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We study adiabatic light transfer in systems of two coupled waveguides with spatially varying
detuning of the propagation constants, providing an analogy to the quantum phenomena of Rapid
Adiabatic Passage (RAP) and two-state Stimulated Raman Adiabatic Passage (two-state STIRAP).
Experimental demonstration using a photo-induction technique confirms the robust and broadband
character of the structures that act as broadband directional couplers and broadband beam-splitters,
respectively.

I. INTRODUCTION

The formal analogy between some quantum systems
and classical photonic systems has motivated intensive
research in recent years, both from a fundamental and
application-oriented point of view [1, 2]. In this context
a strong attention was given to the coupling and passage
of light between waveguides, which behaves similarly to
the population transfer in quantum systems driven by
an appropriate external field. Several studies in waveg-
uides were inspired by the Stimulated Raman Adiabatic
Passage process (STIRAP) [3–5], which represents a very
e↵ective and robust way to coherently control the popu-
lation of quantum states by means of a proper adiabatic
temporal evolution of the coupling hamiltonian. In this
way the system population can be e↵ectively driven from
an initial state to a final target state. The first proposals
[6, 7] and the first experimental demonstration [8] of a
STIRAP-like process in waveguides have stimulated sev-
eral studies on adiabatic light passage in waveguides by
slight modifications of this concept. These include theo-
retical and experimental studies related to the fractional
STIRAP process [9], multi-state STIRAP [10–12], beam-
splitting [9, 13–16], adiabatic mode conversion [11, 17]
the role of nonlinear e↵ects [18], or the use of such waveg-
uide structures for photonic quantum gate operations
[16]. Generally these approaches profit from the high
robustness of the adiabatic process, leading for instance
to a broadband behavior of the light spatial adiabatic
passage process. However, since the necessary adiabatic
condition is better fulfilled at longer than at shorter wave-
lengths [12], the use of such systems for spectral low-pass
or high-pass filtering was also proposed [19, 20].

⇤
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Previous studies principally rely on an adiabatic spa-
tial evolution of the coupling constant C between neigh-
boring waveguides. As follows from the coupled-mode
theory [21], the latter is mainly connected to the dis-
tance between the evanescently coupled waveguides. Its
counterpart in atomic physics is a temporal evolving Rabi
frequency �⌦ coupling the quantum states. In the case
of atomic physics the atom-laser detuning �! provides a
useful and versatile parameter for the adiabatic control of
the system evolution. This detuning is given by a tempo-
ral dependent mismatch of the frequency of the driving
field from the transition frequency. The corresponding
parameter in waveguides is represented by spatial evolu-
tion of a detuning �� of the propagation constants in
the individual waveguides. Therefore, it is expected that
also for waveguides the detuning parameter shall increase
the possibilities for controlling the adiabatic evolution of
the propagating light fields. Even though the interest of
using tapered waveguides was recognized early for the op-
timization of various components [22–24], little attention
was given to the combination with a spatially evolving
coupling coe�cient.

In the present work we address this issue in relation
with existing quantum phenomena. We consider two
coupled waveguides with spatially varying coupling co-
e�cients and we study theoretically and experimentally
the e↵ect of the detuning ��(z) (associated to a longi-
tudinal variation of the index contrast) on the adiabatic
light transfer between them. We choose two concrete ex-
amples. The first mimics the Rapid Adiabatic Passage
(RAP) process [4] in quantum physics for which the de-
tuning crosses zero while the coupling pulse is applied,
which leads to a robust and rapid way to adiabatically
invert a two-state system. Such a population transfer by
adiabatic passage via a level crossing was initially imple-
mented in nuclear magnetic resonance [25]. Laser-driven
adiabatic passage in atoms and molecules was proposed
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by Treacy [26] and demonstrated first in the infrared by
Stark-shifting the transition frequency [27], or by sweep-
ing the laser frequency through resonance [28]. In the
80s, adiabatic passage was observed also in the near-
infrared [29] and with visible light [30]. Further details
can be found in Refs. [4, 31, 32]. The second example
mimics the so-called two-state STIRAP process [33, 34],
which leads finally to an equal coherent superposition of
the two states. Two-state STIRAP was experimentally
demonstrated by Yamazaki et al. [35] with a trapped
40Ca+ ion. In the case of waveguides the RAP process
implements an achromatic directional coupler, while the
two-state STIRAP process implements a broadband one-
to-two beam splitter. The experiments are performed
with the help of reconfigurable photoinduced waveguides
recorded through the photorefractive e↵ect using the lat-
eral illumination technique [12, 36, 37]. Two probing
wavelengths more than 200 nm apart are used. Section
II gives a general framework for the studies, section III
addresses the case of the RAP-like process, while section
IV treats the case of two-state STIRAP. The experimen-
tal results are in good agreement with the theoretical ex-
pectations and confirm the crucial role of the waveguide
detuning.

II. GENERAL FRAMEWORK

We consider two neighboring waveguides with di↵er-
ent longitudinal propagation constants �1(z) and �2(z)
for their fundamental mode. In paraxial approximation,
the propagation of a monochromatic light wave in such
a structure can be analyzed in the framework of the
coupled mode theory (CMT)[21] which treats the prob-
lem in a discrete way by involving the evanescent cou-
pling between the waveguides. The corresponding evo-
lution of the waves amplitudes can then be described by
two coupled di↵erential equations, which, similarly as in
[6, 37, 38], read as follows in the present case

i

d

dz


a1(z)
a2(z)

�
=


���(z)/2 C(z)

C(z) ��(z)/2

� 
a1(z)
a2(z)

�
. (1)

Here the components of A(z) = [a1(z), a2(z)]T are, be-
sides for an unimportant phase, proportional to the am-
plitudes of the fundamental modes in the two waveguides.
We call H(z) the coupling matrix in the above equation,
which takes the role of the Hamiltonian and describes the
interaction between the waveguide modes. It depends on
the detuning parameter ��(z) = �2(z)��1(z) as well as
on the space-dependent coupling constant C(z) between
the two waveguides. Note that the latter corresponds
to the geometrical average of the values for the coupling
from waveguide 1 to 2 and from waveguide 2 to 1 [37],
C(z) =

p
C12(z)C21(z), which can be di↵erent due to

the local asymmetry. Note also that the driving quantity
for C(z) is the lateral distance d(z) between the waveg-
uides. Even though an exact analytic expression cannot

be given in our case, C(z) decreases nearly exponentially
with d(z).
By substituting the space coordinate z for the time

coordinate t in the Schrödinger-type equation (1), the
two-waveguides system is fully equivalent to a coupled
quantum two-level system, which population amplitude
dynamics is described by the same equation within the
rotating wave approximation [4, 39]. The role of the cou-
pling constant C(z) is then taken by the Rabi frequency
⌦(t) and the waveguide detuning ��(z) is equivalent to
the atom-laser detuning �!(t).
Equation (1) is expressed in the natural basis formed

by the modes of the two waveguides, called diabatic basis.
However, we can rewrite it in another basis, called adia-
batic basis, where the basis vectors are the local (instan-
taneous) eigenvectors of the space-varying Hamiltonian.
This leads to

i

d

dz


b1(z)
b2(z)

�
=


�✏(z) �i d✓/dz

i d✓/dz ✏(z)

� 
b1(z)
b2(z)

�
, (2)

where the quantities ✏ and ✓ are given by

✏(z) =
�
C

2(z) + (��/2)2
�1/2

, (3)

and

✓(z) =
1

2
arctan (2C(z)/��(z)) . (4)

The vector B(z) = [b1(z), b2(z)]T contains the modes
amplitudes in the adiabatic basis. The amplitudes in
the adiabatic and diabatic basis are connected by a
space-dependent rotation operator such that A(z) =
R(✓(z))B(z), with

R(✓(z)) =


cos ✓(z) sin ✓(z)
� sin ✓(z) cos ✓(z)

�
. (5)

For an adiabatic evolution, the amplitudes C(z) and
��(z) should vary slowly so that ✓(z) evolves smoothly
in order to ensure that the adiabatic state vector B(z) re-
mains fixed in the adiabatic basis. To do so, the following
condition should be fulfilled [4]

1

2

����
@C

@z

�� � C

@��

@z

����⌧
 
C

2 +

✓
��

2

◆2
!3/2

. (6)

When the adiabatic condition holds, the state vector
B(z) remains fixed in the space-varying basis formed by
the adiabatic states. In particular, if the state vector
B(z) coincides with a single adiabatic state at some dis-
tance z, then it will remain in that adiabatic state as long
as the evolution is adiabatic, the state vector B(z) will
adiabatically follow this state.
The two eingenstates (the adiabatic states) of the ro-

tation matrix (5) are

B�(z) = A1 cos ✓(z)�A2 sin ✓(z) , (7a)

B+(z) = A1 sin ✓(z) +A2 cos ✓(z) , (7b)
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FIG. 1. (a) Schematics of the waveguide structure providing
an optical analogy to the RAP process and, (b), correspond-
ing longitudinal evolution of the coupling constant C(z) and
of the detuning ��(z). (c) Schematics of the waveguide struc-
ture providing an optical analogy to the two-state STIRAP
process and, (d), corresponding evolution of C(z) and ��(z)
(case A). Note that on the schemes (a) and (c) the longitudi-
nal and transverse dimensions are not in scale.

where A1 and A2 are the two diabatic states of the sys-
tem. In general, the state vector B(z) is aligned with
an initial state at the beginning of the propagation and
aligned with a specified target state at the end of the
propagation. Under appropriate conditions, this aligne-
ment can be provided by a single adiabatic state or by a
superposition of the adiabatic states. In the first situa-
tion, this state is called an adiabatic transfer state.

In the next sections we will apply and verify the above
general behavior to the specific cases of the RAP-like
and two-state STIRAP-like light transfer. The waveguide
structures being studied are shown schematically on Fig.
1. They are composed of two planar waveguides where
the light is confined only in the plane of the drawing.
One of the waveguide is straight (WG1) while the other
is weakly curved (WG2), so that the distance separating
them and the coupling constant C evolves with z. The
propagation constant �1 of WG1 changes with z, which
is achieved in our case by means of a variation of its
refractive index contrast. The propagation constant �2

is left constant.

III. RAP-LIKE LIGHT TRANSFER

The waveguide structure used to simulate the RAP
process is shown schematically in Fig. 1(a). The cor-
responding evolution of the parameters C(z) and ��(z)
are shown in Fig. 1(b). These parameters mimic the
experimental situation discussed below. For the RAP
process to occur, it is essential that the detuning should
cross zero during the evolution, which is the case for the
function ��(z) in Fig. 1(b), that follows a tanh func-
tion with its zero corresponding to the maximum of C(z)
(nearest distance between the waveguides). At early and

FIG. 2. Schematics of the technique to create the reconfig-
urable waveguide structures. A control beam at the wave-
length � = 532 nm carries the structure of the waveguides.
The latter is shaped by a spatial light modulator (SLM) and
imaged to the surface of the SBN crystal, to which an electric
field is applied along its polar axis. The probe beam (alterna-
tively at � = 633 nm or � = 850 nm) propagates through the
resulting waveguide structures to test their functionalities.

late distances the magnitude |��(z)| is much larger than
C(z), while the contrary is true near the zero-crossing
point. Since the mixing angle ✓(z) depends strongly on
the ratio C/�� (see Eq. (4)), ✓(z) will evolve during
the propagation. Initially (z = 0), this ratio tends to 0
and 2✓ is nearly equal to ⇡, so that ✓ ⇡ ⇡/2. With in-
screasing z, C(z) and ��(z) increase (��(z) approaches
zero from the negative side), which leads to a decrease of
✓(z). At half distance, ��(z) vanishes and C(z) reaches
its maximum, so that 2✓ = ⇡/2 and ✓ = ⇡/4. In the
following ��(z) continues to increase and becomes again
much larger than C(z), which is decreasing, so that ✓

tends to zero at large distances. Consequently, starting
initially from state A1 (all light in WG1), the system fol-
lows adiabatically the adiabatic state B+(z) of Eq. (7b)
and eventually ends up in state A2 (all light in WG2).
This implies that a complete light transfer should take
place. This adiabatic process is intrinsically robust and
is expected to take place over a wide range of the de-
sign parameters and of the propagating wavelengths for
a given design, which means that the behavior should be
highly achromatic.

We have verified the above expectations by us-
ing photoinduced dynamic waveguides recorded by a
properly structured lateral control illumination on a
Sr

x

Ba1�x

Nb2O6 (SBN) crystal with x = 0.61. A highly
simplified conceptual scheme of this method is shown in
Fig. 2. Essentially, the combination of a local illumina-
tion by the control beam and of the electric field applied
to the photorefractive SBN crystal leads to a local mod-
ification of the refractive index landscape of the crystals.
This modification is such that maxima of the refractive
index are found at the positions of maximum illumina-
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tion, leading therefore to a guiding waveguide structure.
Variations of the index contrast (and of the propagation
constant) can be achieved by varying locally the inten-
sity (grey level) of the control light being directed from
the spatial light modulator (SLM) to the crystal. Since
the recording and erasure of the structures takes only
few tens of seconds in SBN, the technique provides the
advantage of being able to produce reconfigurable struc-
tures in a unique crystal. Moreover, the dynamics of the
waveguide recording process can be exploited to char-
acterize the index contrast interferometrically. Since the
technique was used earlier [12, 36, 40], we refer to the cor-
responding works for additional details. Note that, even
though for the sake of simplicity we use here waveguides
confined in one transverse dimension, the confinement in
both transverse directions can be achieved too [36].

The design of the waveguide configuration used to
demonstrate the RAP-like e↵ect is such that both C(z)
and ��(z) have a smooth evolution to satisfy at best
the adiabaticity criterion within the limits permitted
by the physics of our experimental approach. The
nominal z-dependences corresponding to Fig. 1(b)
are C(z) = C

max

exp[�((z � z0)/�0)2] and ��(z) =
��

max

tanh[2⇡(z � z0)/L], where C

max

is the maximum
of the coupling constant reached at half the propagation
distance z0 = 11.5 mm, �0 = 5 mm is the 1/e half-width
of the gaussian coupling-constant pulse, ��

max

is the
maximum of detuning, and L = 23 mm is the full prop-
agation distance in the crystal. The parameters C

max

and ��

max

depend not only on the design of the waveg-
uide but also on the probe wavelength. Their values
were estimated by carrying out preliminary experiments
in non-modulated waveguides. While the observation of
the coupling of waves in parallel waveguides leads to an
estimation of the coupling constant, the estimation of��

requires to perform interferometric measurement during
the formation process of the waveguides. For our exper-
imental conditions we estimate the parameters within a
precision of roughly 15%, C

max

= 0.35± 0.05 mm�1 and
��

max

= 0.52 ± 0.08 mm�1 for the probe wavelength
of 633 nm, as well as C

max

= 0.49 ± 0.07 mm�1 and
��

max

= 0.32 ± 0.05 mm�1 for the probing at 850 nm.
With the above parameters the expected evolution of
the light intensity in the two-waveguide structure of Fig.
1(a)+(b) can be obtained from Eq. (1) and is shown in
Figs. 3(a) and 3(b), for the wavelengths 633 and 850
nm, respectively. In both cases at the output of the
structure one expects essentially a switch from WG1 to
WG2. The corresponding experimental results are shown
on Fig. 3(c) and 3(d), which depict the intensity profile
at the output of the crystal. The dashed blue lines give
the output of the reference waveguide, that is WG1 in
absence of WG2, while the solid red lines give the out-
put when the RAP-like structure including the WG2 is
produced. The experimental profiles show some slight
asymmetry and irregularities associated mainly to exper-
imental e↵ects such as possible crystal imperfections and
partial back-scattering of the recording light discussed
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FIG. 3. Theoretical expectation and experimental verifica-
tion of the RAP-like light transfer for the parameter given in
the text. (a) Numerically calculated spatial evolution of the
intensity in WG1 (blue dashed curve) and WG2 (solid red
curve) for �=633 nm. (b) Same for �=850 nm. (c) Measured
intensity output distribution with WG1 but in the absence of
WG2 (reference, blue dashed line) and with the presence of
both waveguides (solid red line). (d) Same for �=850 nm and
the same structure.

in Ref. [41]. Nevertheless it can be recognized that for
the RAP-like structure most of the light output essen-
tially switches to WG2 for both wavelengths. This corre-
sponds to the expectations and confirms the robustness
of the approach.

It is worth verifying that the detuning is essential for
the above RAP-like light transfer to occur. Figure 4
shows the expected and measured behavior for the same
kind of two-waveguide structure leading to the results in
Fig. 3, but in the absence of detuning (��(z) = 0). As
seen in Fig. 4 in this case the RAP process does not
take place and the results are not robust. An essentially
complete return of the light to the straight waveguide is
expected for �=633 nm, while a strong transfer to the
curved waveguide is expected for �=850 nm (see Fig.
4(a) and (b)). This is confirmed by the experimental re-
sults of Fig. 4(c) and 4(d), respectively. Therefore, such
a structure essentially leads to a damped Rabi-like oscil-
lation between the two waveguides, with very di↵erent
output distributions for the two probing wavelengths.

Even though the experiments on the RAP-like light
transfer of Fig. 3 give satisfactory results, the corre-
sponding experimental parameters are still at the edge
of the zone for which the adiabatic condition is fulfilled
at best in the (C

max

,��

max

)-space. In order to illus-
trate this, we study the robustness with respect to these
two parameters by plotting the expected intensity trans-
ferred to WG2 as a function of C

max

and ��

max

. Figure
5(a) gives a contour plot of the theoretically expected
transferred intensity as a function of these two parame-
ters. Clearly the experimental parameters (blue circle for
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FIG. 4. Counter example to the RAP process in absence of
the detuning (��(z) = 0). (a) Expected evolution of the
intensity in WG1 (blue dashed curve) and WG2 (solid red
curve) according to Eq. (1) for �=633 nm. (b) Same for
�=850 nm. (c) Measured intensity output distribution with
WG1 but in the absence of WG2 (reference, blue dashed line)
and with the presence of both waveguides (solid red line). (d)
Same for �=850 nm and the same structure.

633 nm and green square for 850 nm) are at the border
of the red region of maximum adiabaticity. The counter
example in absence of detuning corresponds to points on
the abscissa of the diagram of Fig. 5(a). It is also worth
noting that upon an increase of the wavelength, one gets
a higher coupling constant but a lower detuning. This
means that the increase of wavelength corresponds to
moving transversally with respect to the direction lead-
ing to a maximum fulfillment of the adiabatic condition.
The decrease in the detuning is due on one hand to the
proportionality of � on 1/� and, on the other hand, to a
slight decrease of the electro-optic response and of the in-
dex contrast in the SBN material for longer wavelengths.

IV. TWO-STATE STIRAP-LIKE BEAM
SPLITTING

The concept of two-state STIRAP [33] relies on a
mathematical analogy between the equations governing
the population dynamics of a two-level system with a
temporally varying detuned coupling field and a reso-
nantly coupled chainwise-linked three-level system lead-
ing to the standard STIRAP process. As discussed above,
the two-level system is described by a time-dependent
Schrödinger equation of two complex variables. The lat-
ter can be recast as three coupled equations of three real
variables [39, 42] in the form of the optical Bloch equa-
tion. This, on its turn, can be brought in a form equiva-
lent to the Schrödinger equation applying to the standard
STIRAP process in a three-level system. In this way,
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FIG. 5. (a) Landscape of the expected output intensity of
WG2 for the RAP-process as calculated using coupled mode
theory under variation of the parameters C

max

and ��
max

.
The red area correspond to the region where the adiabatic
condition is fulfilled the best and the light transfer is com-
plete. The blue circle and the green square correspond to the
experimental conditions of Fig. 3 for probing at 633 nm and
850 nm, respectively. (b) Corresponding landscape for the
two-state STIRAP process (case A) showing the relative in-
tensity transferred from WG1 to WG2. The green area gives
the region where the adiabatic condition is best fulfilled and
the waveguide structure gives essentially a 50:50 beam split-
ter. The blue circle and the green square correspond to the
experimental conditions of Fig. 7 for probing at 633 nm and
850 nm, respectively.

knowledge about the STIRAP process can be directly
inherited for the chirped two-state excitation [5, 33]. Ul-
timately the detuning of the two-level excitation can be
identified with the Stokes pulse of a three-level STIRAP
system (the Rabi-frequency pulse that couples the tar-
get state and the intermediate state), while the Rabi-
frequency of the two-level system is identified with the
corresponding pump pulse of STIRAP, which couples the
initial and the intermediate state.

For the analogy between the two-state STIRAP pro-
cess and the coupling within a pair of detuned waveg-
uides we can consider two distinct cases. The first one,
Case A, is the one where the waveguide detuning ��(z)
is spatially preceding the coupling constant pulse C(z).
This case is equivalent to a counter-intuitive sequence in
the standard three-state STIRAP process [3, 5]. It corre-
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sponds to the situation shown in Fig. 1(c) and Fig. 1(d).
The second case, Case B, has the coupling preceding the
detuning and would correspond to an intuitive order of
the pulses for an atomic three-level system.

We start by discussing Case A with the help of the gen-
eral relationships given in Section II. Initially only ��(z)
is present (see Fig. 1(d)) and its amplitude increases con-
tinuously, while C(z) is negligibly small. Therefore the
ratio ��(z)/C(z)! + 1 and the mixing angle ✓(z) in
(4) is initially equal to zero, as shown in Fig. 6(a). With
(7a) this implies that the state B� is initially aligned
withA1. Subsequently, ��(z) increases towards its max-
imum value, as long as C(z) is still small, B� deviated
only little from the state A1. When ��(z) is behind
its maximum and C(z) reaches comparable values, the
angle ✓ rises and the adiabatic transfer state B� is no
longer aligned with A1 but becomes a superposition of
A1 and A2. At the final stage, ��(L) tends to zero
and ��(L)/C(L)! 0, so that ✓(L) tends to ⇡/4. Conse-
quently, the system shall tend toB�(L) = (A1�A2)/

p
2,

which leads to an equal intensity of the light in the two
waveguides, as shown in Fig. 6(c).
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FIG. 6. Theoretical expectations for a two-state STIRAP-like
waveguide structure modeled for propagation of light at the
633 nm wavelength. Panels (a), (c) and (e) correspond to case
A, panels (b), (d) and (f) to case B. (a) and (b) show the evo-
lution of the mixing angle ✓(z) with the propagation distance
z. (c) and (d) show the intensity evolution in WG1 (dashed
blue line) and WG2 (solid red line) obtained from coupled
mode theory. Panels (e) and (f) show the corresponding evo-
lution of the light distribution obtained with the alternative
beam propagation method (BPM). For both cases the system
leads to an equal splitting of the input intensity among the
two waveguides.

The Case B corresponds to the situation where the
light is injected in WG1 from the right side of the struc-

ture in Fig. 1(c). In this case, the ratio ��(z)/C(z)
goes from 0 to +1 and ✓(z) (see figure 6(b)) from ⇡/4
to 0. Importantly, in this situation the initial state A1

(injection in WG1) does not correspond to one of the
adiabatic states B� or B+, but to a superposition B⇤ of
them given by

B⇤(z) =
1p
2
(B�(z) +B+(z)) . (8)

Therefore, unlike for case A where only one adiabatic
state is involved, here the system is expected to remain in
the superposition state B⇤ as long as the system evolves
adiabatically. Since at the end of the structure ✓(L) =
0, the system shall converge towards B⇤(L) = (A1 +
A2)/

p
2, which is again an equal intensity distribution

of the light in the two waveguides, as shown in Fig. 6(d).
However, unlike for case A, the evolution towards this
50:50 splitting presents here some transient oscillations.
The curves shown in Fig. 6(a)-(d) are modeled ac-

cording to the parameters used for the experiments
given below and the following functions, ��(z) =
��

max

exp[�((z�z1)/�0)2] and C(z) = C

max

exp[�((z�
z2)/�0)2] , where z1 = 9 mm and z2 = 13.8 mm for
case A, and z1 = 13.8 mm and z2 = 9 mm for case
B. A common 1/e2 half-width of �0 = 5 mm is used.
The values of ��

max

and C

max

are those for the wave-
length of 633 nm, which are shown as a blue point on
the landscape applying to the two-state STIRAP case in
Fig. 5(b). These are ��

max

= 1.2 ± 0.18 mm�1, and
C

max

= 0.35 ± 0.05 mm�1. The corresponding values
for the same structure but for the wavelength of 850 nm
(green square in Fig. 5(b)) are ��

max

= 0.73 ± 0.11
mm�1 and C

max

= 0.52 ± 0.08 mm�1, where the errors
correspond to the experimental conditions. Figure 6 also
contains numerical calculations of the beam propagation
in waveguide structures corresponding to case A and case
B using the Beam Propagation Method (BPM) [43, 44].
This second method has been widely used to design op-
tical waveguides and predict the light evolution in such
structures. The design structure only takes as an input
the form and the index profile of the waveguides and does
not assume anything with respect to coupled wave theory.
As can be seen in Figs. 6(e) and 6(f), the BPM calcula-
tions also correctly predict the smooth evolution for case
A, and the initial oscillations for case B, in agreement
with the curves in Figs. 6(c) and 6(d) obtained from
coupled wave theory.
Therefore, the theory predicts that at the output of the

waveguide structures that mimic two-state STIRAP one
should obtain a similar splitting irrespective of case A
or B, and irrespective of the wavelength (see Fig. 5(b)),
provided that the system fulfills su�ciently well the adi-
abatic condition. Figure 7 gives the experimental output
distributions for propagation in photoinduced waveguide
structures corresponding to cases A and B at the probe
wavelengths of 633 and 850 nm. It is seen that the beam
splitting is satisfactorily obtained for both cases at both
wavelengths, thus confirming the robustness of the pro-
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FIG. 7. Experimental output intensity distribution for the
case of two-state STIRAP as probed for cases A and B at
two di↵erent wavelengths. (a) and (b): probing at � = 633
nm, (c) and (d): probing at � = 850 nm. Panels (a) and (c)
correspond to case A, while panels (b) and (d) correspond to
case B (see text).

cess. In absence of detuning the behavior would be ex-
pected to be highly dependent on wavelength, similar
to the case of Fig. 4 for RAP. Therefore, the observed
broadband behavior is a direct consequence of the waveg-
uide detuning, which permits to place the experiments
outside the region near the abscissa in Fig. 5(b), for
which Rabi-like oscillations strongly dependent on wave-
length would be expected.

V. CONCLUSION

We have discussed the role of waveguide detuning for
the adiabatic light transfer among a pair of coupled
waveguides in analogy with adiabatic quantum popula-
tion dynamics processes. By the examples of the Rapid
Adiabatic Passage and the two-state STIRAP processes
the theoretical expectations have been successfully ver-
ified experimentally using photo-induced reconfigurable
waveguides recorded in a photorefractive crystal. The
corresponding structures act as broadband directional
couplers and broadband beam splitters, respectively. The
robustness and achromaticity brought about by the adi-
abatic evolution mediated by the detuning and the cou-
pling strength have been confirmed. Generally, the com-
bination of the e↵ects of longitudinally varying coupling
and longitudinally varying detuning permits to access a
much wider range of possibilities for the adiabatic evo-
lution of the light fields as compared to systems where
only the coupling constant is modulated. As proposed
recently for the case of three-waveguide couplers [38],
this kind of concept can be extended to a larger num-
ber of waveguides, leading potentially to several new rich
functionalities. The adiabatic approaches discussed here
can be advantageously applied also to the case of non-
classical propagating light such as obtained from single
photon sources. Also, by imposing an appropriate modu-
lation of the mode propagation velocities, instead of stan-
dard dielectric waveguides also other types of guiding
structures (e.g. photonic crystals or plasmonic waveg-
uides) can be used in principle.
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