the cumulative
restored system functionality and 2) the focus of the proposed
resilience-based CIMs is to quantify the effect that the recovery,
rather than the disruption, of individual components has on the
global system resilience, thus, are valuable in suggesting the
most effective way for system (recovery) operation.
Finally, it is shown that the classical betweenness cen-

trality indices, such as the shortest path betweenness, flow
betweenness and random walk betweenness, do not capture
resilience criticality as do the resilience-based measures
and . Actually, the existing centrality indices
and the CIMs in the reliability engineering literature are not
appropriate to help implement resilience planning because they
do not take into account system recovery time. Instead, the two
measures proposed in the present paper provide insights useful
for practical restoration activities of infrastructure networks
after suffering a disruptive event.
It is noted that in this study we consider a system suffering a

specific type of events e (e.g., earthquakes of a certain magni-
tude) and rank the component importance by a stochastic ranking

method. The results are valuable to help implement the system
restoration if this type of event happens on the system. However,
it might be possible that an infrastructure system is affected
by different types of events concurrently (e.g., earthquake and
tsunami). Future studies will concentrate on the application
of the resilience-based component importance measures to
different types of infrastructure networks subject to (possibly
different types of correlated) disruptive events, in order to
further demonstrate the practical effectiveness of the measures.
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