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Introduction

Originated in [START_REF] Lyapunov | Problème général de la stabilité du mouvement[END_REF], Lyapunov stability becomes a fundamental concept in control theory. In stability analysis, a Lyapunov function is usually of use to prove closed loop stability or robust stability, see [START_REF] Molchanov | Criteria of asymptotic stability of differential and difference inclusions encountered in control theory[END_REF]; [START_REF] Polanski | On infinity norms as lyapunov functions for linear systems[END_REF]. On the other hand, in control design, control Lyapunov functions are usually employed to design stabilising/robust controllers, see among others [START_REF] Khalil | Nonlinear systems[END_REF]; [START_REF] Zubov | Methods of AM Lyapunov and their application[END_REF]. Accordingly, whenever such control Lyapunov functions are used in optimization based strategies, these should be chosen such that the recursive feasibility and closed loop stability are all fulfilled. Different classes of control Lyapunov functions have been proposed in control theory. In the context of linear quadratic control, infinite/finite quadratic cost functions usually serve as control Lyapunov functions, as shown in [START_REF] Anderson | Optimal control: linear quadratic methods[END_REF]; [START_REF] Chmielewski | On constrained infinite-time linear quadratic optimal control[END_REF]. Particularly, in linear model predictive control, such a control Lyapunov function has been used to design robust controllers to cope with polytopic uncertainties, leading to a linear matrix inequality problem, see [START_REF] Kothare | Robust constrained model predictive control using linear matrix inequalities[END_REF]. Polyhedral control Lyapunov functions have also been exploited in several studies e.g. [START_REF] Gutman | An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states[END_REF]; [START_REF] Blanchini | Nonquadratic lyapunov functions for robust control[END_REF][START_REF] Blanchini | Ultimate boundedness control for uncertain discrete-time systems via set-induced lyapunov functions[END_REF]; [START_REF] Lazar | On infinity norms as lyapunov functions: Alternative necessary and sufficient conditions[END_REF]; Nguyen et al. (2015a), since they lead to simple design procedures; i.e. composed of linear constraints.

In the same line with the studies in [START_REF] Gutman | An algorithm to find maximal state constraint sets for discrete-time linear dynamical systems with bounded controls and states[END_REF]; [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete-time systems via set-induced lyapunov functions[END_REF]; [START_REF] Nguyen | Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems: An Interpolation-Based Approach[END_REF]; [START_REF] Grammatico | Controlsharing and merging control lyapunov functions[END_REF], this paper presents an attempt to use convex liftings in the design of robust controllers for discrete-time linear systems affected by bounded additive disturbances and polytopic uncertainties which can serve as control Lyapunov functions. This method is shown to guarantee the recursive feasibility and closed loop stability. In terms of implementation, this only requires resolution of a linear programming problem at each sampling instant.

Notation and Definitions

Throughout this paper, N, N >0 , R, R + denote the set of nonnegative integers, the set of positive integers, the set of real numbers and the set of nonnegative numbers, respectively. For ease of presentation, with a given N ∈ N >0 , by I N , we denote the index set:

I N = {i ∈ N >0 | i ≤ N } .
A polyhedron is the intersection of finitely many closed halfspaces. A polytope is a bounded polyhedron. If P is an arbitrary polytope, then by V(P ), we denote the set of its vertices. If S is an arbitrary set, then conv(S) denotes the convex hull of S. Also, for a full dimensional set S, by int(S), we denote the interior of S. Further, we use dim(S) to denote the dimension of its affine hull.

Given a set S ⊂ R d and a matrix A ∈ R d×d , then AS is defined as follows: AS = {As | s ∈ S} . Also, for any vector x ∈ R d , ρ S (x) is defined as follows: ρ S (x) = min y∈S (y -x) T (y -x).

Given two sets S 1 , S 2 ⊂ R d , their Minkowski sum is denoted by S 1 ⊕ S 2 and is defined by:

S 1 ⊕ S 2 = {y 1 + y 2 | y 1 ∈ S 1 , y 2 ∈ S 2 } .
Also, S 1 \S 2 is defined as follows:

S 1 \S 2 := x ∈ R d | x ∈ S 1 , x / ∈ S 2 .

Problem settings

In this paper, we consider a discrete-time linear system:

x k+1 = A(k)x k + B(k)u k + w k , (1) 
where x k , u k , w k denote the state, control variables and additive disturbance at time k. The state space matrices [A(k) B(k)] are time-varying and assumed to belong to an uncertainty matrix polytope denoted by Ψ and defined below:

[A(k) B(k)] ∈ Ψ = conv {[A 1 B 1 ] , . . . , [A L B L ]} . (2)
The state, control variables and disturbances are subject to constraints:

x k ∈ X ⊂ R dx , u k ∈ U ⊂ R du , w k ∈ W ⊂ R dx , (3) 
where d x , d u ∈ N >0 , and X, U, W are polytopes containing the origin in their interior.

The objective is to find robust control laws which can cope with bounded additive disturbances and polytopic model uncertainties such that the closed loop is robustly stable. It is clear that if w k is unknown, one cannot expect to guarantee asymptotic stability of the origin. In this case, asymptotic stability is replaced with an ultimate boundedness concept [START_REF] Khalil | Nonlinear systems[END_REF]; [START_REF] Kofman | A systematic method to obtain ultimate bounds for perturbed systems[END_REF] or input to state stability [START_REF] Jiang | Input-to-state stability for discrete-time nonlinear systems[END_REF].

4 Robust control design based on convex liftings

Robust positively invariant sets

Positively invariant sets have been studied over several decades. Due to their relevance in control theory, they turn out to be useful in many control related studies e.g. Bitsoris (1988b,a); [START_REF] Bitsoris | Constrained regulation of linear systems[END_REF]; [START_REF] Blanchini | Set-theoretic methods in control[END_REF]; [START_REF] Kerrigan | Robust constraint satisfaction: Invariant sets and predictive control[END_REF]. The definition of a robust positively invariant set for system (1) is recalled below.

Definition 4.1 Given an admissible control law

u k = Kx k ∈ U, a set Ω ⊆ X is called robust positively invariant with respect to (1) if (A(k) + B(k)K)Ω ⊕ W ⊆ Ω, ∀ [A(k) B(k)] ∈ Ψ,
where Ψ is defined in (2).

To compute such a robust positively invariant set Ω, it is important to choose an appropriate unconstrained control law to cope with given bounded additive disturbances and polytopic uncertainties. In case polytopic uncertainties are not taken into account, such a control law u k = Kx k can be computed from the Ricatti equation for some positive definite weighting matrices Q, R in the classical linear quadratic control design.

Otherwise, this control law should satisfy that there exists a Lyapunov function V (x) : R dx → R + such that

V ((A(k)+B(k)K)x k )-V (x k ) < 0, ∀ [A(k) B(k)] ∈ Ψ.
The computation of such a gain K was studied in e.g. [START_REF] Kothare | Robust constrained model predictive control using linear matrix inequalities[END_REF]. A simpler formulation is presented below:

min Z,Y -logdet(Z) subject to Z = Z T > 0 Z (A i Z + B i Y ) T A i Z + B i Y Z > 0, ∀ i ∈ I L .
Then, gain K is determined by

K = Y Z -1 .
It is already known that the above formulation is a linear matrix inequality (LMI) problem and is solvable by using semidefinite programming. Interested readers can find details in [START_REF] Boyd | Linear matrix inequalities in system and control theory[END_REF].

With respect to the state feedback u k = Kx k , the computation of a robust positively invariant set Ω for system (1) has been put forward in [START_REF] Nguyen | Constrained Control of Uncertain, Time-Varying, Discrete-Time Systems: An Interpolation-Based Approach[END_REF], as a simple extension of the idea presented in [START_REF] Gilbert | Linear systems with state and control constraints: The theory and application of maximal output admissible sets[END_REF]. Note also that prominent studies on the computation of the maximal and minimal positively invariant sets for a linear, discretetime invariant system affected by bounded additive disturbances can be found in [START_REF] Kolmanovsky | Theory and computation of disturbance invariant sets for discrete-time linear systems[END_REF]; [START_REF] Rakovic | Invariant approximations of the minimal robust positively invariant set[END_REF]. Still, in case system (1) is not affected by additive disturbances, then the minimal robust positively invariant set coincides with the origin due to its asymptotic stability i.e. Ω = {0} .

Without loss of generality, we are interested hereafter in the case Ω ⊆ X ⊂ R dx represents a full-dimensional set.

Domain of attraction

Given a robust positively invariant set Ω associated with an admissible state feedback u = Kx ∈ U for all x ∈ Ω, the domain of attraction is defined as the set of all points in X which can be driven to Ω, see [START_REF] Khalil | Nonlinear systems[END_REF]. More precisely, the domain of attraction contains all points x 0 ∈ X such that there always exists control law satisfying constraints (3) which is able to steer the state to Ω as k → ∞ i.e. lim k→∞ ρ Ω (x k ) = 0. Computing exactly the domain of attraction is difficult. Instead, approximation of the domain of attraction is usually of use. For simplicity, in this paper, we restrict our attention to a contractive set. The definition of a contractive set for system (1) is recalled in the sequel.

Definition 4.2 Consider system (1) subject to model uncertainty (2) and constraints (3

). A set X ⊆ X is called λ-contractive for a given 0 ≤ λ < 1 if there exists a control law u k = κ(x k ) ∈ U such that (A(k)x k + B(k)κ(x k )) ⊕ W ⊆ λX , ∀x k ∈ X , ∀ [A(k) B(k)] ∈ Ψ.
The maximal λ-contractive set, denoted as P λ , is defined as the set containing all λ-contractive sets. An algorithm for the computation of the maximal λ-contractive set has been put forward in [START_REF] Blanchini | Ultimate boundedness control for uncertain discrete-time systems via set-induced lyapunov functions[END_REF]. For completeness, this algorithm is recalled below.

S 1 = X, S i+1 = {x ∈ S i | ∃u(x) ∈ U s.t. (A j x + B j u(x)) ⊕ W ⊆ λS i , ∀j ∈ I L } , P λ = S ∞ . (4)
Hereafter, we will use the maximal λ-contractive set as an estimation of the domain of attraction for a given 0 ≤ λ < 1 i.e. X = P λ ⊆ X. Without loss of generality, we assume that Ω ⊂ P λ .

Convex liftings construction

In control theory, convex liftings have been of use to facilitate implementation of piecewise affine control laws [START_REF] Baotic | Efficient on-line computation of constrained optimal control[END_REF]. Recently, they have been of use to solve the inverse parametric linear/quadratic programming problems [START_REF] Nguyen | On the lifting problems and their connections with piecewise affine control law design[END_REF]Nguyen et al. ( ,a, 2015b,c,d),c,d). In this paper, we will show that such convex liftings can also serve as control Lyapunov functions. Before recalling the definition of a convex lifting, additional definitions need to be recalled.

Definition 4.3 A collection of N full-dimensional polyhe- dra X i ⊂ R dx , denoted by {X i } i∈I N , is called a polyhedral partition of a polyhedron X ⊆ R dx if the following condi- tions hold: • i∈I N X i = X , • int(X i ) ∩ int(X j ) = ∅, ∀(i, j) ∈ I 2 N , i = j. Two regions X i , X j are called neighboring or adjacent if i = j, (i, j) ∈ I 2 N , dim(X i ∩ X j ) = d x -1. Further, if X is a polytope, then {X i } i∈I N is called a polytopic partition. Definition 4.4 Given a polyhedral partition {X i } i∈I N of a polyhedron X ⊆ R d , a piecewise affine lifting is described by function z : X → R with: z(x) = a T i x + b i for any x ∈ X i , (5) 
and

a i ∈ R d , b i ∈ R, ∀i ∈ I N . Definition 4.5 Given a polyhedral partition {X i } i∈I N of a polyhedron X ⊆ R d , a piecewise affine lifting z(x) = a T i x + b i for x ∈ X i
, is called convex piecewise affine lifting if the following conditions hold true:

• z(x) is continuous over X , • for each i ∈ I N , z(x) > a T j x + b j for all x ∈ X i \X j and all j = i, j ∈ I N .
Note that the second condition in this definition implies that any pair of neighboring regions are lifted onto two distinct hyperplanes. Also, it implies the convexity of this piecewise affine lifting. For ease of presentation, a slight abuse of notation is used hereafter: a convex lifting will be understood as a convex piecewise affine lifting.

We present now an algorithm to construct a class of convex liftings which will be of use later in the proposed robust control design. Let (x) denote this convex lifting defined over an estimation of the domain of attraction X . As discussed in Subsection 4.2, we restrict our attention to the maximal λ-contractive set P λ for a given 0 ≤ λ < 1 i.e. X = P λ .

Algorithm 1 Construct a control Lyapunov function

Input: A given robust positively invariant set Ω ⊂ R dx , an estimation of the domain of attraction X = P λ ⊂ R dx with a given 0 ≤ λ < 1 and a scalar c > 0. Output: A convex lifting (x) such that (x) = 0 for every x ∈ Ω.

1: V 1 = V(Ω), V 1 = x 0 | x ∈ V 1 ⊂ R dx+1 . 2: V 2 = V(X ), V 2 = x c | x ∈ V 2 ⊂ R dx+1 . 3: Π = conv( V 1 V 2 ).
4: Solve the parametric linear programming problem:

z * (x) = min z z s.t. x T z T ∈ Π. ( 6 
) 5: (x) = z * (x).
Steps 1-2 in Algorithm 1 aim to lift the vertices of Ω and X to R dx+1 with appropriate heights. Namely, the vertices of Ω are lifted with heights equal to 0, whereas the vertices of X are lifted with heights equal to the given c > 0. Note that ( 6) is a parametric linear programming problem, its optimal solution is thus a piecewise affine function defined over a polytopic partition denoted as follows:

(x) = z * (x) = a T i x + b i for x ∈ X i .
Note also that by construction, there exists a region in the partition associated with (x) which coincides with Ω, since the vertices of Ω are lifted onto a lower facet of Π. The following observation describes the properties of such an (x), generated from Algorithm 1.

Lemma 4.6 The function (x) over X , generated from Algorithm 1, is continuous, convex, piecewise affine function.

PROOF. (x) is a piecewise affine function since it is induced from a parametric linear programming problem. The continuity and convexity of (x) can be easily derived from Theorems IV.3 and IV.4 in [START_REF] Gal | Postoptimal analyses, parametric programming and related topics[END_REF]. 2 Lemma 4.7 The function (x) over X , generated from Algorithm 1, is a convex lifting over the associated partition

{X i } i∈I N .
PROOF. To prove that (x) is a convex lifting for {X i } i∈I N , we need to prove that for any pair of (X i , X j ) the associated optimal solutions are different i.e. (a i , b i ) = (a j , b j ). Suppose the converse situation happens, more precisely, there exist two regions

(X i , X j ) such that (a i , b i ) = (a j , b j ).
First, it can be easily seen that the optimal solution to the parametric linear programming problem (6) is unique. In fact, suppose there exist two different optimal solutions to (6) i.e. z * 1 (x) and z * 2 (x). Consider a region X i in the associated partition over which z * 1 (x), z * 2 (x) are defined i.e. z * 1 (x) = (a

(1) i ) T x + b (1) i , z * 2 (x) = (a (2) i ) T x + b (2)
i . Since z is the cost function of (6), therefore, we obtain:

(a (1) i ) T x + b (1) i = (a (2) i ) T x + b (2) i for all x ∈ X i . (7)
Note that the set of all x satisfying (7) describes a set of dimension lower than d x , whereas (7) also holds true for all x ∈ X i as a full dimensional polyhedron. This case only holds if (a

(1) i , b (1) i ) = (a (2) i , b (2) 
i ). This leads to the uniqueness of the optimal solution to (6).

Consider now two regions (X i , X j ) such that (a i , b i ) = (a j , b j ). Let the optimization problem (6) be written in the following form:

min z z s.t. Gz ≤ W + Ex. ( 8 
)
Without loss of generality, the constraint set of ( 8) is assumed to be in minimal representation. Also, suppose the constraints active at x T a T i x + b i T and x T a T j x + b j T are respectively as follows:

G (i) z = W (i) + E (i) x G (j) z = W (j) + E (j) x.
According to the uniqueness of the optimal solution to (8),

G (i) , G (j) ∈ R\ {0} . Also, since X i = X j , thus G (j) z ≤ W (j) + E (j) x is not active at x T a T i x + b i T for x ∈ X j ;
more precisely

G (j) (a T i x + b i ) < W (j) + E (j) x. (9) 
However, as assumed j) x becomes active at x T a T i x + b i T for x ∈ X j ; namely,

(a i , b i ) = (a j , b j ), then G (j) z ≤ W (j) + E (
G (j) (a T i x + b i ) = W (j) + E (j) x. (10) 
Inclusions ( 9) and ( 10) are clearly contradictory. In other words, for any pair of different regions (X i , X j ), the optimal solution to (6) i.e. (x) satisfies (a i , b i ) = (a j , b j ).

Additionally, Lemma 4.6 shows that (x) is a continuous, convex, piecewise affine function. Therefore, (x) is a convex lifting for {X i } i∈I N according to Definition 4.5. 2

Lemma 4.8 The function (x) over X , generated from Algorithm 1, satisfies (x) = 0 for every x ∈ Ω and (x) > 0 for all x ∈ X \Ω.

PROOF. Indeed, consider x ∈ Ω, then x can be written as a convex combination of the vertices of Ω as: x = v∈V(Ω) α(v)v with α(v) ≥ 0 and v∈V(Ω) α(v) = 1. It is known that (x) over Ω is an affine function, then (x) = a T i x + b i leads to (x) = 0 for every x ∈ Ω.

To complete the proof, it is necessary to show that (x) > 0 for x ∈ X \Ω. Indeed, as shown above, (x) = a T i x+b i = 0 for every x ∈ Ω, then since Ω is full-dimensional, it follows a i = 0, b i = 0. Consider a region X j = Ω = X i of the polytopic partition {X i } i∈I N associated with (x), (x) = a T j x + b j for every x ∈ X j . According to Lemma 4.7, (x) satisfies the convexity and continuity conditions of a convex lifting:

a T j x + b j > a T i x + b i = 0, for every x ∈ X j \X i , a T j x + b j = a T i x + b i = 0, for every x ∈ X j ∩ X i .
The same inclusion for the other affine functions of (x), leads to the non-negativity of (x). Moreover, (x) > 0 for every x ∈ X \Ω. The proof is complete. 2

Another property of (x) is presented as follows.

Lemma 4.9 For any x ∈ X and 0 ≤ β ≤ 1, (βx) ≤ β (x).

PROOF. Due to the convexity of (x) over X as proved in Lemma 4.6, it leads to

(βx + (1 -β)0) ≤ β (x) + (1 -β) (0).
Due to the assumption that 0 ∈ int(W), then 0 ∈ int(Ω), meaning that (0) = 0 according to Lemma 4.8. This inclusion and the above one imply that (βx) ≤ β (x). 2

Robust control design procedure

This subsection introduces the procedure for designing robust control laws based on convex liftings. This procedure can guarantee robust stability of the closed loop in the sense of Lyapunov. Therefore, a definition of this robust stability is recalled below.

Definition 4.10 Given a robust positively invariant set Ω and the domain of attraction X ⊆ X, consider the linear system (1) subject to constraints (3) and a control law u = κ(x) ∈ U. The closed loop is called robustly stable if there exists a Lyapunov function V (x) : X → R + and an α ∈ [0, 1) such that:

• V (x) = 0 for all x ∈ Ω, V (x) > 0 for all x ∈ X \Ω, • V (A(k)x k +B(k)κ(x k )+w k )-αV (x k ) ≤ 0, ∀ w k ∈ W, ∀ x k ∈ X \Ω and ∀ [A(k) B(k)] ∈ Ψ.
For robust design based on control Lyapunov function, it is important to find such a control Lyapunov function and use it for design procedure. Our design procedure based on a convex lifting, computed from Algorithm 1, is summarized in Algorithm 2.

Remark 4.11 Note that the task of verifying whether or not x k belongs to Ω in Step 2 of Algorithm 2, can be easily carried out by checking whether or not (x k ) = 0. This property is due to the construction of a convex lifting from Algorithm 1. Therefore, it is not necessary to store the constraints describing Ω in the implementation.

Natural questions arise here whether or not the linear programming problem ( 11) is feasible and whether closed loop stability is guaranteed by the proposed procedure. These questions are answered via the following theorem. Accordingly, it will be shown that convex lifting constructed in Algorithm 1 can serve as a Lyapunov function. Thus, the proposed control design can guarantee the robust stability as per Definition 4.10.

Algorithm 2 Robust control design procedure based on convex liftings Input: A robust positively invariant set Ω associated with a stabilizing control law u = Kx over Ω. A convex lifting

(x) = a T i x + b i for x ∈ X i , i ∈ I N as in Algorithm 1. Output: Control law u * (x k ) at each sampling time. 1: Compute (x k ). 2: If x k ∈ Ω then u * (x k ) = Kx k , jump to
Step 6. 3: Else Solve the following linear programming problem:

α * (u * k ) T T = arg min α, u k α s.t. a T i (A j x k + B j u k + w) + b i ≤ α (x k ) α ≥ 0, u k ∈ U, ∀i ∈ I N , ∀w ∈ V(W), ∀ [A j B j ] ∈ V(Ψ). (11) 4: 
Apply

u * (x k ) = u * k 5: End 6: k ← k + 1, return to Step 1.
Theorem 4.12 Given a robust positively invariant set Ω associated with a robust control law gain K and an estimation of the domain of attraction X = P λ for a given 0 ≤ λ < 1, if the initial condition x k ∈ X , then the linear programming problem (11) is recursively feasible. Furthermore, the closed loop is robustly stable in the sense of Lyapunov.

PROOF. As for the feasibility of ( 11), one can easily see that 0 ≤ (x) ≤ c by the construction in Algorithm 1. Therefore, due to the contractivity of X , for any x k ∈ X there always exists u(x k ) ∈ U such that:

A(k)x k + B(k)u(x k ) + w k ∈ λX ⊂ X
for all w k ∈ W and for all [A(k) B(k)] ∈ Ψ. Therefore, if u * (x k ) denotes an optimal solution to (11), then one has:

0 ≤ (A(k)x k + B(k)u * (x k ) + w k ) ≤ (A(k)x k + B(k)u(x k ) + w k ) ≤ c, ∀ w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ.
Due to this boundedness, the recursive feasibility of the linear programming problem ( 11) is ensured for a finite, large enough scalar α at each sampling time.

As for robust stability, it will be proved that for all x k ∈ X \Ω :

(A(k)x k + B(k)u * (x k ) + w k ) < (x k ), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ.
Indeed, due to the contractivity of X , for any v ∈ V(X ), there exists a control law, denoted by u(v) ∈ U such that

A(k)v + B(k)u(v) + w k ∈ λX despite any disturbances w k ∈ W and for all [A(k) B(k)] ∈ Ψ. For each w k ∈ W and each [A(k) B(k)] ∈ Ψ, there exists y(k, w k ) ∈ X such that A(k)v + B(k)u(v) + w k = λy(k, w k ).
Due to Lemma 4.9, this inclusion leads to

(A(k)v + B(k)u(v) + w k ) = (λy(k, w k )) ≤ λ (y(k, w k )). (12) 
By the construction of (x) in Algorithm 1, the following is obtained:

(y(k, w k )) ≤ c. (13) 
Also, according to Algorithm 1,

(v) = c. (14) 
From ( 12), ( 13), ( 14), one can deduce that

(A(k)v + B(k)u(v) + w k ) ≤ λ (v). (15) 
Note that ( 15) holds for all w k ∈ W and for all [A(k) B(k)] ∈ Ψ. Moreover, it can be observed that:

(A(k)v + B(k)u * (v) + w k ) ≤ (A(k)v + B(k)u(v) + w k ), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ, (16) 
where u * (x) denotes optimal control to (11) at x as used in Algorithm 2. ( 15) and ( 16) lead to the following fact:

(A(k)v + B(k)u * (v) + w k ) ≤ λ (v), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ. ( 17 
)
Note that (17) holds true for all vertices of X . Now, consider a point x k ∈ X i in the polytopic partition {X i } i∈I N of X over which (x) is defined. Without loss of generality, suppose X i = Ω, then x k can be described via a convex combination of the vertices of X i , meaning:

x k = v∈V(Xi) α(v)v, where α(v) ∈ R + , v∈V(Xi) α(v) = 1.
Recall that due to the definition of convex lifting, (x) over X i is an affine function, then (x k ) can be written in the following form:

(x k ) = v∈V(Xi) α(v) (v). ( 18 
) If v ∈ V(X i
) is a vertex of Ω, then due to the robust positive invariance of Ω with respect to a linear feedback u * (x) = Kx, it satisfies

(v) = 0 = ((A(k) + B(k)K)v + w k ), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ. (19) 
Otherwise, if v ∈ V(X i ) is a vertex of X , then it satisfies (17). Therefore, due to the convexity of (x) proved in Lemma 4.6 and ( 17), ( 18), ( 19), the following is obtained:

λ (x k ) = v∈V(Xi) α(v)(λ (v)) ≥ v∈V(Xi) α(v) (A(k)v + B(k)u * (v) + w k ) ≥ (A(k) v∈V(Xi) α(v)v + B(k) v∈V(Xi) α(v)u * (v) + w k ) = (A(k)x k + B(k) v∈V(Xi) α(v)u * (v) + w k ). ( 20 
) Recall that u * (v) ∈ U, ∀v ∈ V(X i ) ∩ V(X ) and u * (v) = Kv ∈ U, ∀v ∈ V(X i ) ∩ V(Ω), then it follows that v∈V(Xi) α(v)u * (v) ∈ U. (21) 
Therefore, (21) leads to:

(A(k)x k + B(k) v∈V(Xi) α(v)u * (v) + w k ) ≥ (A(k)x k + B(k)u * (x k ) + w k ). (22) 
From ( 20) and ( 22), the following inclusion can be obtained:

λ (x k ) ≥ (A(k)x k + B(k)u * (x k ) + w k ), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ. (23) 
Recall that 0 ≤ λ < 1, therefore

(x k ) > (A(k)x k + B(k)u * (x k ) + w k ), ∀w k ∈ W, ∀ [A(k) B(k)] ∈ Ψ, (24) 
meaning { (x k )} ∞ k=0 is a strictly decreasing sequence outside Ω and bounded in the interval [0, c] . Thus, this sequence is convergent to 0. In other words, (x) serves as a Lyapunov function according to Definition 4.10. 2 Remark 4.13 Note that by construction, the partition associated with a convex lifting in Algorithm 1, may not be a Delaunay decomposition as in [START_REF] Scibilia | Approximate explicit linear MPC via Delaunay tessellation[END_REF]. This method does not rely on such a decomposition, but relies on a convex lifting defined over this partition. This approach is simple and only requires solving a linear programming problem at each sampling instant. However, the associated control law is not continuous at the moment the state switches into Ω (see step 2 of Algorithm 2). Note also that the checking whether the current state belongs to Ω can be relaxed. Accordingly, one can continue solving the problem (11) while trajectories still stay inside Ω. Indeed, if x k ∈ Ω, then due to the construction (x k ) = 0. Consider the next state, one can see that Kx k ∈ U, then it leads to:

0 ≤ (A(k)x k + B(k)u * (x k ) + w k ) ≤ (A(k)x k + B(k)Kx k + w k ) = 0 = (x k ).
This inclusion implies that optimal control law u * (x k ) ∈ U to problem (11) also keeps the trajectories inside Ω, if x k is inside Ω.

Remark 4.14 An open problem is to guarantee robust stability of the proposed method for another estimation of the domain of attraction as the N -steps robust controllable set denoted by K N (Ω) c.f. [START_REF] Kerrigan | Robust constraint satisfaction: Invariant sets and predictive control[END_REF]. Note that in this case, proving the strict decrease of (x) becomes more difficult. Also, this strict decrease may not be successive.

Remark 4.15 Note that the explicit robust controller of ( 11) can be obtained by replacing α (x k ) with a variable, denoted by e.g. z. Accordingly, the optimization problem (11) becomes a parametric linear programming problem with the decision argument to be z u T k T and the parameter as the current state x k .

Numerical examples

To illustrate the proposed procedure, consider the following uncertain system: Accordingly, the maximal robust positively invariant set associated with the above controller, i.e. Ω is shown in Fig. 1.

Also, the maximal 0.99-contractive set P 0.99 is presented therein. This set is computed from procedure (4). A convex lifting (x), serving later as a control Lyapunov function, is visualized in Fig. 2 according to Algorithm 1 with c = 10. The closed loop trajectories are shown in Fig. 3 to be convergent to the origin, since the unconstrained control law can cope with the given set of polytopic uncertainties over Ω. Finally, the strict decrease of (x k ) over X \Ω, is illustrated in Fig. 4. The numerical example of this paper has 

Conclusions

This paper presented a new method to design robust control law for constrained linear systems affected by bounded additive disturbances and polytopic uncertainties. This method was based on convex liftings. It was shown to guarantee the recursive feasibility and also robust stability in the sense of Lyapunov.

x,

  k+1 = A(k)x k + B(k)u k , and β k = sin 2 (p k ), γ k = cos 2 (p k ), p k represents a random scalar variable at time k. The present state and control variables are subject to the following constraints: u k ≤ 5. An unconstrained controller is chosen as follows: u = -3.2827 -4.6780 x.

Fig. 1 .

 1 Fig. 1. The maximal robust positively invariant set Ω and an estimation of the domain of attraction X = P0.99.

Fig. 2 .

 2 Fig. 2. A convex lifting (x) constructed by Algorithm 1 with c = 10. been simulated in the environment of MPT 3.0 Herceg et al. (2013).

Fig. 3 .

 3 Fig. 3. Closed loop stability.

Fig. 4 .

 4 Fig. 4. The strict decrease of (x) over X \Ω along the state.