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Abstract

A general statistical model of characterisation of the radiative properties of ho-

mogenised phases has been developed for a porous medium with a semi transparent

absorbing phase a and a transparent one b, characterised by general interfacial re-

flection and transmission laws. For non Beerian homogenised phases, it is based on

successive sets of radiative statistical functions: Extinction cumulative distribution

functions, scattering cumulative probabilities and general phase functions ab initio

determined by a Monte Carlo approach, only from morphological data and interfacial

reflection and transmission laws in the last case. Specific sets are associated with

isotropic and uniform volume emission by a and with the successive internal and

external scattering events within a and b, the emission or scattering source terms

of which have been weighted by spatial distribution functions. For a Beerian ho-

mogenised phase, a unique set of radiative statistical functions has been determined

from random isotropic volume source points.

Two Generalised Radiative Transfer Equations (GRTEs), coupled by external scat-

tering source terms are then expressed only vs the radiative statistical functions. It

is shown that a radiative Fourier’s model, based on radiative conductivity tensors,

is not valid for a medium made of a semi transparent phase and a transparent one,

if the particular case for which the semi transparent phase becomes opaque and the

trivial case of a quasi isothermal medium are excepted.
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The previous models are applied to a felt of fibres for insulation of high temperature

systems. The radiative power field in radiation steady state within a felt of fibres

enclosed between parallel opaque walls has been determined by solving the coupled

GRTEs by a Monte Carlo method, for different values of the transverse optical thick-

ness of a fibre. The temperature field within the felt has also been determined for

two temperatures imposed at the boundaries and for imposed flux and temperature.

Finally the optimal conditions of insulation have been determined for a case such

that usual conduction can be neglected compared to radiation.

Keywords: semi transparent and transparent phases, statistical radiative

properties model, non Beerian effective prperties, ab intio determined scattering

phase functions, coupled Generalised Radiative Transfer Equations, fibrous

medium.

Nomenclature

Latin symbols

n Normal unit vector towards the (semi) transparent phase

r Coordinates of a current point

u unit vector of the current direction

q Flux (W.m−2)

B Generalised extinction coefficient

f Distribution function

G Radiative cumulative distribution function

I Radiative intensity

kR Radiative conductivity

M Volume source point
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M ′ Extinction point

N Interfacial source point

n Refractive index

P Cumulative probability

p Phase function

S Radiative source term

s, s′ Curvilinear abscissas along a ray

T Temperature

V Volume

z Axis of the bed f fibers

D Medium length

d Cylinder diameter

L Cylinder length

Greek symbols

β Extinction coefficient

κ Absorption coefficient

ν Frequency

ρ′′ Bidirectional reflectivity

τ ′′ Bidirectional transmissivity

δ Kronecker symbol
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Ω Solid angle

Φ Azimutal angle

Π Volume fraction or porosity

Σ Interfacial area

Σcc or Σcd Generalised scattering coefficient

θ Angle related to the z axis

Subscripts

−a Absorption

−c Phase a or b

−d Another phase a or b

−ext Extinction

−e Emission

−H Successive set of internal and external scattering events

−sc Scattering

Superscripts

−(n) nth set of scattering events

−◦ At equilibrium

−B Related to a Beerian phase

−S Related to an interfacial source

Others
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GRTE Generalised Radiative Transfer Equation

RTE Radiative Transfer Equation

STT Medium with Semi Transparent and Transparent phases

1. Introduction

An accurate modeling of radiative transfer is required in applications involving

heat transfer in a porous medium at high temperature. The radiative properties of

the different phases have to be characterised separately in order to be able to ac-

count for coupling with other heat transfer modes, generally conduction in a solid

phase and conduction or convection in a fluid phase. As radiative transfer cannot be

in practice determined at local scale, effective properties of every phase have to be

determined.

The methods of parameter identification with many variants based on experiments

or numerical transfer simulation (see a detailed review in Ref.[1]) are the most pop-

ular methods of characterisation of these radiative effective properties. If they are

relevant for media characterised by an exponential extinction law (Beerian media),

their limitations for non Beerian media have been discussed elsewhere[2]. Moreover,

these methods do not easily allow every phase to be separately characterised.

In the general case, the radiative effective properties of a phase of a porous medium,

which is often statistically non homogeneous and anisotropic, are non Beerian. The

conditions of validity of the Beer’s law for characterising these radiative effective

properties have been discussed in a recent paper [3]. The law is, in particular, valid

if one of the following conditions is fulfilled:

i) When the phase is statistically homogeneous at all the spatial scales considered

in the application; It can be non homogeneous at scales such that the medium is

optically thin;

ii) When the interfaces of the porous medium present some special symmetries: For

instance outside of overlapping spheres or cylinders;

iii) At spatial scales larger than δ, length such that the medium is optically thick. In

this popular case, extinction, scattering and absorption coefficients can be defined
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and a radiative conductivity tensor can be introduced (radiative Fourier’s law).

A radiative model which can be applied to non Beerian media has been initiated

by Consalvi et al.[4] and developed by Lipinski et al.[5]. This approach is similar to

the volume averaging method of Whitaker and Quintard[6, 7], for obtaining effective

properties of a porous medium in the case of small perturbations of the field within

a representative volume element.

The development of X and γ tomography techniques has led in the last decades

to an accurate knowledge of the morphology of porous media. On the other hand

the morphology of material models, sets of overlapping or non overlapping spheres

or cylinders for instance, is exactly known. In these conditions, the increasing power

of the statistical Monte Carlo methods has allowed the radiative properties of a non

Beerian homogenised phase to be exhaustively characterised by radiative statistical

functions instead of extinction, absorption and scattering coefficients, valid for a

Beerian medium. The principles of the method have been defined by Tancrez and

Taine[8], for models of foams. A non Beerian homogenised phase is characterised by

an extinction cumulative distribution function, a scattering (or absorption) cumula-

tive probability and a general scattering phase function a priori depending on both

the incidence and scattering directions. In this first work and in following ones, for

instance in Refs.[9–15], the Beerian assumption has been validated for statistically

isotropic and homogeneous media.

An original transfer model for a non Beerian homogenised phase, directly based on a

Generalised Radiative Transfer Equation (GRTE) involving the radiative statistical

functions, has then been developed[16] for a medium with an opaque and a trans-

parent phase, both in the general case and when a radiative Fourier’s law is valid.

The physical bases of the GRTE have been improved in a recent paper[3]. This

model has been applied, under the Fourier’s assumption, to ordered sets of intact or

degraded diffuse opaque parallel cylinders within a transparent or a semi transparent

medium[14]. This porous medium, modeling a nuclear core, is strongly anisotropic

but homogeneous at large scale. In a recent work[17], the GRTE has been applied to

a statistically strongly non homogeneous porous medium: A set of non overlapping
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diffuse opaque spheres at the vicinity of a wall within a transparent medium.

A key feature of a non Beerian phase is that the knowledge of the incident inten-

sity field at a given point M is not sufficient for allowing extinction by absorption,

external scattering or internal scattering at this point M to be determined[3, 16]: The

history of all radiations issued from all source points which contribute to the intensity

field at M has to be accounted for (memory effect). This phenomenon makes the

model much more complex, in particular within a medium with transparent and semi

transparent phases characterised by general (non diffuse) interfacial reflection and

transmission laws: It is then necessary to account for all the previous paths involving

different sets of effective internal and external scattering, associated with interfacial

reflection and transmission phenomena[3]. On the contrary, under the particular

assumption of an interfacial diffuse reflection or transmission law, the knowledge of

the local intensity is sufficient for characterising internal or external scattering, as

the directional contributions to these phenomena are uniformly jammed[3].

Fibrous media like felts are commonly used as insulating materials at high temper-

atures and can be encountered in applications such as nuclear reactors, combustion

chambers, coatings for aeronautics and aerospace, etc. Radiative transfer in fibrous

media has often been studied for opaque fibres immersed in a transparent phase.

After a global homogenisation, this type of medium has generally been globally rep-

resented by a Beerian semi transparent medium. Radiative transfer is then often

solved by a finite volume method (FVM) or a discrete ordinates method (DOM)

[18–22]. Kamdem and Baillis [23] have replaced an anisotropic fibrous medium by

an equivalent homogeneous isotropic medium and solved the radiation problem by

classical techniques.

A common difficulty is the determination of the phase function of an anisotropic

fibrous medium. Most studies have used a Henyey-Greenstein phase function, sim-

ply depending on the scattering angle and characterised by the asymmetry factor.

Kamdem and Baillis [24] also have proposed a generalised Henyey-Greenstein phase

function for an anisotropic medium by using a directional asymmetry factor. Lee

[25] has proposed a general expression of the phase function for an oriented infi-
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nite cylinder and generalized the expression for fibrous media, but in this approach

the interaction between fibres are neglected. Boulet and al. [26] have shown that

these methods do not satisfy the energy conservation with anisotropic scattering.

They have proposed a renormalisation of the phase function, but this renormalisa-

tion modifies its general shape and consequently the solution of the radiative transfer

problem. Mishchenko et al. [27] multiply the Gaussian weights of the DOM by cor-

rection factors which affect the forward-scattering and ensure energy conservation,

but this technique modifies the asymmetry factor for any direction. Hunter et al.

[28] improve the previous technique by normalizing the backward-scattering term

and the forward-scattering term of the phase function separately for specular and

diffuse reflection and transmission laws. They conserve both scattered energy and

asymmetry factor.

Section 2 deals with the radiation model for an assumed non Beerian porous

medium with a semi transparent absorbing phase and a transparent one, char-

acterised by general interfacial reflection-transmission laws: This model is for in-

stance required in the case of Fresnel’s interfacial laws. The medium is statistically

anisotropic, but homogeneous at large scale. It corresponds, for instance, to another

common type of felts.

An originality of the work is to apply the statistical approach earlier evoked for ex-

haustively characterising the extinction cumulative distribution functions and the

scattering (or absorption) cumulative probabilities. A particular attention is also

brought to the direct ab initio determination of all phase functions associated with

all the sets of successive internal and external scattering events previously mentioned.

This model is only based on the knowledge of the morphological properties of the

medium, the refractive indices of the two phases and the absorption coefficient of the

semi transparent phase. In the general case, the radiative transfer is based on two

coupled Generalised Radiative Transfer Equations (GRTEs). The validity conditions

of radiative Fourier’s laws and radiative conductivity tensors, which require strong

conditions, are discussed.

The radiative properties of a felt of semi transparent finite overlapping cylindrical fi-
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bres within a transparent medium are characterised by the previous method in Sec.3.

Some applications to radiative transfer are developed in Sec.4.

2. Radiation models

2.1. Statistical model of radiative properties

The study deals with statistically homogeneous but strongly anisotropic media

with an absorbing but non scattering phase a of volume fraction Πa, absorption

coefficient κν a and refractive index nν a and a transparent phase b of volume frac-

tion Πb and refractive index nν b. All these thermophysical quantities are assumed

uniform. Interfacial reflection and transmission at local scales are characterised by

bidirectional reflectivity and transmissivity, given for instance by the Fresnel’s laws

for optically smooth interfaces.

The considered spatial scales are assumed to be larger than the typical radiation

wavelengths: Consequently, diffraction effects are neglected and the radiation prop-

agation is considered along straight lines within a phase.

By generalising the approach of Refs.[3, 5, 8, 9, 14, 15, 17, 29], the radiative properties

of a priori non Beerian homogenised phases are accurately characterised by radia-

tive statistical functions, defined along any propagation axis of direction u(θ, ϕ) and

coordinate s: Extinction cumulative distribution function Gext ν , absorption or scat-

tering cumulative probabilities, Pa ν or Psc ν respectively, and general phase functions

pν(u1,u) a priori depending on both incidence and scattering unit vectors u1 and

u, respectively. Note that reflection within a real phase c (a or b) becomes internal

scattering, characterised by Psc ν cc and pν cc in the corresponding homogenised phase,

and that transmission from a real phase c to another real phase d becomes external

scattering characterised by Psc ν cd and pν cd after homogenisation.

The radiative statistical functions are determined in the real medium by a sta-

tistical Monte Carlo method. A huge number of shots from emission and scatter-

ing source points is used for modeling extinction by absorption and scattering and

modeling scattering source terms. This approach is summarised in Sec.2.1.4. The

determined statistical functions are then used in the homogenised phases. Any ho-

mogenised phase is present at any point of the medium, more precisely it is charac-
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terised at this point by a presence probability, which is equal to its volume fraction

Π[16]. For instance, emission by the absorbing phase a occurs at any point M and is

characterised by Πa κν a n
2
ν a I

◦
ν [Ta(r)], where Πa accounts for the presence probability

of a.

In a non Beerian homogenised phase, the radiation intensity can be determined

at any point M(r) in a given direction u1, but it does not allow its variation between

two close points M(r) and M ′(r + dr) to be determined[3, 16]. It is a memory effect

of the structure of this medium which is non homogeneous at small scale. Radiation

transfer is then directly based on the previous radiative statistical functions.

Within the popular assumption diffuse reflection and transmission laws at the in-

terfaces, the only knowledge of the global intensity field at any point M of the

homogenised phase is sufficient for determining the scattered intensity field at M , by

using the corresponding phase function. This phase function is then simply deter-

mined in the real medium by summing all the contributions associated with the local

reflection and transmission laws. But, in the present case, difficulties of modeling are

due to the non diffuse interfacial reflection and transmission laws. In these conditions,

as developed in the following, the phase function cannot be determined as simply as

previously. In fact, different phase functions are associated with the successive sets

of scattering events, corresponding to reflection and transmission phenomena within

the real medium. The knowledge of the spatial distribution function of the incidence

directions at any point of the real medium is then necessary for any set of scattering

events.

In parallel, the knowledge of the spatial distribution function of scattered directions

corresponding to a type of scattering events at any point of the real medium, is

also necessary for determining the different extinction cumulative distribution func-

tions and consequently scattering cumulative probabilities also associated with these

events as source terms.

The different types of extinction cumulative distribution functions, scattering

and absorption cumulative probabilities and finally phase functions are defined and

expressed in this Section.
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2.1.1. Extinction

The extinction cumulative distribution function Gext ν a(u, s
′− s) associated with

isotropic volume emission by a is, in the homogenised phase, the probability that a

radiation emitted in the direction u at the point M(r), of abscissa s along the axis

of direction u, is absorbed before a point M ′(r′), of abscissa s′, within the phase

a or internally or externally scattered at an interface with the transparent phase

between s and s′. Gext ν a(u, s
′ − s) is also equal to 1 − τν a(u, s′ − s), where τν a is

the transmissivity from s to s′ in the direction u.

As extinction by absorption within the real Beerian medium a and extinction by

interfacial scattering are statistically independent, the transmissivity τν a(u, s
′ − s)

is the product of the partial transmissivities associated with these two phenomena

and Gext ν a(u, s
′ − s) also writes

Gext ν a(u, s
′ − s) = 1 − exp[−κν a(s′ − s)] [1 − P t

sc a(u, s
′ − s)], (1)

where P t
sc a is the scattering cumulative probability associated with an assumed trans-

parent phase a. As extinction by scattering is independent of the radiation frequency,

P t
sc a simply is a geometrical quantity. Note that P t

sc a can also be considered as the

extinction cumulative distribution function Gt
ext a of the assumed transparent phase

a. Finally, P t
sc a is the cumulative distribution function of the lengths s′ − s in the

direction u between any volume point M(s) of a and the corresponding interfacial

impact point E(s0) which writes

P t
sc a(u, s

′−s) =
1

ΠaV

1

δΩ(u)

∫ s′−s

0

∫
ΠaV

∫
δΩ(u)

δ

(
v−[s0(u′, r)−s(u′, r)]

)
dΩ(u′) dr dv,

(2)

where the summations are carried out, within the assumed real transparent phase a,

over all directions u′ of an elementary solid angle δΩ(u) around the direction u, over

all points M(r) of the volume ΠaV of the phase a and over the distance v = s”− s
between P (r”), current point of the axis u′ and M(r), the source point over this

axis; s(u′, r), and s0(u′, r) are the abscissas of the source and extinction points M

and E, respectively; δ is the Dirac distribution.
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Figure 1: First successive sets of internal and external scattering events.

Different extinction cumulative distribution functions of the type G
S (n)
ext ν charac-

terising the phases a and b are also associated with the source terms constituted by

the successive sets of internal and external scattering events (see Fig.1); The super-

script S means that these quantities are related to interfacial sources. The interfacial

source points of the nth set of scattering events belong to the part Σ(n) of the in-

terface area Σ which has been illuminated by the rays of the previous (n − 1)th set

of scattering events. More precisely, these source points N(rn) of the surface Σ(n)

are characterised in the real medium by the spatial distribution function f
S (n)
u (rn).

A specific extinction cumulative distribution function G
S (n)
ext ν is then associated with

this nth set of scattering source terms in the direction u within a homogenised phase.

The distribution function f
S (n)
u (rn) depends on all the history of the n− 1 previous

sets of scattering events, i.e. on the successive phenomena of internal and external

scattering and partial absorption of a radiation initially emitted within the phase a.

It is determined with a Monte Carlo statistical approach, the principles of which are

defined in Sec.2.1.4.

A given spatial distribution function of the scattered direction u and the correspond-

ing extinction cumulative distribution function are noted f
S (n)
u acHde(r) and G

S (n)
ext ν acHde.

The symbolic notation acHde defines the history of this set, which is always issued

from isotropic emission within the phase a: i) c designates the propagation medium
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of the first set of scattering events: a in case of internal scattering within a, b in case

of external scattering from a to b; ii) The condensed symbol H represents successive

sets of internal and external scattering events; iii) d specifies the phase which is source

of the considered nth set of scattering events; iV) e defines the propagation phase of

this set. For instance, aabbaa corresponds to volume emission within a, followed by

internal scattering within a, external scattering towards b, internal scattering within

b, external scattering towards a, internal scattering within a where the ray is finally

extinguished by volume absorption or interfacial scattering.

In these conditions, G
S (n)
ext ν acHde is given by an expression similar to Eq.1 vs P

t S (n)
sc ν acHde,

total scattering cumulative probability in an assumed transparent phase, which writes

P
t S (n)
sc ν acHde(u, s

′ − s) = (3)

1

δΩe(u)

∫ s′−s

0

∫
Σ(n)/δV/u.ne(rn)>0

∫
δΩe(u)

f
S (n)
u′ acHde(rn) δ

(
v − [s0(u′, rn)− s(u′, rn)]

)
dΩe(u

′)drndv.

where the summations are carried out: i) Over the directions u′ of an elementary

solid angle δΩe(u) of the final medium e; ii) Over all the points M(rn) of abscissa

s(u′, rn) of Σ(n) such that u.ne(rn) > 0, where ne is the unit vector normal to Σ(n)

oriented towards the phase e; iii) Over the distance v = s” − s between the source

point M(s) and the current point P of the axis u′; s0(u, rn) is the abscissa of a

current extinction point E.

If a homogenised phase is Beerian, the previous model is drastically simplified[3].

Indeed, in this case the knowledge of the incidence intensity field at a point allows the

scattered intensity field at the same point to be directly determined. sWhatever the

interfacial reflection and transmission laws, a unique extinction cumulative distribu-

tion function Gext ν c(u, s
′ − s) characterises this phase. It is practically determined

by equations identical to Eqs.1 and 2, i.e. by using isotropic volume source points

as shown by Dauvois et al.[3].

2.1.2. Scattering and absorption

The absorption, internal scattering and external scattering cumulative probabil-

ities Pa ν a(u, s
′ − s), Psc ν aa(u, s′ − s) and Psc ν ab(u, s

′ − s) associated with isotropic
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volume emission by a are respectively, in the homogenised phase, the probabilities

that a radiation emitted in the direction u, at the point M(s) is absorbed within

the phase a, internally scattered or externally scattered at an interface with the

transparent phase, between s and s′. These quantities are linked by

Gext ν a = Pa ν a + Psc ν aa + Psc ν ab. (4)

The previous quantities do not account for scattering or absorption of radiation

belonging to the successive sets of scattering events.

The extinction cumulative distribution function G
S (n)
ext ν acHde associated with the nth

set of successive scattering events in the direction u within a homogenised phase

similarly is the sum of the corresponding internal and external scattering cumulative

probabilities P
S (n)
sc ν acHdee(u, s

′ − s) and P
S (n)
sc ν acHded(u, s

′ − s) and possibly absorption

cumulative probabilities P
S (n)
a ν acHde(u, s

′ − s), i.e.

G
S (n)
ext ν acHda(u, s

′−s) = P
S (n)
sc ν acHdaa(u, s

′−s) +P
S (n)
sc ν acHdab(u, s

′−s) +P
S (n)
a ν acHda(u, s

′−s);
(5)

G
S (n)
ext acHdb(u, s

′−s) = P
t S (n)
sc acHdb(u, s

′−s) = P
t S (n)
sc ν acHdba(u, s

′−s) + P
t S (n)
sc ν acHdbb(u, s

′−s).
(6)

The previous scattering and absorption cumulative probabilities are determined in

parallel with G
S (n)
ext ν acHde(u, s

′ − s) in the statistical approach of Sec.2.1.4. They

represent the probabilities that a radiation issued from the nth scattering source

term in the direction u, at the point M(s) of the homogenised phase e, is internally

or externally scattered at an interface with the other phase, or absorbed within the

phase a, between s and s′.

2.1.3. Phase functions

A specific phase function is associated in this Section with any type of previously

defined scattering cumulative probability.

For a Beerian homogenised phase, the knowledge of the intensity at a point M allows

the scattered intensity at the same point to be determined from the corresponding

phase function. Indeed, such a phase is homogeneous at all the considered spatial
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scales and the intensity brings a complete information for determining the evolution

of the radiation from M to an arbitrary close point M ′[3, 16].

The expression of the phase function associated with internal scattering within a

Beerian homogenised phase has been given in Ref.[8] for instance. The phase function

associated with external scattering from a, assumed Beerian homogenised phase, to

b writes

pBν ab(u1,u)
dΩb

4π
= (7)∫
ΠaV /u1.na≤0

τ ′′ν ab[u1,u,na(r,u1)] [−u1.na(r,u1)] dr dΩb∫ 4π

0

∫
ΠaV /u1.na≤0

τ ′′ν ab[u1,u′,na(r,u1)] [−u1.na(r,u1)] dr dΩ′b
.

where τ ′′ν ab[u1,u,na(r,u1)] is the bidirectional transmissivity, u1 and u the incidence

and scattering unit vectors and na the local normal unit vector oriented towards a

at a current interfacial point of the real medium.

On the contrary, for a non Beerian homogenised phase a with non diffuse in-

terfaces, the knowledge of the intensity at a point is not sufficient for determining

the scattered intensity at this point. The ”memory effect” within a non Beerian

homogenised phase has to be accounted for: The scattered intensity at a point M

depends on the spatial distribution of the initial source points and on possible ab-

sorption between the source points and M .

Two phase functions are associated with the extinction by scattering of the rays of

the nth set of scattering events and correspond to the scattering cumulative probabil-

ities P
S (n)
sc ν acHdee(u, s

′−s) and P
S (n)
sc ν acHded(u, s

′−s) previously defined: They are noted

p
S (n)
ν acHdee(u1,u) and p

S (n)
ν acHded(u1,u). These phase functions not only depend on the

reflection-transmision laws at the impact points Mn but also on f
S (n−1)
i u1

(rn−1), the

spatial distribution function of the initial source points Mn−1(rn−1). These points

belong to the part Σ(n−1) of the interface area within the considered porous medium

volume V which is illuminated by the (n − 2)th scattering events and are the ori-

gins of the different components of the radiation incident over the surface Σ(n) in

the direction u1. The function f
S (n−1)
i u1

(rn−1) is determined along an optically thick

distance δ(u1) along any considered direction u1.
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The two first phase functions p
S (0)
ν aa (u1,u) and p

S (0)
ν ab (u1,u) are associated with Psc ν aa(u1)

and Psc ν ab(u1) respectively which correspond to isotropic emission volume source

points r0, or the zeroth set of rays, within the non Beerian phase a (see Fig.1). The

corresponding spatial distribution function of the initial source points associated with

the incidence direction u1 is noted f
S (0)
i u1

(r0). Its determination requires a supple-

mentary assumption: The phase a is isothermal along any optically thick distance

δ(u1) in any incidence direction u1. Note that this assumption is only required for

the determination of the phase function. Emission of radiation can be modeled for

a non isothermal phase at any spatial scale. In these conditions, f
S (0)
i u1

(r0) writes

f
S (0)
i u1

(r0) =

exp

(
− κν a[s0(u1, r0)− s(u1, r0)]

)
∫

ΠaV
exp

(
− κν a[s0(u1, r0)− s(u1, r0)]

)
dr0

. (8)

where s(u1, r0) is the abscissa of the current volume isotropic emission source point

over the axis of direction u1 and s0(u1, r0) the abscissa of the corresponding im-

pact point N(u1, r0) through an assumed transparent phase a. The phase functions

p
S (1)
ν aa (u1,u) and p

S (2)
ν ab (u1,u) finally depend both on the bidirectional reflectivity

ρ′′aa ν [u1,u,na(u1, r0)] and transmissivity τ ′′ab ν [u1,u,na(u1, r0)], generally given by

the interfacial reflection-transmission laws, and on f
S (0)
i u1

(r0), i.e.

pS (0)
ν aa (u1,u)

dΩa

4π
=∫

ΠaV /u1.na≤0
f
S (0)
i u1

(r0) ρ′′ν aa[u1,u,na(u1, r0)] [−u1.na(u1, r0)] dr0 dΩa∫ 4π

0

∫
ΠaV /u1.na≤0

f
S (0)
i u1

(r0) ρ′′ν aa [u1,u′,na (u1, r0)] [−u1.na(u1, r0)] dr0 dΩ′a
(9)

where na is the normal unit vector at the current impact point N(u1, r0) oriented

towards the phase a,

p
S (0)
ν ab (u1,u)

dΩb

4π
=∫

ΠaV /u1.na≤0
f
S (0)
i u1

(r0) τ ′′ν ab[u1,u,na(r0,u1)] [−u1.na (r0,u1)] dr0 dΩb∫ 4π

0

∫
ΠaV /u1.na≤0

f
S (0)
i u1

(r0) τ ′′ν ab[u1,u′,na(r0,u1)] [−u1.na(r0,u1)] dr0 dΩ′b
.(10)
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The phase function given by Eq.10 is expressed in the medium b of refractive index

nν b. According with the notations of Fig.1, the phase functions p
S (2)
ν abb (u1,u) and

p
S (2)
ν aba(u1,u), the first ones corresponding to the transparent medium b, are given by

equations similar to Eqs.9-10, with the value of κν b being set to 0 in Eq.8.

More generally, the phase functions p
S (n)
ν acHdee(u1,u) and p

S (n)
ν acHded(u1,u), associated

with the nth set of interfacial scattering events, i.e with the scattering cumulative

probabilities P
S (n)
sc ν acHdee and P

S (n)
sc ν acHded, depend both on the reflection-transmission

laws on f
S (n−1)
i u1 acHde

(rn−1), the spatial distribution function of the initial source points

associated with the incidence directions u1. They write

p
S (n)
ν acHdee(u1,u)

dΩe

4π
= (11)∫

Σ(n−1) /u1.ne≤0
f
S (n−1)
i u1 acHde

(rn−1)ρ′′ν ee[u1,u,ne(u1, rn−1)] [−u1.ne(u1, rn−1)]drn−1 dΩe∫ 4π

0

∫
Σ(n−1) /u1.ne≤0

f
S (n−1)
i u1 acHde

(rn−1) ρ′′ν ee[u1,u′,ne(u1, rn−1)] [−u1.ne(u1, rn−1)] drn−1 dΩ′e
.

p
S (n)
ν acHded(u1,u)

dΩd

4π
= (12)∫

Σ(n−1) /u1.ne≤0
f
S (n−1)
i u1 acHde

(rn−1) τ ′′ν ed[u1,u,ne(u1, rn−1)] [−u1.ne(rn−1,u1)] drn−1 dΩd∫ 4π

0

∫
Σ(n−1) /u1.ne≤0

f
S (n−1)
i u1 acHed

(rn−1) τ ′′ν ed[u1,u′,ne(u1, rn−1)] [−u1.ne(rn−1,u1)] drn−1 dΩ′d
.

The principle of determination of f
S (n−1)
i u1 acHde

(rn−1), the spatial distribution function

of the initial source points associated with the incidence direction u1 is exposed in

Sec.2.1.4.

2.1.4. Principles of implementation

The radiative statistical functions of extinction, absorption and scattering and

the phase functions are determined by a statistical Monte Carlo method at the limit

of large numbers of generated power bundles. This approach is similar to the ones

in use in Refs.[5, 8, 9, 14, 15, 17, 29]. The originality of the present work is due to

the fact that a homogenised phase is non Beerian and characterised by non diffuse

interfaces, more precisely interfaces which obey general interfacial laws for reflection

and transmission. As developed in this Section, extinction, scattering and absorp-
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tion phenomena can then not be studied by using an intensity field, which implicitly

globalises successive scattering events. Extinction, scattering and absorption have to

be separately studied for every type of source term, associated with initial volume

emission and successive interfacial scattering events.

The different phenomena associated with emission source terms are classically mod-

eled as in the previous cited references: As the medium is assumed statistically

homogeneous, all the source points are considered as isotropic and equivalent.

The successive sets of scattering events (n) are determined by following emission and

scattering of generated power bundles. In these conditions, emission and scattering

source terms are correlated to transmission and extinction by absorption or scatter-

ing. But it is classically assumed[16] that extinction by scattering is not correlated

with the associated scattering source terms: Scattering source terms correspond-

ing to the nth set of scattering events are represented by independently generated

bundles, by following the scattering law characterised by a specific phase function,

defined in Sec.2.1.3.

A huge number of emitted power bundles are first shot in random directions u1

from random volume points M0(r0) of a shooting zone of the real absorbing phase a.

For the sake of clarity, only the first successive scattering events will be followed for

illustrating the method: These chosen events are represented by bold lines in Fig.1.

The nature of extinction of the emitted power bundles is determined by sampling of

random numbers which allow Eq.4 to be verified: A part of the emitted power bundles

characterised by P
S (0)
a ν a is absorbed within the phase, a second part characterised by

P
S (0)
sc ν aa is internally scattered, the third one characterised by P

S (0)
sc ν ab is externally

scattered. The part Σ∗ (0) of the interface area which is impacted by the bundles

issued in the initial direction u from the set of points M0(r0) has been determined:

The corresponding current points are M∗
0 (r∗0). The set of points M∗

0 (r∗0) of Σ∗ (0) are

now source points for both internal and external scattering. The associated phase

functions p
S (0)
ν aa and p

S (0)
ν ab are determined from Eqs.9 and 10.

By commodity, M∗
0 (r∗0) and Σ∗ (0) are now called Mn(rn) and Σ(n) considered as

sources of the nth set of scattering events. In the case of internal scattering, with the

notations of Fig.1, M∗
0 (r∗0) and Σ∗ (0) now become M1(r1) and Σ(1) and in the case of
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external scattering, M2(r2) and Σ(2). These last source points are characterised by a

spatial scattering distribution function f
S (2)
u ab (r2) in the direction u, which depends

on W
(2)
u ab(r2), the interfacial density over Σ(2) of the bundles which are externally

scattered in an elementary solid angle dΩ around u, i.e.

f
S (2)
u ab (r2) =

W
(2)
u ab(r2)∫

Σ
(1)
u /V/u.nb(r′2)≥0

W
(2)
u ab(r

′
2) dr′2

, (13)

where nb is the normal unit vector at a current point M2(r2) of Σ(2), oriented towards

the phase b.

The extinction cumulative distribution functionG
S (2)
ext ν ab within the phase b associated

with the considered external scattering source term is then determined according to

Eq.3 by using f
S (2)
u ab (r2) as weight function and an equation similar to Eq.1. By using

a new set of random number samplings which allow Eqs.5 and 6 to be verified, the

extinction of the externally scattered power bundles is defined as previously: A part

of these bundles characterised by P
t S (2)
sc abb is internally scattered within the phase b,

the second part characterised by P
t S (2)
sc aba is externally scattered towards the phase

a. Σ∗ (2) is the part of the interfaces covered by the corresponding extinction points

in an elementary solid angle dΩb1 around u1: It is characterised by the interfacial

density W
(2)
i u1

(r∗2) which is obtained by the Monte Carlo method. It allows f
S (2)
i u1 ab

(r∗2),

the spatial distribution function over Σ∗ (2) of the impact points associated with the

incidence direction u1 to be determined by

f
S (2)
i u1 ab

(r∗2) =
W

(2)
i u1 ab

(r∗2)∫
Σ
∗ (2)
u1

/V/u1.nb(r
′ ∗
2 )≤0

W
(2)
i u1 ab

(r
′ ∗
2 ) dr

′ ∗
2

, (14)

where nb is the normal unit vector at a point M∗
2 (r∗2) of Σ∗ (2), oriented towards the

phase b. f
S (2)
i u1 ab

(r∗2) allows the phase functions p
S (2)
ν abb and p

S (2)
ν aba to be determined from

Eqs.11,12.

The previous procedure is iterated for the successive sets of scattering events. As

previously, M∗
2 (r∗2) and Σ∗ (2) become M3(r3) and Σ(3) sources of the internal scat-

tering events of the type abb and M4(r4) and Σ(4) sources of the external scattering
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events of the type aba, etc.

2.2. Coupled Generalised Radiative Transfer Equations

Radiative transfer through non Beerian homogenised phases is modeled by cou-

pled integral Generalised Radiative Transfer Equations (GRTEs), which account for

the memory effect characterising these media. The only initial source is, in the

present case, the volume emission by a. The first scattering source terms are asso-

ciated with this initial volume emission: S
S (1)
sc ν aa corresponds to internal scattering

within a and S
S (2)
sc ν ab to external scattering from a to b and write

c = a, b SS (i)
sc ν ac(u, s

′) = (15)

i = 1, 2

∫
4π

∫ s′1

s1w

dP
S (i)
sc ν ac

ds′1
(u1, s

′
1 − s1)

p
S (i)
ν ac (u1,u)

4π
Πaκν an

2
ν aI

◦
ν a[Ta(s1)] ds1 dΩ1a.

A current scattering source term, associated with a set acHde is expressed from the

recurrent equation

S
S (n)
sc ν acHde(u, s

′) =

∫
4π

∫ s′1

s1w

dP
S (n)
sc ν acHde

ds′1
(u1, s

′
1−s1)

p
S (n)
ν acHde(u1,u, )

4π
S
S (n−1)
sc ν cHd(u1, s1) ds1 dΩ1e,

(16)

where S
S (n−1)
sc ν acHd is the source term preceding S

S (n)
sc ν acHde in the set acHde.

The Generalised Radiative Transfer Equation (GRTE) of the phase a writes, in

integral formulation, by generalising the expression of Ref.[3]

Iν a(u, s
′) = Iν a(u, sw) [1 − GSw

ext ν a(u, s
′ − sw)]

+

∫ s′

sw

(
κν a Πa n

2
ν a I

◦
ν [Ta(s)] [1−Gext ν a(u, s

′ − s)] (17)

+
∑
acHda

SSsc ν acHda(u, s) [1 − GS
ext ν acHda(u, s

′ − s)]
)

ds,

where Iν a is the intensity within the medium a of refractive index nν a defined per

unit volume of the whole porous medium: Iν a is then proportional to the volume

fraction Πa and to nν a; G
Sw
ext ν a, Gext ν a and GS

ext ν acHda are the extinction cumulative

distribution functions associated with the different types of source terms: Intensity
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distribution Iν a(u, sw) at the porous medium boundary point of abscissa sw, volume

isotropic emission by a, set of interfacial scattering source terms within or towards

a, including S
S (1)
sc ν aa(u, s).

The GRTE of the phase b is similar to Eq.17 without emission term

Iν b(u, s
′) = Iν b(u, sw) [1 − P t Sw

sc ν b(u, s
′ − sw)]

+

∫ s′

sw

( ∑
acHdb

SSsc ν acHdb(u, s) [1 − P t S
sc ν acHdb(u, s

′ − s)]
)

ds (18)

As b is a transparent medium, any extinction cumulative distribution function GS
ext

of the previous equation simply is a scattering cumulative probability P t S
sc .

When b is a Beerian homogenised phase, Equation 18 simply becomes

Iν b(u, s
′) = Iν b(u, sw) exp

(
− [σν ba(u) + σν bb(u)](s′ − sw)

)
+

∫ s′

sw

[

∫ 4π

0

σν bb(u1)
pν bb(u1,u)

4π
Iν b(u1, s)dΩb1 +

∫ 4π

0

σν ab(u1)
pν ab(u1,u)

4π
Iν a(u1, s)dΩa1]

x exp

(
− [σν ba(u) + σν bb(u)](s′ − s)

)
ds, (19)

where σν cd(u) and pν cd(u) are the scattering coefficient and phase function associated

with global scattering from the phase c (a or b) to the phase d (a or b). Indeed,

for this Beerian homogenised phase the contributions of all the successive scattering

events have merged in the local intensities Iν a and Iν b. Note also that in Eq.19, the

emission source term is implicitly accounted for in the expression of Iν a.

2.3. Coupled RTEs

When a homogenised phase is non Beerian, it is only characterised in the general

case by a Generalised Radiative Transfer Equation. A classical Radiative Transfer

Equation (RTE) nevertheless has a physical meaning when the validity conditions of

a radiative Fourier’s law are fulfilled[14, 16].

Introducing the smallest distance δ along which the medium is optically thick, two

sufficient validity conditions have been defined in Ref.[30] for a unique propagation

phase: i) The Fourier’s model is only valid in zones at a distance larger than δ
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from the boundaries of the whole porous medium; ii) The temperature T must be

practically uniform over δ. An accurate quantitative criterion has been given in the

previous reference

| 1

T

∂T

∂x
|< η κeff (ω, g), (20)

where κeff is an effective absorption coefficient accounting for multiple scattering

events (ω and g are the albedo and the anisotropy factor, respectively) and η a coef-

ficient depending on g and ω. As κeff is proportional to the absorption coefficient of

the phase, the condition is not fulfilled for a transparent phase. In the present case

of a medium with transparent and semi transparent phases, a model based on two

coupled RTEs will be developed and its validity discussed by comparison with the

results of the two coupled reference GRTEs. In these conditions, the homogenised

phases become Beerian, as physically discussed in Ref.[3].The temperature is only

defined for the absorbing phase, from the radiation point of view.

The previous assumptions are assumed valid for the two phases. Consequently:

- Radiation transfer is locally ruled by the intensities Iν a and Iν b. The modeling is

then simplified as the intensities gather all the types of incident scattered radiations

at a given point and in a given direction;

- A summation over δ of the radiative statistical functions is considered as a sum-

mation over an infinite distance.

- All the emission and scattering source terms are assumed uniform along the dis-

tance δ within a or b respectively.

- The intensities Iν a(u) and Iν b(u) within a and b also are uniform along the distance

δ and linked to the global source terms SBν a(u) and SBν b(u) given by

SBν a(u) = Πa κν a n
2
ν a I

◦
ν (Ta) + SBsc ν aa(u) + SBsc ν ba(u);

SBν b(u) = SBsc ν ab(u) + SBsc ν bb(u). (21)

The source terms involved in the previous equations gather all the contributions of

the successive scattering events of given types.

Under these assumptions, the RTEs for the phases a and b can be expressed vs

the intensities Iν a and Iν b. As the homogenised phases are assumed Beerian, there
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is no difference between the statistical quantities associated with the volume sources

and all the interfacial sources of the same types[3]. As discussed in this last reference,

the best accuracy is obtained by determining Gext ν c associated with isotropic volume

source points. Far from the boundaries of the porous medium, Equations 17,18 are

in these conditions replaced by simple RTEs, i.e.

c = a, b Iν c(u) = SBν c(u)

∫ s

s−δ
[1−Gext ν c(u, v)]dv (22)

= SBν c(u)

∫ ∞
0

[1−Gext ν c(u, v)]dv = SBν c(u) /Bν c(u)

where Bν a(u) and Bν b(u) are generalised extinction coefficients at equilibrium de-

fined by

Bν a(u) =

(∫ ∞
0

[1−Gext ν a(u, v)]dv

)−1

, Bν b(u) =

(∫ ∞
0

[1− Psc ν b(u, v)]

)−1

.

(23)

The variations of the intensities and source terms are now accounted for at a

scale s′ larger than δ: The source terms do not any more compensate the extinction

terms −Bν c(u, s
′) Iν c(u).

Under the assumptions of this Section, the internal and external scattering source

terms Ssc ν aa(u, s
′), Ssc ν ab(u, s

′), Ssc ν ba(u, s
′) and Ssc ν bb(u, s

′) are given, for c=a,b

and d=a,b, by

Ssc ν cd(u, s
′) =

∫ 4π

0

∫ s′1

−∞
Bν c(u1) Iν c(u1, s1)

dPsc ν cd
ds′

(u1, s
′
1−s1)

pν cd(u1,u)

4π
ds1 dΩ1c,

(24)

in which the phase functions pν cd are independent of the incidence direction distribution[3].

Note that, in Eq.24, s′ and s′1 respectively are the abscissas of the same point M ′ in

the direction u and in the current direction u1. Equation 24 then becomes

Ssc ν cd(u, s
′) =

∫ 4π

0

Σν cd(u1) Iν c(u1, s
′
1)
pν cd(u1,u)

4π
dΩ1c, (25)
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where Σν cd(u1), equal to Psc ν cd(u1,∞)Bν c(u1), is the Beerian scattering coefficient

associated with scattering from c towards d.

The spatial and directional variations of the intensities at these large scales are

then ruled by the RTEs of phases a and b, which write

dIν a
ds′

(u, s′) +Bν a(u) Iν a(u, s
′) = Πaκν an

2
ν aI

◦
ν a[Ta(s

′)] +Ssc ν aa(u, s
′) + Ssc ν ba(u, s

′).

(26)
dIν b
ds′

(u, s′) +Bν b(u) Iν b(u,s
′) = Ssc ν ab(u, s

′) + Ssc ν bb(u, s
′). (27)

Due to the equilibrium properties of the medium, it is shown in Appendix A (Eqs.A.9

and A.11) that

Σν dc(−u) = Σν dc(u). (28)

and that Equation 25, the result of which is expressed in medium d, simply becomes

(see Eqs. A.6, A.10)

Ssc ν cd(u, s
′) =

(
n2
ν d Πd

n2
ν c Πc

)
Σν dc(u)

∫ 4π

0

Iν c(u1, s
′
1)
pν dc(−u,−u1)

4π
dΩ1c(−u1). (29)

Another consequence is that, in ITE conditions, the radiative power globally scat-

tered from a toward b in direction u is equal to the one scattered from b toward a

in direction −u, i.e.

S◦sc ν cd(u, s
′) = S◦sc ν dc(−u, s′), (30)

which simply leads to

n2
ν a Πa Σν a(u) = n2

ν b Πb Σν b(−u). (31)

The previous equality is valid for external scattering and internal scattering (case
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c=d). Finally, the two coupled RTE’s related to a and b also write

dIν a
ds′

(u, s′) + Bν a(u) Iν a(u, s
′) = κν a Πa n

2
ν a I

◦
ν [Ta(s

′)]

+ Σν aa(u)

∫ 4π

0

Iν a(u1, s
′
1)
pν aa(−u,−u1)

4π
dΩ1a(−u1)

+

(
n2
ν a Πa

n2
ν b Πb

)
Σν ab(u)

∫ 4π

0

Iν b(u1, s
′
1)
pν ab(−u,−u1)

4π
dΩ1b(−u1),(32)

dIν b
ds′

(u, s′) + Bν b(u) Iν b(u,s
′) = Σν bb(u)

∫ 4π

0

Iν b(u1, s
′
1)
pν bb(−u,−u1)

4π
dΩ1b(−u1)

+

(
n2
ν b Πb

n2
ν a Πa

)
Σν ba(u)

∫ 4π

0

Iν a(u1, s
′
1)
pν ba(−u,−u1)

4π
dΩ1a(−u1). (33)

In ITE conditions, these equations simply degenerate, by using the normalisation

equation of the phase functions, into

Bν a(u) = κν a + Σν aa(u) + Σν ab(u); Bν b(u) = Σν ba(u) + Σν bb(u), (34)

equations which express the energy conservation between extinction and source

terms.

2.4. Radiative conductivity tensors

The aim of this study is to determine PR
a , the radiative power in the absorbing

phase a per unit volume of the whole porous medium. Note that PR
b , the corre-

sponding quantity in phase b, is zero as this phase is transparent. By using the

previous coupled GRTEs or coupled RTEs, PR
a and PR

b are directly obtained from

the knowledge of the intensity fields Iν a and Iν b within the two phases. But, in the

present Section, the Fourier’s model, when it is valid, is limited to the knowledge of

the radiative fluxes within the phases a and b, more precisely to the knowledge of

the conductivity tensors of a and b.

In terms of fluxes, the radiative balance of a volume element of a phase c, which

leads to the determination of PR
c , not only involves the fluxes through boundaries
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belonging to the considered phase, characterised by the Fourier’s laws, but also the

exchanged fluxes between the phase c and the other phase, through other boundaries.

These exchanged fluxes are not zero as the intensities of the two phases in vacuum

differ.

This study can only be achieved for a defined system with defined boundary con-

ditions. It will be done in Section 4.2 for a felt of fibres. The present Section is

limited to the determination of the radiative fluxes following a Fourier’s law within

the phases a and b.

The two coupled RTEs are solved by a perturbation technique which generalises

the method in use in Ref.[14], in which more details are given. The perturbation pa-

rameters are ζa = 1/[Bν a(u) δ] and ζb = 1/[Bν b(u) δ], where δ is the smallest spatial

scale for which the two homogenised phases are optically thick. Non dimensional

Equations 26 and 27 then write, by using s
′+ = s′/δ

ζa
dIν a
ds′+

(u, s
′+)+Iν a(u, s

′+) =
κν a

Bν a(u)
Πa n

2
ν aI

◦
ν [Ta(s

′+)]+
[Ssc ν aa(u, s

′+) + Ssc ν ba(u, s
′+)]

Bν a(u)
,

(35)

ζb
dIν b
ds′+

(u, s
′+) + Iν b(u, s

′+) =
[Ssc ν ab(u, s

′+) + Ssc ν bb(u, s
′+)]

Bν b(u)
. (36)

The intensities Iν a and Iν b write, in the perturbation method,

c = a, b Iν c = I(0)
ν c + I(1)

ν c , (37)

where I
(0)
ν c and I

(1)
ν c are the solutions at the perturbation orders 0 and 1: I

(0)
ν c is the

intensity in conditions of Local Thermal Equilibrium of radiation, I
(1)
ν c its perturba-

tion due to the transport terms of Eqs.35 and 36 (see for instance Refs.[14, 31]).

In this particular case of a medium with a transparent phase and a semi transpar-

ent one, I
(0)
ν c is equal to the equilibrium intensity Πc n

2
ν c I

◦
ν [Ta(s

′)], which, due to its

isotropy, does not contribute to the radiative flux through the phase c. In these
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conditions, the flux through a phase c (a or b) writes

c = a, b qRc (s′) =

∫ ∞
0

∫ 2π

0

∫ π

0

I(1)
ν c (u, s′) u(θ, φ) dθ dφ dν. (38)

As shown in Ref.[14], the emission term in Eq.35 is of order 0. The transport terms

involving temperature gradients in Eqs.35 and 36 are proportional to the pertur-

bation parameters. In the determination of the solutions of order 1 of the coupled

RTEs, dIν a/ds
′

and dIν b/ds
′

are taken at order 0; On the contrary, the extinc-

tion scattering source terms are taken at order 1. I
(1)
ν a and I

(1)
ν b are then iteratively

obtained by solving the coupled integral equations

c = a, b I(1) n+1
ν c = Lc(I(1) n

ν a , I
(1) n
ν b ), (39)

where n is the iteration step and the quantities Lc(X, Y ) are functionals defined, for

c = a, b, by

Lc(X, Y ) = − 1

Bν c(u)

(
n2
ν c

∂I◦ν (Ta)

∂Ta
ui

∂Ta
∂x′i

+ Ssc ν ca(X, Y ) +Ssc ν cb(X, Y )

)
. (40)

In Eq.40, the derivation vs s′ has been replaced in cartesian tensorial notations by the

operator ui ∂/∂x
′
i. It appears that, after convergence, I

(1)
ν a and I

(1)
ν b and consequently

from Eq.38 the fluxes within a and b are proportional to −ui ∂Ta/∂x′i, i.e. are given

by radiative Fourier’s laws

c = a, b qRc i = − kRc i j
∂Ta
∂x′j

, (41)

valid if the precise conditions of Gomart and Taine [30] discussed in Sec.2.3 are

fulfilled.

3. Characterisation of a felt of fibres

The material of interest is a felt of absorbing but non scattering fibres made of

a refractory ceramic material such as alumina or zirconia. For this study, the cal-

culations are performed over a representative computer-generated virtual fibre felt
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arrangement. More precisely, the phase a is made of overlapping fibres, cylinders of

diameter d and length L, equal to 100 d, and the transparent phase b of refractive

index nb occupies the void space. The centers of the cylinders have random locations,

the unit vectors of their axes uC(θC , φC) are characterised by random values of φC

and a Gaussian distribution of θC centered in the plane normal to the z axis (see

Fig.2). Total specular reflection conditions are imposed at boundaries parallel to the

z axis (see Fig.2): The medium is then infinite along the x and y axes.

The fibres of refractive index na and of absorption coefficient κa have smooth surfaces

and are assumed gray. Due to the large value of their refractive index, the fibres are

characterised by strongly anisotropic reflection and transmission laws and an impor-

tant total reflection phenomenon occurs within these fibres. The simple model of

diffuse interfacial laws cannot be applied in these conditions. The fibre bidirectional

reflectivity and transmissivity are in the following defined by the Fresnel’s laws for

unpolarised radiation, only depending on na and nb as χa the imaginary part of the

complex optical index of the fibers is assumed small compared to na and nb. A

typical value of κa d for the considered fibres is 0.3, which typically corresponds to

d = 20µm.

The real interfacial radiative properties depend on the fibre rugosity compared

to the range of radiation wavelength: In many cases they present a diffuse part and

a specular one. For the sake of simplicity, the Fresnel?s reflection and transmission

laws corresponding to smooth interfaces have been considered in Sec. 3.
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Figure 2: Left: Generated fibrous medium (Πb = 0.75); Right: Cross section BB normal to the z
axis.

3.1. Numerical implementation

The radiative statistical functions defined in Sec.2.1, i.e. Gext a(u, s
′−s), Psc aa(u, s′−

s), Psc ab(u, s
′ − s), paa(u1,u), pab(u1,u), and G

S (n)
ext c (u, s′ − s), P S (n)

sc cd (u, s′ − s) and

p
S (n)
cd (u1,u), are directly determined by a Monte Carlo method from morphology

data and the Fresnel’s laws. A huge number of power bundles, which represent the

emission within the volume of the cylindrical fibres, are shot and followed up to

their absorption within a fibre (phase a), after possible multiple internal or external

scattering events. Both absorption and scattering events are stochastically modeled.

The calculations are carried out in the following manner:

i) Many numerical fibrous media have been generated. For any generated medium,

a shooting zone representative of this medium, which is statistically homogeneous at

large scale but strongly anisotropic at any scale, has been defined. A huge number

of rays have then been shot from random volume points of the phase of such a zone.

In the case presented in Fig.2, 40 numerical media have been generated, and 1010

rays have been shot from any associated shooting zone, cube of edge equal to 30d.

ii) For any medium a calculation zone ( extinction zone), including the shooting one,

is chosen such that at its boundaries all Gext functions are larger than 0.99. The cal-

culation zone associated with the case of Fig.2 is a parallelepiped of length L = 100 d

along z and of squared cross section of edge D = 100 d along x and y.
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A shot t is characterised by an emission point Mt, of coordinates defined from three

random numbers within a randomly chosen cylinder of the shooting zone. The ray

direction u(θ, φ) is defined by two other random numbers associated with µ = cosθ

and φ. More precisely, the directional space is divided in 41 equal intervals along µ

varying in [−1, 1] and 101 intervals along φ varying in [0, 2π].

Due to the symmetry of the medium, all the results only depend on µ. They are

averaged over φ, which accelerates the convergence: Indeed, radiative transfer only

occurs along z. Moreover, due to the medium planar symmetry, the results will be

presented in the variation range [0, 1] of µ for the extinction cumulative distribu-

tion functions and scattering cumulative probabilities and of µ1 and µ for the phase

functions, as detailed in Sec.3.2.

Figure 3: Example of radiative paths.

As detailed in Sec.2.1.4, Gext a(u), Psc aa(u), Psc ab(u), paa(u1,u) and pab(u1,u)

are first determined by following the set, called 0, of all rays emitted by fibres a in

the direction u (see Fig.3). The calculation associated with a given ray is stopped

in case of absorption. In case of external scattering (path 2 of Fig.3) Psc ab(u) and

pSab(u1,u) are incremented and calculations are now carried out in order to increment

G
S (2)
ext ab and possibly P

S (2)
sc aba and p

S (2)
sc aba, or P

S (2)
sc abb and p

S (2)
sc abb, etc.

The relative standard deviations on the quantities associated with initial emis-
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sion by the phase a, i.e. Gext a(u), Pa a(u), Psc a(u), P S
sc aa(u), P S

sc ab(u), pSaa(u1,u),

pSab(u1,u) are lower than 1%. They have been obtained from 109 realisations of

extinction. The maximum standard deviation of the study obtained for 1010 realisa-

tions is about 8%: It corresponds to functions associated with rays issued from the

third interfacial scattering, the most rare phenomena, i.e. G
S (3)
ext aba, P

S (3)
a aba , P

S (3)
sc aba).

3.2. Results

In order to remain consistent with the properties of common high temperature

insulation felts, the fibres a of diameter d are considered as weakly absorbing and

characterised by an absorption optical thickness κa d = 0.3 and a ratio of refractive

indices na/nb = 2. In these conditions fibres trap the radiation.
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Figure 4: Extinction cumulative distribution functions of the transparent phase b for different

values of µ = cos θ: i) Gext b associated with isotropic volume source points; ii) G
S (2)
ext ab associated

with interfacial scattered rays (path 2 of Fig.3).

G
S (2)
ext ab, the first extinction cumulative distribution function associated with the

transparent phase b and corresponding to the path 2 of Fig.3, is compared in Fig.4

with Gext b associated with isotropic volume shots within b. As both results rigor-

ously follow an exponential law for any direction, the homogenised phase b is Beerian.

These results are similar to those pointed out in Ref.[3] in the case of a medium with
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opaque and transparent phases: For a Beerian homogenised phase, extinction cumu-

lative distribution functions issued from isotropic volume source points or from inter-

facial points are identical. In practice it is easier and more accurate to shoot rays from

random isotropic volume source points. Consequently Gext b(u, s
′ − s) is used in the

following. Extinction by b is then simply characterised by an extinction coefficient

β(u), obtained for instance at the optically thin limit: β(u) = dGext b

d(s′−s)
(u, s′ − s = 0).

As expected the extinction lengths within the homogenised phase b are maximum

in the preferential plane of orientation of the cylinders (µ = 0), and minimum in the

directions µ = −1 and µ = 1 normal to this plane (see Fig.2).
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Figure 5: Extinction cumulative distribution functions of phase a (fibres) for different values of

µ = cos θ. i) Gext a associated with isotropic volume emission points; ii) G
S (1)
ext aa; iii) G

S (3)
ext aaa; iv)

G
S (5)
ext aba (by using notations of Sec.2.1.1 and Fig.3.)

As shown in Fig.5, the extinction cumulative distribution functions associated

with isotropic volume emission within the fibres a and with successive interfacial

scattering source terms within a strongly differ and strongly differ from an exponen-

tial behaviour: The homogenised phase a is, in general, strongly non Beerian and

extinction and scattering coefficients have no more physical meaning. Consequently,

the complete original model introduced in Secs.2.1 and 2.2 has to be used.
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From a practical point of view, almost all the emitted power bundles are absorbed

after a few scattering events. The extinction cumulative distribution function asso-

ciated with the Beerian homogenised phase b is accurately determined. For the non

Beerian homogenised phase a, Gext a, G
S (1)
ext aa, G

S (3)
ext aaa, G

S (5)
ext aba and G

S (6)
ext abba are also

accurately determined. As only a few bundles are involved, the following extinction

cumulative distribution functions, defined in Sec.2.1.1, Gext acHaa and Gext acHab are

taken equal to G
S (3)
ext aaa and G

S (6)
ext abba, respectively.

In the core of the medium, generalised extinction and scattering coefficients at

equilibrium are defined for the absorbing phase a and the transparent phase b by

equations Eqs.23 and the following development. The transverse optical thicknesses

of a fiber associated with these quantities and with the absorption coefficient of the

phase a are compared in Fig.6.
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Figure 6: Optical thicknesses based on ◦: Generalised extinction coefficients (Bc d); M: Generalised
internal scattering coefficients (Σcc d); �: Generalised external scattering coefficients (Σcd d) and
�: Absorption coefficients (κa d = 0.3 and κb d = 0);
i)For the transparent phase b (c=b, d=a); ii) For the absorbing phase a (fibres) (c=a, d=b).

Extinction in the transparent phase b is mainly due to external scattering, but in

the absorbing phase a to internal scattering, due to the large ratio of the refractive

indices (na/nb = 2). Internal scattering in phase b is practically independent of
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µ, as the cylinders practically are orthogonal to the z axis: The local normal unit

vector distribution is then practically independent of µ. In phase a (fibres), as

na/nb = 2, the total reflection phenomenon (for µ < 0.86) explains the change in

slope of the generalised internal scattering coefficient and the weak value of the

generalised external scattering coefficient for | µ |< 0.86, as shown in Fig.6.b

For µ = −1 and µ = 1 the rays are mainly normal to the cylinders, the transmis-

sivity is maximal and decreases with the angle. When the critical angle is reached

(µcrit = cos[arcsin(1/2)] ≈ 0.86) the rays are mainly reflected and internal scattering

is the predominant mode of extinction. Absorption in the fibre volume is Beerian

and isotropic, i.e independent of µ (Fig.6.b). Finally, a large part of radiation prop-

agating in the transparent phase b is transmitted towards the phase a (fibres) and

then trapped by multiple reflections until absorption occurs. The fibres behave as

waveguides.

The phase functions a priori depend on the incidence direction u1(µ1, φ1) and the

scattering one u(µ, φ). Due to the statistical axisymmetry of the generated medium,

they are independent of φ1 and depend on µ1, µ and φ − φ1. But as the thermal

boundary conditions applied to the medium are also assumed axisymmetric, radiative

transfer only occurs along z and the practical phase functions defined in the following

only depend on µ1 and µ. Different phase functions are plotted in Fig.7.

For the Beerian transparent homogenised phase b, all phase functions associated

with internal scattering within b (upper left and right Figs.7) are identical, whatever

the type of source points (of volume or interfacial), as previously seen for a porous

medium with a transparent and an opaque phase[3]. It is also the case for all phase

functions associated with external scattering from b to a (lower left Fig.7). On

the contrary, for the non Beerian homogenised phase a (fibres), the phase functions

associated with internal and external scattering issued from different types of source

points clearly differ: An example of internal scattering cases is shown in middle

Figs.7.
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Figure 7: Phase functions. i) pb(µ1, µ), internal scattering within b (Beerian model, random volume
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As the medium statistically presents both a revolution symmetry axis z and a

plane of symmetry perpendicular to the z axis, it also presents a central symmetry.

For the directions parallel to the z axis (µ = −1 and µ = 1) the probability of inter-

nal scattering within the transparent phase b is maximum in the specular directions,

as shown in the upper left Fig.7. It is not the case for the probability of internal

scattering within the fibre phase a (see lower Figs.7): This fact is due to the total

reflection phenomenon, which occurs for µcrit = 0.86: Internal scattering is the only

extinction phenomenon beyond µcrit.

The phase function associated with internal scattering within the transparent phase b

presents, in addition to the central symmetry, two other symmetries associated with

diagonal lines in upper Figs.7, which correspond to the transformations: (µ1, µ) →
(µ, µ1) and (µ1, µ)→ (−µ, −µ1). Indeed, the generalised internal scattering coeffi-

cient of b is practically independent of µ1 , as shown in left Fig.6, as for a statisti-

cally isotropic medium: Consequently the reciprocity theorem (Eq.A.2) leads to the

equality between pbb(µ1, µ) and pbb(−µ,−µ1). On the other hand, as the generalised

internal scattering coefficient of a is strongly anisotropic, as shown in right Fig.6, the

previous symmetries do not appear in the phase function paa.

4. Application to radiative transfer

4.1. Transfer model based on GRTEs

The homogenised phase a of volume fraction Πa and refractive index na is the only

emitting and absorbing phase of the medium. It is characterised by an absorption

coefficient κa, assumed independent of radiation frequency. As multiple scattering

events within a and b occur, many paths possibly couple emission by a in the direction

u(µ, φ) from a volume element dVi of the porous medium around the point Mi(ri), to

absorption by a within a volume element dVj around the point Mj(rj). Consequently,

the global radiative power Peaa ij emitted by a in a direction u(µ, φ) from dVi and

absorbed by a within dVj cannot easily be given by an explicit expression. It will be

statistically calculated.

The homogenised phase a is discretised in isothermal volume elements Vi of which the

temperature is Ti. Pea i, the global power emitted by Vi, is equal to 4ΠaViκan
2
aσT

4
i .
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The fraction of this power emitted by dVi in the elementary solid angle dΩa(u)

writes[31, 32]

dPea i
Pea i

= (
dri
Vi

) (
dµ

2
) (

dφ

2π
) = fr(ri)dri fµ(µ)dµ fφ(φ)dφ, (42)

where fr(ri), fµ(µ) and fφ(φ) are the distribution functions characterising the emis-

sion law. The boundaries of the whole porous medium are discretised in isothermal

surface elements Sj of which the temperature is Tj. Pec j, the global power emitted

by Sj, assumed to be a black body, within the phase c (c=a, b) is equal to Sjn
2
cσT

4
j .

The fraction of this power emitted by dSj in the elementary solid angle dΩc(u)

writes[31, 32]

dPec j
Pec j

= (
drj
Sj

) (2µdµ) (
dφ

2π
) = fSr (rj)drj f

S
µ (µ)dµ fSφ (φ)dφ, (43)

where fSr (rj), f
S
µ (µ) and fSφ (φ) are the distribution functions characterising the sur-

face emission law. Emission is then classically modeled by a huge number of shots of

bundles t of equal power which, at the statistical limit of large numbers, follow the

previous emission statistical laws. Every shot is characterised by discrete values of

the quantities ruling emission (rit, µt, φt) obtained from samplings of corresponding

random numbers. The complete path associated with a shot t is defined by succes-

sive scattering events within the phases a and b up to absorption within a volume

Vj of the phase a or a boundary surface of all the power of the bundle. For a given

shot, these events are defined by following the classical forward Monte Carlo method,

in which successive extinction distances are also obtained from samplings of random

numbers r in the range [0, 1], which are values of the associated extinction cumulative

distribution functions: An extinction length is then given by: lext = G−1
ext(r). Note

that, as the medium is statistically homogeneous, the cumulative distribution func-

tion of rays issued from boundaries is identical tho this one associated with isotropic

volume emission.

Emission is then classically modeled by a huge number of shots of bundles t of

equal power which, at the statistical limit of large numbers, follow the previous emis-
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sion statistical laws. Every shot is characterised by discrete values of the quantities

ruling emission (rit, µt, φt) obtained from samplings of corresponding random num-

bers. The complete path associated with a shot t is defined by successive scattering

events within the phases a and b up to absorption within a volume Vj of the phase a

of all the power of the bundle. For a given shot, these events are defined by following

the classical forward Monte Carlo method, in which successive extinction distances

are also obtained from samplings of random numbers r in the range [0, 1], which are

values of the associated extinction cumulative distribution functions: An extinction

length is then given by: lext = G−1
ext(r).

For every extinction event, the type of extinction is determined, from Eqs. 5 or

6, by the sampling of another random number. In the case of internal or external

scattering within a or b the calculation is iterated. It is interrupted when extinction

is due to absorption: The bundle power is then attributed to the volume cell of the

extinction point. In these conditions, the global power emitted by a from Vi and

absorbed by a within Vj writes

Peaa ij = Pea i
Na
ij

Ni

, (44)

where Ni is the total number of bundles of same power shot from Vi and Na
ij the

number of these bundles finally absorbed by Vj.

The reciprocity theorem allows the global radiative power Peaa ji emitted by a within

dVj and absorbed by a within dVi to be expressed as

Peaa ji = Peaa ij
I◦(Ta j)

I◦(Ta i)
, (45)

and the thermal power limited to radiative transfer within the absorbing phase a per

unit volume of the whole porous medium then writes at the point Mi

PR
a i =

1

Vi

∑
j

Peaa ij
(
I◦(Ta j)

I◦(Ta i)
− 1

)
. (46)
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4.2. Transfer model based on Fourier’s law

The thermal problem defined in the introduction of Sec.3 is one dimensional along

z. The thermal power limited to radiative transfer within the absorbing phase a per

unit volume of the whole porous medium is simply obtained from the thermal balance

of the whole porous medium belonging to the slice between z and z + dz. The only

fluxes involved in this balance are the radiative conduction fluxes through the phases

a and b, at the boundaries z and z + dz. An elementary calculation leads to

P F R
z = P F R

a z =
∂

∂z
(kRa

∂Ta
∂z

) +
∂

∂z
(kRb

∂Ta
∂z

), (47)

where kRa and kRb are the conductivities of the medium along z, introduced in Sec.2.4,

which depend on the temperature Ta(z). As only the phase a emits and absorbs

radiation, this power per unit volume only occurs within the phase a. Finally, in this

global approach, it has not been necessary to express the power exchanged between

the two phases, as discussed in the introduction of Sec.2.4.

4.3. Results

The fibre felt is infinite in the x and y directions: Perfect specular reflection laws

are applied at the corresponding boundaries x = 0, y = 0, x = 100 d and y = 100 d.

The thickness D of the fibre felt also is 100 d in the z direction, divided in 400 cells

of equal sizes. It is bounded by two walls at which temperature or flux is imposed.

For an imposed linear temperature field within all the homogenised phase a, the

radiative power field within a per unit volume of the whole porous medium PR
a given

by the coupled GRTEs model (Eq.47) for different transverse optical thicknesses of

fibres (κa d = 0.3, 10 and 100) is plotted in Fig.8. It is also compared in the same

cases with the radiative power field given by the Fourier’s model. In the core of

the medium, the results associated with the Fourier’s law agree with the GRTE’s

ones only in the case of very high values of κad (lower Fig.8), i.e when a is an

opaque medium. According to the Gomart’s criterion (Eq.20), the Fourier’s model

is not valid when a is semi transparent. When a becomes opaque, this medium can

be represented by an effective medium occupying the volume of the phase b,which

becomes semi transparent, as commonly done (see Ref.[16] for instance) and the
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Fourier’s law can be applied. Moreover, as expected the Fourier’s law is never valid

near the walls, even for high values of κad, in particular near the hot wall.
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Figure 8: Dimensionless radiative power field for an imposed linear temperature field in the fibre
phase; Two boundary black walls at Ta(0) = 2000K and Ta(D) = 300K: i) κad = 0.3; ii) κad = 10;
iii) κad = 100;�: coupled GRTEs model, −: Fourier’s model associated with coupled RTEs.

In the case of temperatures imposed at the two boundaries z = 0 and z = D of the

porous medium (Ta(0) = T0 and Ta(D) = T1), the temperature field within the phase
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a is iteratively determined in radiative steady state conditions, i.e. by solving PR
a i = 0

for the Nc cells i = 1, ..., Nc with these boundary conditions. The results are shown

for the realistic case κa d = 0.3 in Fig.9, where the temperature field issued from the

coupled GRTEs is compared with the one issued from the Fourier’s model associated

with an opaque phase a. Contrary to the previous case, very important errors occur

with the Fourier’s model near the cold wall, where the logarithmic derivative of the

temperature is the most important, which is consistent with the Gomart’s criterion

of validity of the Fourier’s law given by Eq.20. On the other hand, the temperature

jump at the boundaries, well predicted by the GRTE’s model, is typical of a purely

radiative problem (in void for instance). The conductive Fourier’s model imposes a

non physical continuity of the temperature field in particular at the cold wall.

The Fourier’s law overestimates the temperature gradient in the medium. In these

conditions, the critical mechanical strength of such a material is underestimated. An

accurate computation of the radiative transfer by the coupled GRTE’s permits to

improve the design.

In the case of an imposed wall flux at z = 0 and an imposed wall temperature at

z = D (Fig.10), the maximum discrepancies between Fourier’s and GRTEs results

also are located near the cold wall due the same reason as previously. Moreover,

the global absolute discrepancy is more important, around 100K in the core of the

medium. The Fourier’s model overestimates the temperature values and consequently

underestimates the critical mechanical strength of the material.

38



0.0 0.2 0.4 0.6 0.8 1.0
z / D

300

700

1100

1500

1900

2300

2700
T

[K
]

i)

0.0 0.2 0.4 0.6 0.8 1.0
z / D

100

0

100

200

300

400

500

T
−

T
F

[K
]

ii)

Figure 9: i) Temperature field when the fibrous medium is bounded by two black walls; �: T (0) =
2500K, M: T (0) = 2000K, ◦: T (0) = 1000K; In all cases: T (D) = 300K.; (- - -) coupled GRTEs
model, (· · · ) Fourier’s model associated with coupled RTEs; ii) Residuals.
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Figure 10: i) Temperature field when a fibrous medium is submitted to an imposed flux at z = 0
and bounded by a black wall at z = D; �: ϕ(0) = 50 kWm−2, M: ϕ(0) = 30 kWm−2, ◦: ϕ(0) =
10 kWm−2; T (D) = 300K; (- - -): coupled GRTEs model, · · · :Fourier’s model associated with
coupled RTEs; ii) Residuals.

4.4. Influence of key parameters

The insulation efficiency of the felt of fibres can be optimised vs three key pa-

rameters: The transverse optical thickness of a fibre κad, the ratio of the refractive
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indices na/nb and the fibre volume fraction Πa. The two first parameters are input

parameters of the model for a given material morphology, and the last one is varied

by generating more or less cylinders in the same volume. The test case corresponds

to a felt limited by two parallel black walls of imposed temperatures. Note that

κad and na/nb are independent parameters only when the imaginary part χa of the

complex optical index of a, which rules absorption by a, is small compared to na and

nb. For common alumina and zirconia, characterised by na/nb ' 2, the reference

value κad = 0.3 corresponds to fibres of diameter close to 20µm. But the value of κa

strongly depends of the impurity amount within the matter. High values of κad, for

instance κad = 100, can not be obtained obtained for fibres of sub-mm diameter.

The aim of this Section is to minimise the flux through the system, calculated

from the coupled GRTEs. The results, plotted in Fig.11, are limited to a pure

radiative transfer, i.e. when conduction transfer in the two phases can be neglected.

As seen in upper left Fig.11, the radiative flux is a decreasing function of κa d, which

could be expected, and the radiative flux is divided by a factor approximately 2 when

κa d varies from 0.1 to 100.

A strong flux appears in Fig.11 ii) for the particular case na = nb because the

interfaces then do not exist for the radiation field: Only absorption in fibres plays a

role in radiative transfer. When na < nb (fibres embedded in a particular transparent

resin) total reflection occurs in the phase b: The rays are trapped in this phase and

the flux vanishes. The same comment can be made when na > nb: The rays are then

trapped in the phase a and this trapping effect increases with the refractive index

ratio.

It is easily conceived that the radiative flux exhibits a local maximum for na/nb =

1. Moreover, starting from a value of na/nb sufficiently greater than 1 and letting this

quantity grow up to infinity, the interfacial Fresnel’s reflectivity tends to the value of

1, and this facilitates the radiative transfer as compared to a situation where at an

interface the incident radiation is split into a reflected part and a transmitted part.

On the basis of these arguments, a local minimum of the radiative flux vs the ratio

na/nb is expected at a value of na/nb greater than 1. The upper right Fig.11 shows

that this minimum occurs when the ratio na/nb is in the range [2 , 4]. Alumina and
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zirconia present this last property when b is the vacuum or a gas.
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Figure 11: Radiative flux through the fibrous medium: i) vs absorption optical thickness; ii) vs
optical index ratio; iii) vs porosity; The medium is bounded by two black walls at T (0) = 2000K
and T (D) = 300K; Other parameter values are: κad = 0.3, na/nb = 2, Πb = 0.75.

In the lower Fig.11 (radiative flux vs the porosity Πb), the two extreme values of

this curve are easily analysed. When Πb = 1, there are no more fibres in the material,

and as the phase b is assumed transparent, the radiative flux tends to infinity. When

Πb = 0, the material is homogeneous, absorbing (of absorption coefficient κa) and non

scattering, and within the frame of the radiative conductivity model, the flux writes

4n2
a σsb [T 4(0)−T 4(L)]/(3κaD) with σsb the Stefan-Boltzmann constant, which leads

to a quite high value. Between the extreme values associated with Πb = 0 and

41



Πb = 1, the radiative flux profile shown in lower Fig.11 exhibits a minimum value,

which may be interpreted as follows: Quite logically, the more fibres are present

within the material, the more absorption is brought to it, and consequently the

lower the radiative flux. But it is also conceived that the more fibres are present

within the material, the more rare the scattering events at the fibre boundaries, and

consequently the higher the radiative flux. The superposition of these two antagonist

effects leads to a minimum value of the flux for a value of the porosity Πb in the range

[0.4, 0.6].

Such a study has to be generalised by accounting for conduction within the two

phases.

5. Conclusion

An original statistical model of characterisation of the radiative properties of the

a priori non Beerian homogenised phases of a strongly anisotropic porous medium,

with a semi transparent phase and a transparent one (STT), has first been developed.

The general case of reflection and transmission laws at interfacial scale has been

treated. This model is based on all the extinction cumulative distribution functions

and scattering (or absorption) cumulative probabilities associated with the successive

sets of internal and external scattering events, by generalising the approach of Ref.[3].

Moreover, all the associated general phase functions, depending on both the incidence

and scattering directions, have been for the first time ab initio determined for a STT

medium.

An original statistical model of radiative transfer based on coupled Generalised

Radiative Transfer Equations (GRTEs) associated with the two homogenised phases

has also been developed. The coupling terms are due to the external scattering terms,

associated with transmission at interfacial scale. It has been shown that a radiative

Fourier’s model, based on radiative conductivity tensors, is not valid for the STT

case, if the particular case for which the semi transparent phase becomes opaque and

the trivial case of a quasi isothermal medium are excepted.

The two models have been applied to a fibrous medium (fibre felt) for thermal in-

sulation at high temperature: A set of overlapping finite absorbing cylinders within
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a transparent matrix. It has been shown that the fibrous phase is strongly non

Beerian, and that the transparent one is Beerian, due to particular symmetries as-

sociated with cylinders.

Finally a parametric study of the insulation properties of the medium has been car-

ried out by only accounting for radiation transfer for optimisation of the design. Such

a study has to be generalised by accounting for conduction within the two phases.

Appendix A. Some properties of the scattering source terms

The case of external scattering from c towards d is only considered. The results

associated with internal scattering are deduced by taking c=d. External scattering

from a Beerian medium c of refractive index nν c towards a Beerian medium d of

refractive index nν d is characterised by a scattering coefficient σν cd(u) and a phase

function pν cd. The corresponding scattering source term expressed in medium d per

unit volume in the elementary solid angle dΩd(u) then writes

Ssc ν cd(u) dΩd (u) = dΩd(u)

∫
4π

σν cd(u1)
pν cd(u1,u)

4π
Iν c(u1) dΩ1c(u1), (A.1)

where the phase function pν cd associates a scattered intensity, expressed in medium

d, with an elementary incident flux characterised by the intensity Iν c expressed in

medium c.

In Ideal Thermal Equilibrium (ITE) conditions, the reciprocity theorem states

that the power scattered from the direction u1 of medium c to the direction u of

medium d is equal to the power scattered from −u of d to −u1 of c, i.e.

σν cd(u1) Πc n
2
ν c I

◦
ν (T ) dΩ1c(u1)

pν cd(u1,u)

4π
dΩd(u)

= σν dc(−u) Πd n
2
ν d I

◦
ν (T ) dΩd(−u)

pν dc(−u,−u1)

4π
dΩ1c(−u1). (A.2)

The Clausius theorem writes

n2
ν c dΩ1c(u1) = n2

ν d dΩd(u) = dΩ (A.3)

where dΩ, dΩ1c(u1) and dΩd(u) are the conjugated elementary solid angles in vac-
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uum, in medium c and medium d, respectively. Moreover,

dΩ1c(u) = dΩ1c(−u), dΩd(u) = dΩd(−u), dΩ(u) = dΩ(−u). (A.4)

In these conditions Equation A.2 becomes

σν cd(u1) Πc
pν cd(u1,u)

4π n2
ν d

= σν dc(−u) Πd
pν dc(−u,−u1)

4π n2
ν c

(A.5)

and consequently Equation A.1 now writes, by using Eq.A.5,

Ssc ν cd(u) =

(
n2
ν d Πd

n2
ν c Πc

)
σν dc(−u)

∫
4π

pν dc(−u,−u1)

4π
Iν c(u1) dΩ1c(−u1). (A.6)

The phase function pν dc, for instance, is normalised by∫
4π

pν dc(−u,−u1)

4π
dΩ1c(−u1) = 1. (A.7)

In ITE conditions, the global scattering source term from c to d in direction u

expressed in medium d, is then equal to

S◦sc ν cd(u) = σν dc(−u) Πd n
2
ν d I

◦
ν (T ). (A.8)

According to the detailed balance principle this quantity is equal in ITE conditions

to the extinction term of the medium d in the direction u associated with scattering

towards c, i.e. σν dc(u) Πd n
2
ν d I

◦
ν (T ), which leads to

σν dc(−u) = σν dc(u). (A.9)

The reciprocity theorem applied in ITE conditions to internal scattering within c

also leads to

Ssc ν cc(u) = σν cc(−u)

∫
4π

pν cc(−u,−u1)

4π
Iν c(u1)dΩ1c(−u1), (A.10)

and

σν cc(−u) = σν cc(u). (A.11)
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