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Sensor-fault Tolerance using Robust MPC with Set-based
State Estimation and Active Fault Isolation

Feng Xu, Sorin Olaru, Senior Member IEEE, Vicenç Puig, Carlos Ocampo-Martinez, Senior Member IEEE
and Silviu-Iulian Niculescu

Abstract— In this paper, a sensor fault-tolerant control (FTC)
scheme using robust model predictive control (MPC) and set-
theoretic fault detection and isolation (FDI) is proposed. The
MPC controller is used to both robustly control the plant and
actively guarantee fault isolation (FI). In this scheme, fault
detection (FD) is passive by interval observers, while fault
isolation (FI) is active by MPC. The advantage of the proposed
approach consists in using MPC to actively decouple the effect
of sensor faults on the outputs such that one output component
only corresponds to one sensor fault in terms of FI, which can
utilize the feature of sensor faults for FI. A numerical example
is used to illustrate the effectiveness of the proposed scheme.

I. INTRODUCTION

The control systems consist of a series of different com-
ponents that play different roles in global operation. Among
those components, the sensors are commonly used, which are
tools to acquire the real-time system-operating information.
Thus, it is important to monitor the situation of sensors and
tolerate the effect of sensor faults in order to provide the
control systems with safety properties. In the literature, there
exist two types of FTC strategies, i.e., passive FTC (PFTC)
and active FTC (AFTC) [1]. Generally, PFTC, based on
controller robustness, has restrictive FTC ability in terms of
performance. AFTC uses a so-called FDI module to obtain
fault information and then faults can be tolerated with the
fault information.

In the proposed scheme, MPC is used as the control strat-
egy, whose advantage consists in handling system constraints
[2], [4]. Besides, for FDI robustness, set-based FDI is used
in the scheme. In [8], a multi-sensor fault-tolerant MPC
(FTMPC) scheme based invariant sets is proposed, where
FDI is passively implemented. But, generally, passive fault
diagnosis is more conservative. The objective of this paper
is to propose a new sensor FTMPC scheme, which can deal
with system constraints and tolerate sensor faults with less
conservative FI conditions. The proposed scheme has three
contributions. First, it proposes a novel and simple active FI
technique based on MPC, which can reduce FI conservatism.
Second, it proposes a robust state estimation approach for
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Automatic Control Department, Supélec, France.

the MPC controller with feasibility guarantee. Third, it can
detect, isolate and tolerate unknown but bounded sensor
faults with no need of physical redundancy of sensors.

The remainder of the paper is as follows. Section II
introduces the scheme. Section III presents the FDI strategy.
Section IV proposes the FTC strategy. In Section V, a nu-
merical example illustrates the effectiveness of the proposed
scheme. In Section VI, some conclusions are draw.

In this paper, the inequalities are understood element-wise,
the bold matrices denote interval matrices, mid(·) obtains
the center of interval matrices, diag[·] denotes the diagonal
matrix, center(·) denotes the center of a centered set, O
and I denote the zero and identity matrices with suitable
dimensions, respectively, Br is a box composed of r unitary
intervals and ⊕ denotes the Minkowski sum.

II. PROBLEM FORMULATION

A. Plant Model

The linear discrete time-invariant plant is modelled as

xk+1 = Axk +Buk + ωk, (1a)
yk = GCxk + ηk, (1b)

where A ∈ Rn×n, B ∈ Rn×p and C ∈ Rq×n are constant
matrices, xk ∈ Rn, uk ∈ Rp and yk ∈ Rq are state, input
and output vectors at time instant k, respectively, and ωk and
ηk model unknown disturbances and noises, respectively.

In (1), G takes a value Gi (i ∈ I = {0, 1, ..., q}) to
model the i-th sensor mode, where G0 is the identity matrix
denoting the healthy mode and Gi (i 6= 0) is a diagonal
interval matrix modelling the i-th sensor fault with

Gi = diag[1 . . .

i

↓
fi . . . 1],

where the fault-modelling interval fi satisfies fi ⊆ [0, 1).
Additionally, a diagonal interval matrix to describe all the
considered sensor faults is defined as

Gf = diag[f1 . . . fi . . . fq],

where each diagonal element of Gf corresponds to the
considered magnitude interval of one sensor fault. Besides,
the system state and input constraints are given as

X ={x ∈ Rn : |x− xc| ≤ x̄, xc ∈ Rn, x̄ ∈ Rn}, (2a)
U ={u ∈ Rp : |u− uc| ≤ ū, uc ∈ Rp, ū ∈ Rp}, (2b)

respectively, where the vectors xc, uc, x̄ and ū are constant.



Assumption 2.1: ωk and ηk are bounded by known sets

W ={ω ∈ Rn : |ω − ωc| ≤ ω̄, ωc ∈ Rn, ω̄ ∈ Rn}, (3a)
V ={η ∈ Rq : |η − ηc| ≤ η̄, ηc ∈ Rq, η̄ ∈ Rq}, (3b)

respectively, where the vectors ωc, ηc, ω̄ and η̄ are constant.�
Assumption 2.2: The matrix A is a Schur matrix and the

pairs (A,GiC) are detectable for all i ∈ I. �
Remark 2.1: For brevity, only single fault is considered in

the paper. But, theoretically, the proposed approach can also
be extended for multiple faults with G modelling multiple
faults important/critical to system performance/safety. ♦

Assumption 2.3: The considered faults should persist suf-
ficiently long time such that the FDI module has enough
responsive time to cope with them. �

B. Set-point Tracking

In the i-th mode, the control objective is to track an output
set-point, i.e., in the absence of uncertainties and/or faults,

lim
k→∞

(yk − y∗i )→ 0,

where y∗i denotes the output set-point of the i-th mode.
Remark 2.2: Sensor faults imply the loss of available

system information. Thus, there perhaps exist situations,
where one has to degrade the expected performance. ♦

In the proposed scheme, the tracking references for the
i-th sensor mode are generated by the i-th nominal model

xrefk+1 = Axrefk +Burefk , (4a)

yrefk = mid(Gi)Cx
ref
k , (4b)

where urefk , xrefk and yrefk are the reference input, state and
output at time instant k. Using (4), at steady state, one has[

A− I B
mid(Gi)C O

] [
x∗i
u∗i

]
=

[
O
y∗i

]
. (5)

where (x∗i ,u∗i ) is the state-input set-point pair corresponding
to y∗i . But, the solution of (5) may not be unique. Thus, for
q + 1 modes, q + 1 set-point pairs should be obtained.

Assumption 2.4: Under the constraints (2), the equation
(5) is solvable for all i ∈ I. �

Remark 2.3: if needed, ωc and ηc can be added into (4).♦

III. FAULT DETECTION AND ISOLATION

A. Fault Detection

A bank of interval observers are designed to monitor the
plant, each of which matches one mode. The j-th (j ∈ I)
interval observer matching the j-th mode is designed as

X̂j
k+1 =(A− LjGjC)X̂j

k ⊕ {Buk} ⊕ {Ljyk}
⊕ (−Lj)V ⊕W, (6a)

Ŷ j
k =GjCX̂

j
k ⊕ V, (6b)

where X̂j
k and Ŷ j

k are the estimated state and output sets,
and Lj is the observer gain that assures A − LjGjC is a
Schur matrix.

Assumption 3.1: The initial state x0 belongs to an initial
set X̂0 for all interval observers. �

As defined in (3), W and V can be rewritten as zonotopes1.
By defining X̂0 as a zonotope, X̂j

k+1 and Ŷ j
k are zonotopes as

well. Using zonotope operations, interval observers (6) can
be propagated on-line with preserving zonotopic structure
and guaranteeing containment. If the j-th interval observer
matches the current mode, at steady state, one has

xk ∈ X̂j
k and yk ∈ Ŷ j

k .

In the i-th mode, G takes the value Gi (i ∈ I) and the
i-th interval observer monitors the plant. To detect faults, the
residual2 (in terms of zonotopes) is defined as

Rii
k =yk − Ŷ i

k . (8)

Remark 3.1: Although a bank of interval observers op-
erate concomitantly, only residual zonotopes of the interval
observer matching the current mode is used for FD. ♦

Thus, when the system is in the i-th mode, the FD task is
implemented by testing whether or not

0 ∈ Rii
k (9)

is violated in real time. If a violation is detected, it means that
the system has become faulty3. Otherwise, it is considered
that the system is still in the i-th mode. The satisfaction of
(9) does not always imply the system is healthy because
the FD strategy cannot be sensitive to all faults. For the
faults undetectable by (9), only potential PFTC ability of
the proposed scheme can tolerate them to some extent.

B. Fault Isolation

1) Fault Isolation Conditions: To explain the proposed FI
approach, it is assumed that the inputs are bounded by a set

Uf = {u ∈ Rp :
∣∣u− ucf ∣∣ ≤ ūf , ucf ∈ Rp, ūf ∈ Rp},

where Uf satisfies the input constraint of the plant. i.e.,

Uf ⊆ U. (10)

Additionally, the output equation (1a) can be rewritten as

xk+1 = Axk +
[
B I

] [uk
ωk

]
. (11)

By considering uk ∈ Uf and ωk ∈W , a robust positively
invariant (RPI) set of (11) can be computed (see [3], [5],
[6] for the notion of RPI sets and constructive algorithms),
which is denoted as Xf centered at

xcf = (I −A)−1(Bucf + ωc). (12)

Furthermore, according to (1b), in the i-th mode, the
corresponding output set can be obtained as

Y i
f = GiCXf ⊕ V,

1Please see [7] for the notion of zonotopes and all relevant properties of
zonotopes used to implement interval observers in this paper.

2For analysis, Rii
k is used to denote residual zonotopes of the i-th interval

observer in the i-th mode at time instant k. But, realistically, one should
only use Ri

k to denote residual zonotopes from the i-th interval.
3In this paper, ”become faulty” generally denotes mode switching includ-

ing fault occurrence and system recovery.



where Y i
f is centered at yc,if = mid(Gi)Cx

c
f + ηc. If Gi

takes the value G0, the corresponding healthy output set is

Y 0
f = CXf ⊕ V,

where Y 0
f is centered at yc,0f = Cxcf + ηc. The output

set has q components, each of which is an interval that
can be obtained by projecting the output set towards the
corresponding dimension. In terms of uk ∈ Uf , only the i-th
component of Y i

f is different from that of Y 0
f because of the

effect of the i-th fault, while all the other components are
the same. Furthermore, in contrast to Y 0

f , one defines a set

Yf = GfCXf ⊕ V,

where Yf is centered at ycf = mid(Gf )Cxcf + ηc. By
comparing Y 0

f and Y i
f with Yf , one knows:

• All the interval components of Y 0
f are different from

those of Yf , respectively.
• Only the i-th interval component of Y i

f (i 6= 0) is the
same with that of Yf , while all the others are different.

For brevity, the i-th interval components of Y 0
f , Y i

f and Yf
are denoted as Y 0

f (i), Y i
f (i) and Yf (i), which are centered

at yc,0f (i), yc,if (i) and ycf (i) (the i-th components of yc,0f , yc,if

and ycf ), respectively.
Proposition 3.1: For the plant (1) under the constraints

(2), if there exists a set Uf that satisfies (10) such that

Y 0
f (i) ∩ Yf (i) = Ø, for all i ∈ I \ {0}, (13)

all the considered sensor modes are isolable after detection.
Proof : If the inputs are bounded by Uf , because of the
separation of the i-th interval component, i.e, Y 0

f (i)∩Yf (i) =
Ø, after the i-th fault occurs, the i-th output component
finally enters into the i-th interval of Yf instead of Y 0

f , while
all the other output components enter into the corresponding
components of Y 0

f instead of Yf , respectively, which indi-
cates the i-th fault. Thus, if all the interval components of Y 0

f

and Yf are separate from each other, it implies that all the
considered sensor modes are isolable after their detection.�

Assumption 3.2: There exists a set Uf ⊆ U such that all
the considered sensor faults satisfy (13). �

2) Fault Isolation Strategy: If a sensor fault is detected
at time instant kd, the state is still inside XM (the maximal
robust control invariant (MRCI) set of (1a) under the con-
straints (2)) at this time instant because sensor faults do not
affect the system dynamics, i.e.,

xkd
∈ XM , (14)

where XM is the terminal state constraint set of the MPC
controller in the proposed scheme.

At time instant kd, the proposed FI approach switches the
input constraint of the MPC controller from U to Uf to start
active FI. After constraint switching, if the MPC controller
is still feasible, the generated control action satisfies

ukd
∈ Uf . (15)

To isolate the fault during the transition induced by faults,
at time instant kd, one initializes a set-based dynamics

Xk+1 = AXk ⊕Buk ⊕W, (16a)
Yk = GfCXk ⊕ V, (16b)

with Xkd
= XM and uk ∈ Uf (k ≥ kd). Afterwards, the

state and output set sequences can be generated by (16).
Moreover, by using X̌kd

= XM at time instant kd to initialize
the other set-based dynamics

X̌k+1 = AX̌k ⊕BUf ⊕W, (17a)

Y̌k = GfCX̌k ⊕ V, (17b)

the other state and output set sequences can be obtained.
As per [5], the state set sequence generated by (17a) will

converge to the minimal robust positively invariant (mRPI)
set of system states with respect to uk ∈ Uf , enter into and
stay inside Xf , and the output set sequence generated by
(17b) will enter into and stay inside Yf .

Proposition 3.2: At time instant kd, by using XM to
initialize (16) and (17), for all k ≥ kd, Xk ⊆ X̌k and
Yk ⊆ Y̌k will always hold. �

Proposition 3.3: Given the plant (1), the state and output
set sequences generated by (16), starting from time instant
kd, xk ∈ Xk can hold for all k ≥ kd. If the plant is
healthy, no components of yk and Yk can persistently satisfy
yk(i) ∈ Yk(i) (i ∈ I \ {0}) for all k ≥ kd, while if the
i-th fault occurs, the i-th components of yk and Yk can
persistently satisfy yk(i) ∈ Yk(i) for all k ≥ kd but all
the other components of yk and Yk cannot.
Proof : First, because of (14), (15) and uk ∈ Uf for all
k > kd, comparing (1) and (16), xk ∈ Xk will hold for
all k ≥ kd. Second, under Proposition 3.2, comparing (17)
with (16), Xk and Yk finally enter into Xf and Yf and stay
inside, respectively. Considering Y 0

f , Y i
f and Yf , for the i-

th mode, i.e., G in (1b) takes a value inside Gi (i 6= 0),
under Proposition 3.1, starting from time instant kd, only
yk(i) ∈ Yk(i) will hold for all k ≥ kd with the initialization
Xkd

= XM , while all the other components of yk do not
have the same conclusion. For the healthy mode, since all
the components of Y 0

f are separate from the corresponding
components of Yf , no components of yk can be contained
by the corresponding interval of Yk for all k ≥ kd. �

Thus, under Proposition 3.1, 3.3 and Assumption 3.2, if
a considered sensor fault is detected, by using the output
set sequence generated by (16), the fault can be isolated by
real-time testing whether or not

yk(i) ∈ Yk(i), k ≥ kd (18)

is violated for all i ∈ I \ {0}. With the real-time testing of
(18) for all the components, one has the FI conclusions:
• If the plant recovers to the health from a faulty mode,

for k ≥ kd, by testing (18), at a time instant, if all
the output components violate (18), it implies that the
healthy mode is isolated at this time instant.

• If the plant changes into another fault from a faulty
mode or the healthy mode, only the output component



corresponding to the current mode can always respect
(18) while all the others will finally diverge from their
corresponding interval components of Yk, respectively.
Thus, the proposed FI approach consists in searching
this unique component that indicates the fault and the
corresponding time instant indicates the FI time.

IV. FAULT-TOLERANT CONTROL

A. Robust MPC Controller
In this proposed scheme, the robust MPC controller is

implemented by using min-max MPC. In the steady-state
operation of the i-th mode, the i-th state-input set-point pair
and the i-th interval observer are used and the corresponding
robust MPC controller is designed as

Jk = min
u

max
w

N−1∑
j=0

‖(xk+j|k − x∗i )‖2Q + ‖(uk+j|k − u∗i )‖2R

+‖(xk+N|k − x∗i )‖2P
subject to xk+j|k∈ X,

uk+j|k∈ U,
xk+N|k∈ XM ,

xk|k= x̂k,

∀ωk+j|k ∈W, (19)

where N is the prediction horizon, x̂k is the system
state estimation, u = [uk|k, uk+1|k, · · · , uk+N−1|k], Q,
R and P are positive-definite weighting matrices, w =
[ωk|k, ωk+1|k, · · · , ωk+N−1|k] and the internal model of the
MPC controller is given as

xk+j+1|k = Axk+j|k +Buk+j|k + ωk+j|k.

In the i-th mode, if no fault is detected, the MPC controller
(19) is used to robustly control the system to track the i-th
output set-point y∗i . If a fault is detected, at the FD time,
active FI is started by switching the input and terminal state
constraints of (19) from U and XM to Uf and XMf

(XMf

is the MRCI set of (1a) under xk ∈ X and uk ∈ Uf ),
respectively. By using active FI, the fault can be isolated
and the controller can be reconfigured with the state-input
set-point pair and interval observer corresponding to the
new mode. Simultaneously, the input and terminal state
constraints of the MPC controller must be switched back to
U and XM in the operation of the new mode, respectively.

B. Robust State Estimation

Under the constraints (2), one can compute the MRCI set
XM for the dynamics (1a). Since XM is used as the terminal
state constraint of the MPC controller (19), ideally, if the
initial state is inside XM and the real states are available
for the MPC controller updating, the states can always be
confined inside XM and the MPC controller can be always
feasible (see [4] for min-max MPC). Unfortunately, it is
impossible to obtain the real states. Instead, one has to
estimate the states for the MPC controller.

1) State Estimation: For feasibility and stability of the
MPC controller with state estimation, one still uses XM as
the terminal state constraint in the steady-state operation.

Remark 4.1: In the steady-state operation, as long as the
MPC controller (19) is always updated by a point inside XM

at each time instant, i.e., x̂k ∈ XM , it can keep feasible such
that the generated control actions always satisfy uk ∈ U . ♦

For constraint satisfaction during the transition induced by
faults, one makes the following assumption.

Assumption 4.1: The mRPI set (denoted as Xm) corre-
sponding to uk ∈ U and ωk ∈ W for the dynamics (11) is
contained in the state constraint set X . �

Assumption 4.2: There exists α ≥ 1 such that the initial
state x0 of (1a) satisfies x0 ∈ X̄ = αXm and X̄ ⊂ XM . �

Under Assumption 4.1 and 4.2, X̄ is an RPI set cor-
responding to uk ∈ U and ωk ∈ W for the dynamics
(11). Thus, if uk ∈ U , the states always stay inside X̄ .
Furthermore, if the system is in the steady-state operation
of the i-th mode, the i-th interval observer can real-time
estimate sets to contain the current states, i.e., xk ∈ X̂i

k.
Thus, based on X̄ and X̂i

k, one has

xk ∈ X̄ ∩ X̂i
k. (20)

In the i-th mode, the following method is proposed to
obtain state estimation, i.e.,

x̂k = center(X̄ ∩ X̂i
k), (21)

where x̂k is used to update the MPC controller (19).
Proposition 4.1: Under Assumption 4.1 and 4.2, the MPC

controller (19) with the state estimation (21) is recursively
feasible in the steady-state operation. Moreover, the real
states xk are always confined inside X̄ .
Proof : Under Assumption 4.1 and 4.2, X̄ is contained
inside XM , which implies x̂k ∈ XM . Thus, at each step,
by using (21), the MPC controller (19) is always feasible.
As long as the MPC controller is feasible, uk ∈ U always
holds, which always implies xk ∈ X̄ ⊆ X . �

2) Stability with State Estimation: When using the state
estimation (21) to update the MPC controller, there always
exist state estimation errors defined as

x̃k = xk − x̂k, (22)

Since both xk and x̂k are confined in the intersection
X̄ ∩ X̂i

k, x̃k should be bounded. In the worst case, i.e., X̄
coincides with X̂i

k, the bound of x̃k can be obtained as

x̃k ∈ X̄ ⊕ (−X̄). (23)

Note that because the coincidence of X̄ and X̂i
k is a

low probability event, the real-time bound of x̃k should be
less conservative than (23). Since the plant is stable as in
Assumption 2.2, the bounding of x̃k implies stability of the
system with the state estimation (21).

C. Fault-tolerant Control Approach

1) Active Fault Isolation: Once a fault (indexed by j 6= i)
is detected at time instant kd, the proposed FI approach relies
on switching the constraints of the MPC controller from U
and XM to Uf and XMf

to start active FI.
Proposition 4.2: Under Assumption 3.2, 4.1 and 4.2, the

mRPI set (denoted as Xmf
) for the dynamics (11) corre-

sponding to uk ∈ Uf is contained in Xm. Moreover, XMf

is a robust control invariant (RCI) set for the dynamics (11)
corresponding to uk ∈ U .



Proof : Because of Uf ⊆ U , the mRPI set for the dy-
namics (11) corresponding to uk ∈ Uf is contained in that
corresponding to uk ∈ U . Because of X̄ ⊆ X , both mRPI
sets are contained in X . For Uf ⊆ U , XMf

can satisfy the
definition as an RCI set of the dynamics (11) under uk ∈ U ,
which indicates XMf

⊆ XM (See [2] for the RCI sets). �
During active FI, xk ∈ X̂i

k cannot always hold, which
implies that (21) cannot guarantee feasibility of the MPC
controller. Thus, it is necessary to propose a new strategy to
update the MPC controller to guarantee both active FI and
transient-state feasibility after faults. To avoid infeasibility
during active FI, for each step k ≥ kd, one uses

x̂k = center(XMf
) (24)

to update the MPC controller for generating control actions.
By (24), during active FI, the feasibility of the MPC

controller can always be guaranteed such that uk ∈ Uf ,
which implies that the satisfaction of the FI conditions in
Proposition 3.1 on-line. Furthermore, FI can be implemented
by using the FI approach (18). Then, at time instant ki when
the fault is isolated, the constraints of the MPC controller are
switched to U and XM from Uf and XMf

for performance.
Proposition 4.3: At the FI time ki, xki

∈ X̄ (i.e., xki
∈

XM ). Furthermore, as long as the MPC controller is feasible,
xk ∈ XM for all k ≥ ki.
Proof : Under Assumption 4.2, xk ∈ X̄ ⊆ XM in the
steady-state operation. At time instant kd, although the
constraints U and XM are switched into Uf and XMf

, one
still has uk ∈ Uf ⊆ U with (24), which implies that the states
still stay inside X̄ . At time instant ki when the constraints
are switched back to U and XM , xki ∈ X̄ still holds and
the feasibility of (19) assures xk ∈ XM for all k ≥ ki. �

Remark 4.2: It is assumed that the j-th mode (j 6= i) is
isolated. Under Proposition 4.3, for k ≥ ki, if the intersection
X̄ ∩ X̂j

k is not empty, x̂k = center(X̄ ∩ X̂j
k) is used for

the MPC controller. Otherwise, (24) continues to be used.
After reconfiguration, it is guaranteed that, several steps later,
X̄ ∩ X̂j

k 6= Ø can persistently hold.

D. Fault-tolerant Control Algorithm

An FTC algorithm is summarized for the FTC scheme.
1) It is assumed that the system is in the i-th mode, i.e.,

the i-th state-input set-point pair and the i-th interval
observer are used for the system.

2) When a fault is detected at time instant kd, the
constraints of the MPC controller are simultaneously
switched from U and XM to Uf and XMf

to start
active FI. (24) is used to guarantee active FI and MPC
feasibility during active FI stage, (16) is initialized by
XM to generate the output set sequence for FI and the
FI strategy (18) is used to isolate the fault.

3) Once the fault is isolated (it is assumed that the index
is j 6= i), the system is reconfigured and the strategy
proposed in Remark 4.2 is specially used for the
initial stage of the new mode. Afterwards, the whole
algorithm is repeated to monitor this new mode.

V. ILLUSTRATIVE NUMERICAL EXAMPLE
A numerical example is used to show the effectiveness of

the proposed scheme, whose parameters are given as
• Parameter matrices:

A =

[
0.6 0
0 0.7

]
,B =

[
0.5 0.1
0.2 −0.3

]
,C =

[
1 0
0 1

]
.

• Process disturbances: w̄ =
[
0.1 0.1

]T ,wc =
[
0 0

]T .
• Measurements noises: η̄ =

[
0.1 0.1

]T , ηc =
[
0 0

]T .
• Observer gains4:

L0 =

[
0.2 0
0 0.2

]
, L1 =

[
2 0
0 0.2

]
, L2 =

[
0.2 0
0 2

]
.

• Considered sensor faults:

G1 =

[
[0, 0.2] 1

0 1

]
, G2 =

[
1 0
0 [0, 0.2]

]
,

Gf =

[
[0, 0.2] 0

0 [0, 0.2]

]
.

• Fault magnitudes5: G1 =

[
0.1 1
0 1

]
,G2 =

[
1 0
0 0.1

]
.

• Output set-points: y∗0 =

[
1.5
1

]
, y∗1 =

[
0.5
1

]
, y∗2 =

[
1.5
0.5

]
.

• State-input set-point pairs:

u∗0 =

[
1.2353
−0.1765

]
, u∗1 =

[
3.7059
1.4706

]
, u∗2 =

[
1.9412
−3.7059

]
,

x∗0 =

[
1.5
1

]
, x∗1 =

[
5
1

]
, x∗2 =

[
1.5
5

]
.

• Initial conditions:

x0 =

[
0
0

]
, X̂0 =

[
0
0

]
⊕

[
0.1 0
0 0.1

]
B2.

• System constraints:
U = {u :

[
−10 −10

]T ≤ u ≤ [
10 10

]T },
X = {x :

[
−20 −20

]T ≤ x ≤ [
20 20

]T }.
• Input set for active FI:
Uf = {u :

[
6.5 6.5

]T ≤ u ≤ [
7.5 7.5

]T }.
• Sampling time: T = 0.1s.
• Prediction horizon: N = 2.
• MPC controller parameters:

Q =

[
1 0
0 1

]
,R =

[
0.1 0
0 0.1

]
, P =

[
1 0
0 1

]
.

For the three modes (healthy and faulty), three correspond-
ing interval observers are designed as in (6). Furthermore,
using uk ∈ Uf and ωk ∈ W , the output sets corresponding
to the three mode can be presented in Figure 1.

Fig. 1. Output sets for active FI

In Figure 1, all the interval components of Yf are disjoint
from those of Y 0

f , respectively, and both of Y 1
f and Y 2

f have

4L1 and L2 are obtained using mid(G1) and mid(G2), respectively.
5G1 and G2 denote actual fault magnitudes, i.e., G1 ∈ G1 and G2 ∈

G2. Note that fault occurrence of any magnitude inside G1 and G2 can
be isolated if they can be detected.



an interval component that is the same with Yf . The scenarios
for both faults are: from time instants 1 to 10, the system is
healthy, while from time instants 11 to 30, a fault occurs.
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Fig. 2. FD of the first fault
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Fig. 3. FI of the first fault

The FD and FI results of the first fault are shown in
Figure 2 and 3, respectively. In Figure 2, a fault is detected
at k = 12, i.e., 0 6∈ R0

12 (note that R0
k(1) and R0

k(2)
respectively coincides with R2

k(1) and R1
k(2) in Figure 2).

Thus, active FI is started at k = 12, i.e., (16) is initialized
and (18) is tested in real time for FI. In Figure 3, at k = 17,
the first component of yk respects its bound Yk(1), i.e.,
y17(1) ∈ Y17(1), while the second component violates its
bound, i.e., y17(2) 6∈ Y17(2), which indicates the first sensor
fault is isolated. Thus, the first state-input set-point pair is
used to reconfigure the system at k = 17. The output of the
system is shown in Figure 3 as the red stars. Before the first
fault, the expected output y∗0 is well tracked, while after the
first fault, the tracking performance becomes poor until the
time instant k = 17 when the system is reconfigured. After
k = 17, the expected y∗1 can be well tracked again.
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Fig. 4. Control inputs for the first fault

The control actions are presented in Figure 4, where before
fault occurrence, the control inputs satisfy their constraints.
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Fig. 5. Comparison of states and state estimations

During active FI, because of the strategy (24), the generated
inputs are constant, which satisfy the constraint set Uf . After
system reconfiguration, the control inputs to tolerate the first
fault are generated, which also satisfy the constraint U . Be-
sides, to show the effectiveness of the state estimation (21),
a comparison between the real states and their estimations
is shown in Figure 5. It can be observed that (21) can give
satisfactory state estimations in steady state.

Remark 5.1: Although two sensor faults are considered in
this example, due to the length of this paper, only the results
related to the first sensor fault are presented here. ♦

VI. CONCLUSIONS

The paper propose a sensor FTC scheme using MPC, inter-
val observer-based FD and set-based active FI. By combining
MPC with set-based FDI approaches it is shown that sensor
FDI and the corresponding FI conditions can be simplified.
For the MPC feasibility guarantees, the FTC scheme rely
on relationships between invariant sets characterizing the
autonomous dynamics and resumed by 4.1. If alternative
on-line state-estimation schemes can be implemented by ex-
ploiting plant information, the FTC scheme proposed in the
present paper can be used with possible relaxed assumptions.
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[5] S. Olaru, J.A. De Doná, M.M. Seron, and F. Stoican. Positive invariant
sets for fault tolerant multisensor control schemes. International
Journal of Control, 83(12):2622–2640, 2010.

[6] F. Stoican and S. Olaru. Set-theoretic Fault-tolerant Control in Multi-
sensor Systems. John Wiley & Sons, Inc., 2013.

[7] F. Xu, V. Puig, C. Ocampo-Martinez, F. Stoican, and S. Olaru. Actuator-
fault detection and isolation based on set-theoretic approaches. Journal
of Process Control, 24(2):947 – 956, 2014.

[8] A. Yetendje, M. M. Seron, and J. A. De Doná. Robust MPC design
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