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A fairly general class of Bayesian "large-error" lower bounds of the Weiss-Weinstein family, essentially free from regularity conditions on the probability density functions support, and for which a limiting form yields a generalized Bayesian Cramér-Rao bound (BCRB), is introduced. In a large number of cases, the generalized BCRB appears to be the Bobrovsky-Mayer-Wolf-Zakai bound (BMZB). Interestingly enough, a regularized form of the Bobrovsky-Zakai bound (BZB), applicable when the support of the prior is a constrained parameter set, is obtained. Modified Weiss-Weinstein bound and BZB which limiting form is the BMZB are proposed, in expectation of an increased tightness in the threshold region. Some of the proposed results are exemplified with a reference problem in signal processing: the Gaussian observation model with parameterized mean and uniform prior.

I. INTRODUCTION

Under the mean square error (MSE) criterion, the mean of the a posteriori probability density function (pdf) of a random parameter, conditioned on the observed data, is the optimal solution to the parameter estimation problem. However, except for a few special cases, determining the posterior mean is computationally prohibitive, and various approaches have been developed as alternatives. It is therefore of interest to determine the degradation in accuracy resulting from the use of suboptimal methods [START_REF] Simon | Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches[END_REF] [START_REF] Särkkä | Bayesian filtering and smoothing[END_REF]. Unfortunately again, the computation of the MSE of the conditional mean estimator generally requires multiple integration, a computationally intensive task [START_REF] Simon | Optimal State Estimation: Kalman, H-infinity, and Nonlinear Approaches[END_REF] [START_REF] Särkkä | Bayesian filtering and smoothing[END_REF]. This has led to a large body of work [START_REF] Van Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF][4] [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF] seeking to find both computationally tractable and tight Bayesian lower bounds (BLBs) on the attainable MSE to which the performance of the optimal estimator or any suboptimal estimation scheme can be compared.

Historically, computational tractability and ease of use seem to have been the prominent qualities requested for a lower bound, as exemplified by the Bayesian Cramér-Rao bound (BCRB), the first Bayesian lower bound to be derived [START_REF] Shutzenberger | A generalization of the Frechet-Cramer inequality in the case of Bayes estimation[END_REF] [START_REF] Van Trees | Detection, Estimation and Modulation Theory[END_REF], and still the most commonly used BLB. Nevertheless, it is now well known that the BCRB is an optimistic bound in a non-linear estimation problem where the outliers effect generally appears, leading to a characteristic behavior of estimators MSE which exhibits three distinct regions of operation depending on the number of (independent) observations and/or on the signal to noise ratio (SNR) [START_REF] Van Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF]. More precisely, at high SNR and/or for a high number of observations, i.e., in the asymptotic region, the outliers effect can be neglected and the ultimate performance are generally described by the BCRB. However, when the SNR and/or the number of observations decrease, the outliers effect leads to a quick increase of the MSE: this is the so-called threshold effect which is not predicted by the BCRB. Finally, at low SNR and/or at low number of observations, the observations provide little information, and the MSE is close to that obtained from the prior knowledge about the problem yielding the no-information region.

Therefore after computational tractability, tightness and/or relaxation of some regularity assumptions on the problem setting [START_REF] Ziv | Some lower bounds on signal parameter estimation[END_REF] [START_REF] Bellini | Bounds on error in signal parameter estimation[END_REF][10] [START_REF] Weiss | A lower bound on the mean square error in random parameter estimation[END_REF] have become the prominent qualities looked for a lower bound in non-linear estimation problems. Indeed, from a practical point of view, the knowledge of the particular value for which the threshold effect appears is a key feature allowing to define estimators optimal operating area. This has led to a large body of research based, so far, on two main families, i) the Ziv-Zakai family (ZZF) resulting from the conversion of an estimation bounding problem into one bounding binary hypothesis testing [START_REF] Ziv | Some lower bounds on signal parameter estimation[END_REF][9] [START_REF] Bell | Extended Ziv-Zakaï lower bound for vector parameter estimation[END_REF] and, ii) the Weiss-Weinstein family (WWF), derived from a covariance inequality principle [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF][6] [START_REF] Van Trees | Detection, Estimation and Modulation Theory[END_REF][10] [START_REF] Weiss | A lower bound on the mean square error in random parameter estimation[END_REF] [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF] [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF] [START_REF] Reuven | A Barankin-type lower bound on the estimation error of a hybrid parameter vector[END_REF][17] [START_REF] Bell | Combined Cramér-Rao/Weiss-Weinstein bound for tracking target bearing[END_REF]. In each family, some bounds, generally called "large-error" bounds (in contrast with "small-error" bounds such as the BCRB), can predict the threshold effect [START_REF] Van Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF].

In the present paper we focus on the Weiss-Weinstein family. The main contribution of the paper is to introduce a fairly general class of "large-error" bounds of the WWF essentially free from regularity conditions and for which a limiting form yields a generalized BCRB. Indeed, within this class of lower bounds, the supports of the joint and conditional pdfs must only be a countable union of disjoint non empty intervals of R (which naturally includes connected or disconnected subsets of R, bounded or unbounded intervals) and the bound-generating functions must only have a finite second order moment. Additionally, we provide (Propositions 1 and 2) some mild regularity conditions in order to obtain a non trivial limiting form (non zero generalized BCRB) of the "large-error" bound considered. In a large number of cases, this limiting form appears to be the Bobrovsky-Mayer-Wolf-Zakai bound (BMZB) [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF]. Therefore, the proposed class of Bayesian lower bounds defines a wide range of Bayesian estimation problems for which a non trivial generalized BCRB exists, which is a key result from a practical viewpoint. Indeed, the computational cost of large-error bounds is prohibitive in most applications when the number of unknown parameters increases. Interestingly enough, the proposed class of lower bounds provides the expression of all existing bounds of the WWF mentioned in [START_REF] Renaux | A fresh look at the bayesian bounds of the Weiss-Weinstein family[END_REF] and [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF] when the pdfs support is a constrained parameter set, including a regularized form of the Bobrovsky-Zakai bound (BZB) [START_REF] Bobrovsky | A lower bound on the estimation error for certain diffusion processes[END_REF]. From a practical viewpoint, it is another noticeable result, since the BZB is the easiest to use "large-error" bound, but was believed to be inapplicable in that case [10, Section II][11, p682][13, p340] [3, p39]. Last, as a by-product, since the BMZB may provide a tighter bound than the historical BCRB in the asymptotic region [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF] [3, p36], it would seem sensible to introduce modified Weiss-Weinstein bound (WWB) and BZB which limiting form is the BMZB, in expectation of an increased tightness in the threshold region as well.

Some of the proposed results are exemplified with a reference problem in signal processing: the Gaussian observation model with parameterized mean depending on a random parameter with uniform prior. For numerical evaluations, we focus on the estimation of a single tone.

For sake of legibility, we only discuss in details the case of a single random parameter. Extension of the proposed results to a vector of parameters can be done by resorting to the covariance matrix inequality as shown in [13, p341][14, p1429].

II. A NEW CLASS OF BAYESIAN LOWER BOUNDS OF THE WEISS-WEINSTEIN FAMILY

Throughout the present paper scalars, vectors and matrices are represented, respectively, by italic (as in a or A), bold lowercase (as in a) and bold uppercase (as in A) characters. The n-th row and m-th column element of the matrix A is denoted by {A} n,m , whereas, {a} n represents the n-th coordinate of the column vector a. The real and imaginary part of A, are denoted, respectively, by Re {A} and Im {A}. The transpose, transpose conjugate operator are indicated, respectively, by . T and . H . The identity matrix of size M is denoted by I M . For any given two matrices A and B, A B means that A -B is positive semi-definite matrix. E [.] denotes the expectation operator and 1 A (x) is the indicator function of subset A of R N .

A. Definitions and Assumptions

Throughout the present paper:

• x denotes a N -dimensional complex random observation vector belonging to the observation space X ⊂ C N .

• θ denotes a real random parameter belonging to the parameter space Θ ⊂ R.

• S X ,Θ ⊂ C N ×R denotes the support of the the joint pdf p (x, θ) of x and θ such that

S X ,Θ = x T , θ T ∈ C N × R : p (x,
• S Θ ⊂ R denotes the support of the prior pdf of θ denoted p (θ), i.e., S Θ = {θ ∈ R : p (θ) > 0}.

• S X ⊂ C N denotes the support of the marginal pdf of x denoted p (x), i.e., S X = x ∈ C N : p (x) > 0 .

• Furthermore, ∀x ∈ S X , let us denote S Θ|x = {θ ∈ R : p (x, θ) > 0} and ∀θ ∈ S Θ , S X |θ = x ∈ C N : p (x, θ) > 0 . Then:

p (θ) = C N p (x, θ) 1 SX|θ (x) dx = SX|θ p (x, θ) dx, p (x) = R p (x, θ) 1 SΘ|x (x) dθ = SΘ|x p (x, θ) dθ.
Thus, for a given function f : X × Θ → R, deterministic, unknown and measurable function, one has:

E x,θ [f (x, θ)] = C N R f (x, θ) p (x, θ) 1 SX,Θ (x, θ)dxdθ = SX SΘ|x f (x, θ) p (x, θ) dxdθ, E x|θ [f (x, θ)] = C N f (x, θ) p (x|θ) 1 SX|θ (x)dx = SX|θ f (x, θ) p (x|θ) dx, E θ|x [f (x, θ)] = R f (x, θ) p (θ|x) 1 SΘ|x (θ)dθ = SΘ|x f (x, θ) p (θ|x) dθ, E x [f (x, θ)] = C N f (x, θ) p (x) 1 SX (x)dx = SX f (x, θ) p (x) dx, E θ [f (x, θ)] = R f (x, θ) p (θ) 1 SΘ (θ)dθ = SΘ f (x, θ) p (θ) dθ, E x,θ [f (x, θ)] = SX    SΘ|x f (x, θ) p (x, θ) p (x) dθ    p (x) dx = E x E θ|x [f (x, θ)] , E x,θ [f (x, θ)] = SΘ    SX|θ f (x, θ) p (x, θ) p (θ) dx    p (θ) dθ = E θ E x|θ [f (x, θ)] .
Additionally, we assume that:

• A1) g(θ) : R → R, g(.) ∈ L 2 (S Θ|x ), ∀x ∈ S X , is the deterministic, known, measurable function to be estimated, where L 2 (S Θ|x ) denotes the space of square integrable functions w.r.t. p(θ|x), i.e., E θ|x [g(θ) 2 ] < ∞. • A2) ĝ(x) : X → R, ĝ(.) ∈ L 2 (S X ), denotes any deterministic, known, measurable estimator of g(θ), where L 2 (S X ) denotes the space of square integrable functions w.r.t. p(x), i.e.,

E x [ĝ(x) 2 ] < ∞. • A3) ψ (x, θ) : X × R → R, ψ (.) ∈ L 2 (S X ,Θ
), denotes a deterministic, known, measurable function, where L 2 (S X ,Θ ) denotes the space of square integrable functions w.r.t. p(x, θ), i.e., E x,θ [ψ(x, θ) 2 ] < ∞, and satisfying

0 < E x,θ [ψ(x, θ) 2 ].

B. Background on covariance inequality

Under the assumptions A1), A2) and A3), the Cauchy-Schwartz inequality states that:

E x,θ [(ĝ(x) -g (θ)) ψ (x, θ)] 2 ≤ E x,θ (ĝ(x) -g (θ)) 2 E x,θ ψ (x, θ) 2 . ( 1a 
)
Therefore:

E x,θ (ĝ(x) -g (θ)) 2 ≥ E x,θ [(ĝ(x) -g (θ)) ψ (x, θ)] 2 E x,θ ψ (x, θ) 2 = (E x,θ [ĝ(x)ψ (x, θ)] -E x,θ [g (θ) ψ (x, θ)]) 2 E x,θ ψ (x, θ) 2 . (1b) 
A necessary condition on ψ (x, θ) in order to obtain a lower bound on the MSE of ĝ(x), i.e., an expression independent from the estimator ĝ(x) in the right-hand side of (1b), is to satisfy [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF]:

E x,θ [ĝ(x)ψ (x, θ)] = 0. (2a) 
As ĝ (x) is θ independent, thus, (2a) can be rewritten as:

E x,θ [ĝ(x)ψ (x, θ)] = E x E θ|x [ĝ(x)ψ (x, θ)] = E x ĝ (x) E θ|x [ψ (x, θ)] . (2b) 
Consequently, a sufficient condition for a judicious choice of ψ (x, θ) is simply [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF]:

E θ|x [ψ (x, θ)] = 0. (2c)
Finally, a non trivial bound is obtained from (1b) for the family of functions ψ (x, θ) satisfying both (2c) and E x,θ [g (θ) ψ (x, θ)] = 0, yielding the Weiss-Weinstein family of Bayesian lower bounds [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF] given by:

E x,θ (ĝ(x) -g (θ)) 2 ≥ E x,θ [g (θ) ψ (x, θ)] 2 E x,θ ψ (x, θ) 2 . (3) 

C. Proposed class of Bayesian lower bounds

Let us consider a function q (x, θ) : X × R → R. Thus, one can notice that, since p (θ|x) = p (θ|x) 1 SΘ|x (θ), then, ∀x ∈ S X :

SΘ|x q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ) dθ = R q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ + h) 1 SΘ|x (θ) dθ (4a) = R q (x, θ) p (θ|x) 1 SΘ|x (θ) 1 SΘ|x (θ -h) dθ (4b) = SΘ|x q (x, θ) p (θ|x) 1 SΘ|x (θ -h) 1 SΘ|x (θ) dθ (4c) 
leading to:

SΘ|x q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ) dθ - SΘ|x q (x, θ) p (θ|x) 1 SΘ|x (θ -h) 1 SΘ|x (θ) dθ = 0. (5) 
Consequently, in order to fulfill (2c), we propose to use the following class of bound-generating functions:

ψ h q (x, θ) = p(θ+h|x) p(θ|x) q (x, θ + h) -q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) , if (x, θ) ∈ S X ,Θ 0, otherwise , (6) 
for which the choice of the function q(.) is only subject to: 0 < E x,θ ψ h q (x, θ) 2 < ∞. Now, we can derive the right-hand side of (3). As:

E θ|x g (θ) ψ h q (x, θ) = SΘ|x g (θ) q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ) dθ - SΘ|x g (θ) q (x, θ) 1 SΘ|x (θ -h) p (θ|x) dθ, (7) 
and the first integral of the above equation can be written as:

SΘ|x g (θ) q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ) dθ = R g (θ) q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ + h) 1 SΘ|x (θ) dθ, (8a) = R g (θ -h) q (x, θ) p (θ|x) 1 SΘ|x (θ) 1 SΘ|x (θ -h) dθ, (8b) 
= SΘ|x g (θ -h) q (x, θ) 1 SΘ|x (θ -h) p (θ|x) dθ, (8c) 
therefore:

E θ|x g (θ) ψ h q (x, θ) = SΘ|x (g (θ -h) -g (θ)) q (x, θ) 1 SΘ|x (θ -h) p (θ|x) dθ (9a) = E θ|x (g (θ -h) -g (θ)) q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) (9b) 
Finally, the proposed class of BLBs is given by:

BLB h q (g (θ)) = E x,θ (g (θ -h) -g (θ)) q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ q (x, θ + h) p(θ+h|x) p(θ|x) -q (x, θ) 1 SΘ|x (θ -h) 2 1 SΘ|x (θ) , (10) 
and tighter BLBs can be obtained as: sup ql(.),1≤l≤L,h∈R: ψ h q l (.)∈L2(SX,Θ)

BLB h ql (g (θ)) . (11) 
Let us recall that Bayesian lower bounds are actually posterior lower bounds, i.e. lower bounding the MSE of the posterior mean E θ|x [g (θ)]. However as:

p (θ + h|x) p (θ|x) = p (x,θ + h) p (x,θ) , ∀ (x, θ) ∈ S X ,Θ , (12a) 
we also resort to the alternative form of (10):

BLB h q (g (θ)) = E x,θ (g (θ -h) -g (θ)) q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ q (x, θ + h) p(x,θ+h) p(x,θ) -q (x, θ) 1 SΘ|x (θ -h) 2 1 SΘ|x (θ) . (12b) 

III. A NEW CLASS OF BCRBS AND ITS RELATIONSHIP WITH THE BMZBS

From the literature [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF][15][3, p39], the historical BCRB [START_REF] Van Trees | Detection, Estimation and Modulation Theory[END_REF] is given as the limiting form of the BZB where S Θ|x = R, that is:

BCRB (g (θ)) = lim h→0 E x,θ g (θ) 1 h p(θ+h|x) p(θ|x) -1 2 E x,θ 1 h p(θ+h|x) p(θ|x) -1 2 = E x,θ dg(θ) dθ 2 E x,θ ∂ ln p(θ|x) ∂θ 2 . (13) 
Mutatis mutandis, we can use this definition for every function q (x, θ) in order to define a generalized BCRB as follows:

BCRB q (g (θ)) = max    lim h→0 + E x,θ g (θ) 1 h ψ h q (x, θ) 2 E x,θ 1 h ψ h q (x, θ) 2 , lim h→0 - E x,θ g (θ) 1 h ψ h q (x, θ) 2 E x,θ 1 h ψ h q (x, θ) 2    . ( 14 
)
Interestingly enough, under the assumptions A1), A2) and A3), any "large-error" bounds of the proposed class, i.e. BLB h q (g (θ)) [START_REF] Bobrovsky | A lower bound on the estimation error for certain diffusion processes[END_REF], admits a finite limiting form BCRB q (g (θ)) [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF]. Moreover, under some mild regularity conditions (see Propositions 1 and 2 below), the generalized BCRB is non zero, and in a large number of cases, this limiting form appears to be the BMZB [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF]. Therefore, the proposed class of BLBs defines a wide range of Bayesian estimation problems for which a non trivial BCRB exists, which is a key result from a practical viewpoint. Indeed, the computational cost of large-error bounds is prohibitive in most applications when the number of unknown parameters increases [START_REF] Renaux | A fresh look at the bayesian bounds of the Weiss-Weinstein family[END_REF] [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF].

A. Case where S Θ|x is an interval of R Then we can state the following Proposition 1 : If ∀x ∈ S X :

• S Θ|x is an interval of R with endpoints a x , b x ∈ [-∞, +∞], a x < b x , • q (x, θ) admits a finite limit at endpoints, • g (θ) is piecewise C 1 w.r.t. θ over S Θ|x , • t (x, θ) q (x, θ) p (θ|x) is piecewise C 1 w.r.t.
θ over S Θ|x and such as ∂t(x,θ) ∂θ admits a finite limit at endpoints,

• u (x, θ) q (x, θ) t (x, θ) is C 2 w.r.t.
θ at the vicinity of endpoints and such as u (x, θ) , ∂u(x,θ) ∂θ and ∂ 2 u(x,θ) ∂ 2 θ admit a finite limit at endpoints, then a necessary and sufficient condition in order to obtain a non trivial BCRB q bound ( 14) is:

lim θ→ax t (x, θ) = 0 = lim θ→bx t (x, θ) , (15a) 
which leads to:

BCRB q (g (θ)) = E x,θ dg(θ) dθ q (x, θ) 2 E x,θ ∂t(x,θ) ∂θ p(θ|x) 2 + min        E x 5 2 lim θ→ax v (x, θ) -1 2 lim θ→bx v (x, θ) , E x 1 2 lim θ→ax v (x, θ) -5 2 lim θ→bx v (x, θ)        (15b) where v (x, θ) = q (x, θ) 2 ∂p(θ|x) ∂θ . Proof: see Appendix VII-A and Appendix VII-B.
In order to obtain a tight BCRB q (g (θ)), it seems judicious to choose q (x, θ) such that:

∀x ∈ S X : lim θ→ax q (x, θ) = 0 = lim θ→bx q (x, θ) . (16a) 
Indeed, then (15b) reduces to:

BCRB q (g (θ)) = E x,θ dg(θ) dθ q (x, θ) 2 E x,θ ∂t(x,θ) ∂θ p(θ|x) 2 = BMZB q (g (θ)) , (16b) 
where BMZB q (g (θ)) stands for the BMZB [14, (24)]. Note that:

• the above condition (15a) is not explicitly given in the original paper of [14, §4] nor in [3, p35]. Nevertheless, it is applied implicitly when S Θ|x = R and explicitly in some specific examples when S Θ|x R for which the function q(x, θ) tends to zero at the endpoints of S Θ|x (see [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF]Ex. 4.2], [3, Ex. 9]).

• the following alternative constraint

∀x ∈ S X : lim θ→ax p (θ|x) = 0 = lim θ→ax ∂p (θ|x) ∂θ and lim θ→bx p (θ|x) = 0 = lim θ→bx ∂p (θ|x) ∂θ , (16c) 
leads to the BMZB q as well (but not mentioned in [14, §4]).

As conditions (16a) and (16c) may hold in many cases, Proposition 1 highlights the fact that the BMZB is not only a class of BCRBs (as initially introduced in [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF]) or weighted BCRBs (so-called in [START_REF] Van Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF]), but rather the general form of tight BCRBs (16b) when defined as the limiting form of some large-error bounds.

B. Case where S Θ|x is a countable union of disjoint intervals of R Interestingly enough, Proposition 1 and, as a consequence, the BMZB q , can be formulated in the general case where S Θ|x is a countable union of disjoint intervals I k Θ|x of R:

∀x ∈ S X , S Θ|x = k∈Kx I k Θ|x , I k Θ|x ∩ I l Θ|x = ∅, ∀k, l ∈ K x , k = l, (17) 
where K x denotes a subset of N. Indeed, we can state the following:

Proposition 2 : If ∀x ∈ S X : • S Θ|x is a countable union of disjoint intervals I k Θ|x of R (17) with endpoints a k x , b k x ∈ [-∞, +∞], a k x < b k x , • q (x, θ) admits a finite limit at endpoints of I k Θ|x , • g (θ) is piecewise C 1 w.r.t. θ over I k Θ|x , • t (x, θ) q (x, θ) p (θ|x) is piecewise C 1 w.r.t. θ over I k
Θ|x and such as ∂t(x,θ) ∂θ admits a finite limit at endpoints of

I k Θ|x , • u (x, θ) q (x, θ) 2 p (θ|x) is C 2 w.r.t.
θ at the vicinity of endpoints of I k Θ|x and such as u (x, θ) , ∂u(x,θ) ∂θ and

∂ 2 u(x,θ) ∂ 2 θ
admit a finite limit at endpoints of I k Θ|x , then a necessary and sufficient condition in order to obtain a non trivial BCRB q is:

lim θ→a k x t (x, θ) = 0 = lim θ→b k x t (x, θ) , ∀k ∈ K x , (18a) 
leading to:

BCRB q (g (θ)) = E x,θ dg(θ) dθ q (x, θ) 2 E x,θ ∂t(x,θ) ∂θ p(θ|x) 2 + min          k∈Kx E x 5 2 lim θ→a k x v (x, θ) -1 2 lim θ→b k x v (x, θ) , k∈Kx E x 1 2 lim θ→a k x v (x, θ) -5 2 lim θ→b k x v (x, θ)          (18b) 
where v (x, θ) = q (x, θ) 2 ∂p(θ|x) ∂θ . Proof: see Appendix VII-C.

Choosing q (x, θ) such that ∀x ∈ S X , ∀k ∈ K x : lim

θ→a k x q (x, θ) = lim θ→b k x q (x, θ) = 0, (19a) 
then (18b) reduces to BMZB q (g (θ)) (16b). Last, note that the following alternative constraints

lim θ→a k x p (θ|x) = lim θ→a k x ∂p (θ|x) ∂θ = 0 and lim θ→b k x p (θ|x) = lim θ→b k x ∂p (θ|x) ∂θ = 0, ∀k ∈ K x , (19b) 
leads to the BMZB q (16b) as well.

IV. EXAMPLES OF BAYESIAN LOWER BOUNDS OF THE PROPOSED CLASS

A. Reformulation of existing Bayesian bounds

We show in this section that expression [START_REF] Bobrovsky | A lower bound on the estimation error for certain diffusion processes[END_REF], with a judicious choice of the function q, allows for a general formulation of existing BLBs whatever S Θ|x ⊂ R, including naturally the cases of a bounded connected subset of R (see Section V) or a disjoint subset of R [START_REF] Ben-Haim | A Comment on the Weiss-Weinstein Bound for Constrained Parameter Sets[END_REF].

1) Case of the Weiss-Weinstein lower bound:

In order to obtain the WWB, we specify, for s ∈]0, 1[, the function:

q h,s WW (x, θ) =    p(θ-h|x) p(θ|x) 1-s 1 SΘ|x (θ -h) 1 SΘ|x (θ) , if (x, θ) ∈ S X ,Θ 0, otherwise . (20a) 
Consequently, using q h,s WW (x, θ) into ( 6), one obtains the function:

ψ h,s WW (x, θ) =    p(θ+h|x) p(θ|x) s 1 SΘ|x (θ + h) -p(θ-h|x) p(θ|x) 1-s 1 SΘ|x (θ -h) 1 SΘ|x (θ) , if (x, θ) ∈ S X ,Θ 0, otherwise , (20b) 
and an explicit form of WWB introduced in [START_REF] Weiss | A lower bound on the mean square error in random parameter estimation[END_REF] is:

WWB (g (θ)) = sup s∈]0,1[,h∈R: ψ h,s WW (.)∈L2(SX,Θ) WWB h,s (g (θ)) , (21a) 
WWB h,s (g (θ)) = E x,θ (g (θ -h) -g (θ)) p(θ-h|x) p(θ|x) 1-s 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ p(θ+h|x) p(θ|x) s 1 SΘ|x (θ + h) -p(θ-h|x) p(θ|x) 1-s 1 SΘ|x (θ -h) 2 1 SΘ|x (θ) (21b) 
It is worth noting that the use of the compact form [13, (20-21)] can be a source of error in the formulation of the integration domains involved in the computations of the various expectations when S Θ|x is a bounded connected subset of R or a disjoint subset of R, as exemplified in [START_REF] Ben-Haim | A Comment on the Weiss-Weinstein Bound for Constrained Parameter Sets[END_REF].

2) Case of the Bobrovsky-Zakai bound: In order to obtain the BZB, we set q h BZ (x, θ) = 1 h leading to:

ψ h BZ (x, θ) = 1 h p(θ+h|x) p(θ|x) 1 SΘ|x (θ + h) -1 SΘ|x (θ -h) 1 SΘ|x (θ) , if (x, θ) ∈ S X ,Θ 0, otherwise . (22) 
Consequently, a regularized explicit form of BZB is given by:

BZB (g (θ)) = sup h∈R: ψ h BZ (.)∈L2(SX,Θ) BZB h (g (θ)) , (23a) 
BZB h (g (θ)) = E x,θ g(θ-h)-g(θ) h 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ p(θ+h|x)1S Θ|x (θ+h)-p(θ|x)1S Θ|x (θ-h) hp(θ|x) 2 1 SΘ|x (θ) , (23b) 
which is a generalization of the bound introduced in [10] whatever S Θ|x . From a practical viewpoint, it is a noticeable result, since the BZB is the easiest to use "large-error" bound, but was believed to be inapplicable where

S Θ|x is a bounded connected subset of R [10, Section II][11, p682][13, p340][3, p39]. Moreover, since, ∀y > 0, lim s→1 -y 1-s = 1, therefore, ∀h ∈ R and ∀ (x, θ) ∈ S X ,Θ : lim s→1 -q h,s WW (x, θ) = 1 SΘ|x (θ -h) 1 SΘ|x (θ) , (24a) 
leading to:

lim s→1 -ψ h,s WW (x, θ) = p (θ + h|x) p (θ|x) 1 SΘ|x (θ + h) -1 SΘ|x (θ -h) 1 SΘ|x (θ) = hψ h BZ (x, θ) , (24b) 
and:

lim s→1 -WWB h,s (g (θ)) = BZB h (g (θ)) , (24c) 
which is an extension of the result introduced in [13] whatever S Θ|x .

3) Generalization: It is straightforward to extend the derivation of all the other existing BLBs mentioned in [START_REF] Renaux | A fresh look at the bayesian bounds of the Weiss-Weinstein family[END_REF] and [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF] whatever S Θ|x , namely the historical BCRB, the BMZB, the Bayesian Bhattacharayya bound [START_REF] Weinstein | A general class of lower bounds in parameter estimation[END_REF], the Reuven-Messer bound [START_REF] Reuven | A Barankin-type lower bound on the estimation error of a hybrid parameter vector[END_REF], the combined Cramér-Rao/Weiss-Weinstein bound [START_REF] Bell | Combined Cramér-Rao/Weiss-Weinstein bound for tracking target bearing[END_REF], the Bayesian Abel bound [START_REF] Renaux | The bayesian Abel bound on the mean square error[END_REF], and the Bayesian Todros-Tabrikian bound [START_REF] Todros | General classes of performance lower bounds for parameter estimation -part II: Bayesian bounds[END_REF], by updating the definitions of ν RM (x, θ, τ ) [5, (32)] and ν W W (x, θ, τ ) [5, (33)] as follows:

ν RM (x, θ, τ ) = ψ τ BZ (x, θ) , ν W W (x, θ, τ ) = ψ τ ,β(τ ) WW (x, θ) . (25) 
B. Modified Weiss-Weinstein and Bobrovsky-Zakai lower bounds

It is now known and exemplified [START_REF] Bobrovsky | Some Classes of Global Cramer-Rao Bounds[END_REF][3, p36] that the BMZB not only allows to derive a non trivial BCRB in cases where the historical BCRB is trivial but may also provides a tighter bound than the historical BCRB in the asymptotic region. Since the limiting form of the WWB (21a-21b) and BZB (23a-23b) is the historical BCRB, it would seem sensible to define modified WWB and BZB which limiting form is the BMZB, in expectation of an increased tightness in the threshold region as well. In that perspective, a modified WWB, denoted WWB q in the following, which limiting form is BMZB q (16b), can be obtained by modifying the definition of q h,s WW (x, θ) (20a) as follows:

q h,s MWW (x, θ) =    p(θ-h|x) p(θ|x) 1-s q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) , if (x, θ) ∈ S X ,Θ 0, otherwise , (26) 
provided that one of the conditions (16a), (16c), (19a), (19b) holds, since, according to (24a):

lim s→1 -q h,s MWW (x, θ) = q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) . (27) 
Thus:

WWB q (g (θ)) = sup s∈]0,1[,h∈R: ψ h,s MWW (.)∈L2(SX,Θ) WWB h,s q (g (θ)) , (28a) 
WWB h,s q (g (θ)) = E x,θ (g (θ -h) -g (θ)) p(θ-h|x) p(θ|x) 1-s q (x, θ) 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ      p(θ+h|x) p(θ|x) s q (x, θ + h) 1 SΘ|x (θ + h) - p(θ-h|x) p(θ|x) 1-s q (x, θ) 1 SΘ|x (θ -h)   2 1 SΘ|x (θ)    (28b) 
Note that the usual WWB is obtained for q (x, θ) = 1 SX,Θ (x, θ) and the modified BZB, denoted BZB q in the following, is obtained for q h MBZ (x, θ) = lim s→1 -q h,s MWW (x, θ), leading to:

BZB q (g (θ)) = sup h∈R: ψ h MBZ (.)∈L2(SX,Θ) BZB h q (g (θ)) , (29a) 
BZB h q (g (θ)) = E x,θ g(θ-h)-g(θ) h 1 SΘ|x (θ -h) 1 SΘ|x (θ) 2 E x,θ p(θ+h|x)q(x,θ+h)1S Θ|x (θ+h)-p(θ|x)q(x,θ)1S Θ|x (θ-h) hp(θ|x) 2 1 SΘ|x (θ) . (29b) 

V. APPLICATION TO THE GAUSSIAN OBSERVATION MODEL WITH PARAMETERIZED MEAN AND UNIFORM PRIOR

This section is dedicated to exemplify some of the results introduced above with a reference problem in signal processing: the Gaussian observation model with a parameterized mean depending on a random parameter with uniform prior. For numerical evaluations, we focus on the estimation of a single tone. Thus the parametric model under consideration is:

x = (x 1 , . . . , x N ) T = m (θ) + n, p (x|θ) = e -x-m(θ) 2 σ 2 n (πσ 2 n ) N , p (θ) = 1 Θ (θ) b -a , (30) 
where

S X |θ = S X = C N and S Θ|x = S Θ = [a, b].
In the case of single tone estimation, m (θ) = α 1, e j2πθ , . . . , e j(N -1)2πθ 

A. The WWB and its limiting form

For the parametric model (30), the WWB (21a-21b) is given by [19, Section 4]:

WWB (g (θ)) = sup s∈]0,1[,|h|<b-a WWB h,s (g (θ)) , (31a) 
WWB h,s (g (θ)) = E θ (g (θ -h) -g (θ)) e -(1-s)s σ 2 n m(θ-h)-m(θ) 2 1 SΘ (θ -h) 2          E θ e -2s(1-2s) σ 2 n m(θ+h)-m(θ) 2 1 SΘ (θ + h) + E θ e -2(1-s)(2s-1) σ 2 n m(θ-h)-m(θ) 2 1 SΘ (θ -h) - 2E θ e -s(1-s) σ 2 n m(θ+h)-m(θ-h) 2 1 SΘ (θ -h) 1 SΘ (θ + h)          . ( 31b 
)
As stated by Proposition 1, since t (x, θ) q (x, θ) p (θ|x) = 1 SX,Θ (x, θ) 1 Θ (θ) = 1 Θ (θ), thus t (x, θ) does not verify (15a) and the associated generalized BCRB 1S X ,Θ (14) is trivial. Indeed, since ∀h :

|h| < 1, E θ [1 SΘ (θ ± h)] = 1 -|h|, E θ [1 SΘ (θ + h) 1 SΘ (θ -h)] = sup {1 -2 |h| , 0}, and 
lim h1,h2→0 m (θ + h 1 ) -m (θ + h 2 ) 2 = ∂m(θ) ∂θ 2 (h 1 -h 2 ) 2 , then: lim h→0 WWB h,s (g (θ)) = h 2 E θ ∂g(θ) ∂θ 2 2 |h| + 2h 2 E θ ∂m(θ) ∂θ 2 σ 2 n = E θ ∂g(θ) ∂θ 2 2 |h| + 2E θ ∂m(θ) ∂θ 2 σ 2 n , (32a) 
and ( 14)(24c):

BCRB 1S X ,Θ (g (θ)) = lim h→0 BZB h (g (θ)) = lim h→0 lim s→1 -WWB h,s (g (θ)) = lim s→1 -lim h→0 WWB h,s (g (θ)) = 0. (32b) 

B. Some BMZBs and their associated modified WWBs

We consider the family of BMZB q (g (θ)) (16b) obtained where q (x, θ) q (θ) satisfying (16a):

BMZB q (g (θ)) = E θ dg(θ) dθ q (θ) 2 E θ E x|θ ∂q(θ) ∂θ + q (θ) ∂ ln p(θ|x) ∂θ 2 , lim θ→a q (θ) = 0 = lim θ→b q (θ) . (33) 
Then, on one hand:

E x|θ ∂q (θ) ∂θ + q (θ) ∂ ln p (θ|x) ∂θ 2 = E x|θ ∂q (θ) ∂θ 2 + q (θ) 2 ∂ ln p (θ|x) ∂θ 2 + 2 ∂q (θ) ∂θ q (θ) ∂ ln p (θ|x) ∂θ ( 
34a) and, on the other hand, ∀θ ∈ S Θ|x :

E x|θ ∂ ln p (θ|x) ∂θ = ∂ ln p (θ) ∂θ = 0, E x|θ ∂ ln p (θ|x) ∂θ 2 = -E x|θ ∂ 2 ln p (x|θ) ∂θ 2 = 2 σ 2 n ∂m (θ) ∂θ 2 . (34b) 
Consequently,

E x|θ ∂q (θ) ∂θ + q (θ) ∂ ln p (θ|x) ∂θ 2 = ∂q (θ) ∂θ 2 + 2q (θ) 2 σ 2 n ∂m (θ) ∂θ 2 , (34c) 
and a tighter BCRB (θ) related to the parametric model (30) can be defined as:

BCRB (θ) = sup ql(.) s.t. (16a),1≤l≤L
{BMZB ql (θ)} , (35a)

BMZB ql (g (θ)) = E θ dg(θ) dθ q l (θ) 2 E θ ∂ql(θ) ∂θ 2 + E θ c (θ) q l (θ) 2 , c (θ) = 2 σ 2 n ∂m (θ) ∂θ 2 . (35b) 
Furthermore, the associated modified WWB (28a-28b) becomes:

WWB q (θ) = sup s∈]0,1[,|h|<b-a WWB h,s q (θ) , (36a) 
WWB h,s q (θ) = E θ (g (θ -h) -g (θ)) e -(1-s)s σ 2 n m(θ-h)-m(θ) 2 q (θ) 1 SΘ (θ -h) 2          E θ e -2s(1-2s) σ 2 n m(θ+h)-m(θ) 2 q (θ + h) 2 1 SΘ (θ + h) + E θ e -2(1-s)(2s-1) σ 2 n m(θ-h)-m(θ) 2 q (θ) 2 1 SΘ (θ -h) - 2E θ e -s(1-s) σ 2 n m(θ+h)-m(θ-h) 2 q (θ + h) q (θ) 1 SΘ (θ -h) 1 SΘ (θ + h)          . ( 36b 
)
As an example, two possible choices of the function q (θ) are:

q δ 1 (θ) =        1 2 1 + sin π θ δ -1 2 , if θ ∈ [0, δ] 1, if θ ∈ ]δ, 1 -δ[ 1 2 1 -sin π θ-1+δ δ -1 2 , if θ ∈ [1 -δ, 1] 0, otherwise , (37a) 
and [3, p36][14, p1433]:

q α 2 (θ) = θ α-1 (1 -θ) α-1 , if θ ∈ [0, 1] 0, otherwise , α > 3 2 . . (37b) 
In the case of single tone estimation, (35b) reduces to (after a few lines of calculus):

BMZB q δ 1 (θ) = (1 -δ) 2 π 2 4δ + 4 3 π 2 ρN (N -1) (2N -1) 1 -5 4 δ , (38a) 
BMZB q α 2 (θ) = Γ(α) 4 Γ(2α) 2 2 (α -1) 2 Γ(2α-3)Γ(2α-1)-Γ(2(α-1)) 2 Γ(4(α-1)) + 4π 2 ρN (N -1)(2N -1) 3 Γ(2α-1) 2 Γ(2(2α-1)) , (38b) 
where Γ (α) = ∞ 0 x α-1 e -x dx is the gamma function, and WWB q (36a-36b) becomes:

WWB q (θ) = sup s∈]0,1[,|h|<1 WWB h,s q (θ) , ( 39a 
)
WWB h,s q (θ) =                        h 2 1 h q(θ)dθ 2 e 4(s-1)sρv(h)
(e 4s(2s-1)ρv(h) +e 4(s-1)(2s-1)ρv(h) )

1 h q(θ) 2 dθ-2e 2s(s-1)ρv(2h) 1-h h q(θ)q(θ+h)dθ , if h ∈ [0, 1[ h 2   1+h 0 q(θ)dθ   2 e 4(s-1)sρv(h)
(e 4s(2s-1)ρv(h) +e 4(s-1)(2s-1)ρv(h) ) 1+h 0 q(θ) 2 dθ-2e 2s(s-1)ρv(2h) 1+h -h q(θ)q(θ+h)dθ

, if h ∈ ]-1, 0[ , (39b) 
where ρ = α 2 σ 2 n denotes the (input) SNR and:

v (h) = N 1 -cos (π (N -1) h) sin(πN h) N sin(πh) , if h = 0 0, if h = 0 . (39c)

C. Comparisons and analysis for the single tone estimation

First, we can derive from (35b) an upper bound for BCRB (θ) (35a) in the asymptotic region. Indeed, in the case of single tone estimation:

BMZB ql (g (θ)) = E θ dg(θ) dθ q l (θ) 2 E θ ∂ql(θ) ∂θ 2 + E θ c (θ) q l (θ) 2 ≤ 1 c E θ [q l (θ)] 2 E θ q l (θ) 2 ≤ 1 c , (40) 
where c = 4π 2 (N -1)(2N -1)

3

N ρ. Thus:

BCRB (θ) ≈ N ρ→∞ BMZB U B (θ) = 3 4π 2 (N -1)(2N -1) 1 N ρ . ( 41 
)
Moreover, an upper bound on the minimum MSE, and therefore on any lower bound on the MSE, is:

σ 2 θ = E θ θ 2 -E θ [θ] 2 = 1 12 , ( 42 
)
which is also the MSE of the maximum a posteriori (MAP) estimator (which coincides with the maximum likelihood estimate for uniform prior) in the no-information region [START_REF] Van Trees | Bayesian Bounds for Parameter Estimation and Nonlinear Filtering/Tracking[END_REF].

As shown in figure ( 6) 1 , the WWB (31a-31b) and the BZB (WWB where s → 1 -) coincide with the BMZB U B (θ) (41) in the asymptotic region (where the WWB and the BZB coincide with the MSE of the MAP [3, pp 41-43]), although its limiting form BCRB 1S X ,Θ (θ) (32b) is zero. Actually, this paradox can be explained by the fact that (32a):

BCRB 1S X ,Θ (θ) = lim h→0 BZB h (θ) = lim h→0 lim s→1 -WWB h,s (θ) = lim h→0 1 2 |h| + 4 3 π 2 ρN (N -1) (2N -1) , ( 43a 
)
is similar to:

lim δ→0 BMZB q δ 1 (θ) = (1 -δ) 2 π 2 4δ + 4 3 π 2 ρN (N -1) (2N -1) 1 -5 4 δ = lim δ→0 1 π 2 4δ + 4 3 π 2 ρN (N -1) (2N -1) (43b) 
provided that, for any δ 1 one chooses h 1 satisfying |h| = 8δ/π 2 . Therefore the limiting behavior of BZB h (θ) and WWB h,s (θ), where h → 0, is the limiting behavior of BMZB q δ 1 (θ), where δ → 0, which is exemplified in figure [START_REF] Shutzenberger | A generalization of the Frechet-Cramer inequality in the case of Bayes estimation[END_REF] as well, for δ ∈ 10 -3 , 10 -4 , 10 -5 , 10 -6 . As mentioned above, BMZB q δ 1 (θ) always yields asymptotically BMZB U B (θ) but is also upper bounded by:

BMZB q δ 1 (θ) ≤ 4δ π 2 (44)
which tends to 0 when δ → 0. However, this adverse numerical behaviour can be easily circumvented by resorting to BMZB q δ 1 (θ) and a tight BCRB in the asymptotic region can be obtained as sup 0<δ≤0.5

BMZB q δ 1 (θ) (35a), as shown in figure [START_REF] Särkkä | Bayesian filtering and smoothing[END_REF]. It is also worth noting that some families of BMZB q (θ) does not allow to obtain a tight BCRB in the asymptotic region, as already mentioned in [3, pp 36-37], and again exemplified in the studied case in figure [START_REF] Särkkä | Bayesian filtering and smoothing[END_REF], if we consider sup combine the two families of BMZB as in (35a), in order to obtain a BCRB tight both in the asymptotic and the no-information region:

BCRB (θ) = sup sup 0<δ≤0.5 BMZB q δ 1 (θ) , sup α≥ 3 2 BMZB q α 2 (θ) , (45) 
as also shown in figure [START_REF] Särkkä | Bayesian filtering and smoothing[END_REF]. Last, in figure (3) we display two different modified WWB q (θ) (39a), namely the WWB q 0.5 1 (θ) and the WWB q 2 2 (θ), and the associated modified BZB q 0.5 1 (θ) and BZB q 2 2 (θ) , for a comparison with the WWB (θ) (31a) and the associated BZB (θ). Figure (3) highlights the following result: if the non zero limiting form of a large-error bound is tighter in the asymptotic region than the non zero limiting form of another large-error bound, this tightness relationship is still valid in the threshold region for the two large-error bounds. Although not displayed, we have checked this result in all the numerous comparisons we have done between representatives of BMZB q δ 1 (θ) and BMZB q α 2 (θ), within the same family or not. More precisely, we have noticed that for both the WWB and the BZB, the threshold value does not change (with a precision of 0.1 dB), but the relative bound tightness in the threshold region depends on the relative bound tightness in the asymptotic region. This observation allows to understand why the WWB (θ) and the BZB (θ) remain the tightest bounds in the threshold region. Indeed as:

WWB (θ) = lim δ→0 WWB q δ 1 (θ) and BZB (θ) = lim δ→0 BZB q δ 1 (θ) , (46) 
therefore, asymptotically, the limiting form of both the WWB (θ) and the BZB (θ) is BMZB q δ 1 (θ), which asymptotically coincides with BMZB U B (θ), the tightest value of BMZB q (θ). 

VI. CONCLUSION

In the present paper, a fairly general class of "large-error" BLBs of the WWF, essentially free from regularity conditions on the pdfs support and for which a limiting form yields a generalized BCRB, has been introduced. The proposed class of BLBs defines a wide range of Bayesian estimation problems for which a non trivial generalized BCRB exists, which is a key result from a practical viewpoint. In a large number of cases, this limiting form appears to be the BMZB. This theoretical result open new perspectives in the search of tight lower-bounds in the threshold region, new ones or some modified existing ones. Indeed, since the BMZB may provide a tighter bound than the historical BCRB in the asymptotic region, modified WWB and BZB which limiting form is the BMZB has been proposed. The analysis of the behavior of the proposed modified bounds in an application case has led us to postulate the following conjecture: if the non zero limiting form of a large-error bound is tighter in the asymptotic region than the non zero limiting form of another large-error bound, this tightness relationship is still valid in the threshold region for the two large-error bounds. Further study cases need to be addressed in order to quantify how general or specific is this conjecture.

VII. APPENDIX

In this Appendix, Propositions 1 and its extension, Proposition 2, are derived.

A. Case of bounded intervals

First, let us address the case of closed intervals:

∀x ∈ S X , S Θ|x = [a x , b x ] : -∞ < a x < b x < +∞. (47) -10 -5 0 5 10 15 -60 -50 -40 -30 -20 -10 
Output SNR (dB)

MSE (dB) BMZB UB σ θ 2 WWB WWB q 1 0.5 WWB q 2 2 BZB BZB q 1 0.5 BZB q 2 2
Fig. 3. Single tone estimation: comparision of various modified BZBs and WWBs (39a), N = 32, SNR step is 0.1 dB.

Step 1

First, one needs to asses:

lim h→0 E x,θ g (θ) ψ h q (x, θ) h = lim h→0 E x,θ g (θ -h) -g (θ) h q (x, θ) 1 SΘ|x (θ -h) (48) 
According to (47), ∀x ∈ S X , ∀h > 0:

E θ|x g(θ-h)-g(θ) h q (x, θ) 1 SΘ|x (θ -h) = - bx ax+h g(θ-h)-g(θ) -h q (x, θ) p (θ|x) dθ E θ|x g(θ+h)-g(θ) -h q (x, θ) 1 SΘ|x (θ + h) = - bx-h ax g(θ+h)-g(θ) h q (x, θ) p (θ|x) dθ (49a) 
Assuming that g (θ) is of class C 1 over S Θ|x , by invoking the mean value theorem [START_REF] Gisbert-Chambaz | Camille Jordan et les fondements de l'analyse[END_REF], one obtains

∃γ + (h) ∈ [0, h] : g(θ+h)-g(θ) h = dg(θ+γ + (h)) dθ ∃γ -(h) ∈ [0, h] : g(θ)-g(θ-h) h = dg(θ-γ -(h)) dθ (49b)
Thus, we deduce that, ∀x ∈ S X :

lim h→0 + E θ|x g(θ-h)-g(θ) h q (x, θ) 1 SΘ|x (θ -h) = -lim h→0 + bx ax+h dg(θ) dθ q (x, θ) p (θ|x) dθ + lim h→0 + bx ax+h dg(θ) dθ -dg(θ-γ -(h)) dθ q (x, θ) p (θ|x) dθ (49c) lim h→0 + E θ|x g(θ+h)-g(θ) -h q (x, θ) 1 SΘ|x (θ + h) = -lim h→0 + bx-h ax dg(θ)
dθ q (x, θ) p (θ|x) dθ

+ lim h→0 + bx-h ax dg(θ) dθ -dg(θ+γ + (h)) dθ q (x, θ) p (θ|x) dθ (49d) 
According to Heine theorem [START_REF] Gisbert-Chambaz | Camille Jordan et les fondements de l'analyse[END_REF]:

∀ε > 0, ∃h > 0 | ∀ θ, θ ∈ S θ|x , θ -θ < h ⇒ dg (θ) dθ - dg θ dθ < ε, (50a) 
one can state that

∀ε > 0, ∃h > 0 |    ∀γ + (h) < h ⇒ dg(θ) dθ -dg(θ+γ + (h)) dθ < ε ∀γ -(h) < h ⇒ dg(θ) dθ -dg(θ-γ -(h)) dθ < ε . (50b) 
Consequently,∀x ∈ S X , ∀ε > 0, ∃h > 0 such that:

bx ax+h dg(θ) dθ - dg(θ-γ -(h)) dθ q (x, θ) p (θ|x) dθ ≤ bx ax+h dg (θ) dθ - dg (θ -γ -(h)) dθ |q (x, θ)| p (θ|x) dθ (50c) 
≤ bx ax dg (θ) dθ - dg (θ -γ -(h)) dθ |q (x, θ)| p (θ|x) dθ (50d) < εE θ|x [|q (x, θ)|] (50e) 
leading to:

∀x ∈ S X : lim h→0 E θ|x g (θ) ψ h q (x, θ) h = -E θ|x ∂g (θ) ∂θ q (x, θ) , (51a) 
and:

lim h→0 E x,θ g (θ) ψ h q (x, θ) h = -E x,θ ∂g (θ) ∂θ q (x, θ) . ( 51b 
)
Step 2

Second, one needs to asses:

lim h→0 E x,θ   ψ h q (x, θ) h 2   . (52) 
According to (47), ∀x ∈ S X , ∀h > 0:

E θ|x ψ h q (x, θ) 2 h 2 = 1 h 2 bx ax q (x, θ + h) p (θ + h|x) 1 Sθ|x (θ + h) -q (x, θ) p (θ|x) 1 SΘ|x (θ -h) 2 dθ p (θ|x) (53a) E θ|x ψ h q (x, θ) 2 h 2 =
bx-h ax (q(x,θ+h)p(θ+h|x)-q(x,θ)p(θ|x)) 2 h 2 dθ p(θ|x) + 2 h ax+h ax q(x,θ+h)p(θ+h|x)-q(x,θ)p(θ|x) h q (x, θ) dθ

+ 1 h 2   ax+h ax q (x, θ) 2 p (θ|x) dθ + bx bx-h q (x, θ) 2 p (θ|x) dθ   (53b) 
and

E θ|x ψ -h q (x, θ) 2 (-h) 2 = 1 h 2 bx ax q (x, θ -h) p (θ -h|x) 1 Sθ|x (θ -h) -q (x, θ) p (θ|x) 1 Sθ|x (θ + h) 2 dθ p (θ|x) (53c) E θ|x ψ -h q (x, θ) 2 (-h) 2 = bx ax+h (q(x,θ+h)p(θ+h|x)-q(x,θ)p(θ|x)) 2 (-h) 2 dθ p(θ|x) -2 h bx bx-h q(x,θ-h)p(θ-h|x)-q(x,θ)p(θ|x) -h q (x, θ) dθ + 1 h 2   ax+h ax q (x, θ) 2 p (θ|x) dθ + bx bx-h q (x, θ) 2 p (θ|x) dθ   (53d) 
Assuming that t (x, θ) = q (x, θ) p (θ|x) is of class C 1 w.r.t. θ over S Θ|x , thus ∂t(x,θ) ∂θ 2 is continuous over S Θ|x . Then, using the same rationale as in step 1 based on the mean value theorem and the Heine theorem, one can easily prove that, ∀x ∈ S X :

lim h→0 + E θ|x   ψ h q (x, θ) h 2   = E θ|x 1 p(θ|x) ∂t(x,θ) ∂θ 2 + 2q (x, a x ) ∂t(x,θ) ∂θ θ=ax + 1 h 2   ax+h ax u (x, θ) dθ + bx bx-h u (x, θ) dθ   (53e) 
and

lim h→0 + E θ|x   ψ -h q (x, θ) -h 2   = E θ|x 1 p(θ|x) ∂t(x,θ) ∂θ 2 -2q (x, b x ) ∂t(x,θ) ∂θ θ=bx + 1 h 2   ax+h ax u (x, θ) dθ + bx bx-h u (x, θ) dθ   (53f)
where u (x, θ) = t (x, θ) q (x, θ) = q (x, θ) 2 p (θ|x). Assuming that u (x, θ) is of class C 2 w.r.t. θ at the vicinity of endpoints a x and b x , one can prove that (see Appendix VII-D):

lim h→0 + 1 h 2   ax+h ax u (x, θ) dθ + bx bx-h u (x, θ) dθ   = u (x, b x ) + u (x, a x ) h + 1 2 ∂u (x, θ) ∂θ θ=ax - ∂u (x, θ) ∂θ θ=bx (54) 
Therefore, in order to obtain a non trivial BCRB q from (53e-53f), the following necessary and sufficient conditions must hold:

u (x, b x ) + u (x, a x ) = q (x, a x ) 2 p (a x |x) + q (x, b x ) 2 p (b x |x) = 0, (55a) 
that is:

q (x, a x ) p (a x |x) = 0 and q (x, b x ) p (b x |x) = 0. (55b) 
Plugging (55b) into the following identities ∂u (x, θ) ∂θ = 2 ∂q (x, θ) ∂θ q (x, θ) p (θ|x) + q (x, θ) 2 ∂p (θ|x) ∂θ , (55c)

∂t (x, θ) ∂θ q (x, θ) = ∂q (x, θ) ∂θ q (x, θ) p (θ|x) + q (x, θ) 2 ∂p (θ|x) ∂θ 2 , ( 55d 
) one obtains ∂t (x, θ) ∂θ θ=ax q (x, a x ) = q (x, a x ) 2 ∂p (θ|x) ∂θ θ=ax = ∂u (x, θ) ∂θ θ=ax , ( 55e 
) ∂t (x, θ) ∂θ θ=bx q (x, a x ) = q (x, b x ) 2 ∂p (θ|x) ∂θ θ=bx = ∂u (x, θ) ∂θ θ=bx , (55f) 
leading to, ∀x ∈ S X :

lim h→0 + E θ|x   ψ h q (x, θ) h 2   = E θ|x 1 p(θ|x) ∂t(x,θ) ∂θ 2 + 5 2 q (x, a x ) 2 ∂p(θ|x) ∂θ θ=ax -1 2 q (x, b x ) 2 ∂p(θ|x) ∂θ θ=bx (56a) lim h→0 + E θ|x   ψ -h q (x, θ) -h 2   = E θ|x 1 p(θ|x) ∂t(x,θ) ∂θ 2 -5 2 q (x, b x ) 2 ∂p(θ|x) ∂θ θ=bx + 1 2 q (x, a x ) 2 ∂p(θ|x) ∂θ θ=ax (56b) 
Furthermore, the endpoints condition u (x, a x ) = 0 and u (x, b x ) = 0 implies that the function u (x, θ) is increasing at the vicinity of a x and decreasing at the vicinity of b x . Thus:

5 2 q (x, a x ) 2 ∂p (θ|x) ∂θ θ=ax - 1 2 q (x, b x ) 2 ∂p (θ|x) ∂θ θ=bx ≥ 0 (57a) and - 5 2 q (x, b x ) 2 ∂p (θ|x) ∂θ θ=bx + 1 2 q (x, a x ) 2 ∂p (θ|x) ∂θ θ=ax ≥ 0 (57b) 
Consequently:

lim h→0 E θ|x   ψ h q (x, θ) h 2   ≥ E θ|x 1 p (θ|x) ∂t (x, θ) ∂θ 2 (58a)
in which, the equality holds for q (x, a x ) = q (x, b x ) = 0. Last, let v (x, θ) = q (x, θ) 2 ∂p(θ|x) ∂θ ; by taking the expectation with respect to x of (56a-56b), one gets the following inequality:

lim h→0 E x,θ   ψ h q (x, θ) h 2   ≤ E x,θ   ∂t(x,θ) ∂θ p (θ|x) 2   + min E x 5 2 v (x, a x ) -1 2 v (x, b x ) , E x 1 2 v (x, a x ) -5 2 v (x, b x ) , (58b) 
which, combined with (51b) lead to (15b).

It is straightforward to extend the above rationale to the general case of bounded intervals

S Θ|x = [a x , b x [, S Θ|x = ]a x , b x ], S Θ|x = ]a x , b x [, -∞ < a x < b x < +∞, provided that : q (x, θ), ∂t(x,θ) ∂θ , u (x, θ), ∂u(x,θ) ∂θ and ∂ 2 u(x,θ) ∂ 2 θ
are bounded functions at the vicinity of endpoints a x and b x . Moreover, (58b) is uniquely integral calculus based, thus, due to the fact that the result does not change by a finite number of discontinuities, we conclude that the above conditions can be relaxed to : g (θ) and q (x, θ) p (θ|x) are piecewise C 1 function w.r.t. θ over S Θ|x .

B. Case of unbounded intervals

In the case of unbounded intervals, one has a x = -∞ and/or b x = +∞. Then, let us define a sequence of intervals given by

S l Θ|x = a l x , b l x , -∞ < a l x < b l x < ∞ subject to S l Θ|x ⊂ S Θ|x and lim l→∞ S l Θ|x = S Θ|x
In the same way, we define S l X ,Θ = (x, θ) | x ∈ S X and θ ∈ S l Θ|x and denote:

p l (x, θ) = p (x, θ) S l X ,Θ p (x, θ) dxdθ , p l (θ|x) = p (θ|x) S l Θ|x p (θ|x) dθ , (59a) 
which defines:

E l x,θ [q (x, θ)] = S l X ,Θ q (x, θ) p l (x, θ) dxdθ, E l θ|x [q (x, θ)] = S l Θ|x q (x, θ) p l (θ|x) dθ (59b) 
Then, the analysis and results given in the previous Section VII-A can be applied to the restricted intervals S l X ,Θ , S l Θ|x and their associated pdfs p l (x, θ) , p l (θ|x), respectively. By definition:

SX,Θ E θ|x [g (θ)] -g (θ) 2 p l (x, θ)dθdx ≥ S l X ,Θ E θ|x [g (θ)] -g (θ) 2 p l (x, θ)dθdx, (60a) 
that is:

E x,θ E θ|x [g (θ)] -g (θ) 2 S l p (x, θ) dxdθ ≥ E l x,θ E θ|x [g (θ)] -g (θ) 2 . (60b) 
Moreover, as:

E l x,θ E θ|x [g (θ)] -g (θ) 2 ≥ E l x,θ E l θ|x [g (θ)] -g (θ) 2 , (60c) 
therefore:

E x,θ E θ|x [g (θ)] -g (θ) 2 S l X ,Θ p (x, θ) dxdθ ≥ E l x,θ E l θ|x [g (θ)] -g (θ) 2 . (60d) 
Finally, since lim l→∞ S l Θ|x = S Θ|x , one has:

E x,θ E θ|x [g (θ)] -g (θ) 2 ≥ lim l→∞ E l x,θ E l θ|x [g (θ)] -g (θ) 2 , (60e) 
which allows to state Proposition 1 as the limiting form of the bounded intervals case.

C. Case of a countable union of disjoint intervals of R First we consider the case where S Θ|x results from a finite union of disjoint bounded intervals

I k Θ|x R: ∀x ∈ S X , S Θ|x = 1≤k≤Kx I k Θ|x , such that K x ∈ N and I k Θ|x ∩ I l Θ|x = ∅ if k = l.
Let us denote the endpoints of I k Θ|x by a k x and b k x , a k x < a k x . Then

                                             E θ|x g (θ) ψ h q (x,θ) h = - Kx k=1 b k x a k x +h
g(θ-h)-g(θ) -h q (x, θ) p (θ|x) dθ, E θ|x g (θ)

ψ h q (x,θ) h = - Kx k=1 b k x -h a k
x g(θ+h)-g(θ) h q (x, θ) p (θ|x) dθ,

E θ|x ψ h q (x,θ) 2 h 2 = 1 h 2 Kx k=1 b k x a k x +h
q (x, θ + h) p (θ + h|x) 1 SΘ|x (θ + h) -q (x, θ) p (θ|x) 1 SΘ|x (θ -h)

2 1 p(θ|x) dθ, E θ|x ψ -h q (x,θ) 2 (-h) 2 = 1 h 2 Kx k=1 b k x -h a k
x q (x, θ -h) p (θ -h|x) 1 SΘ|x (θ -h) -q (x, θ) p (θ|x) 1 SΘ|x (θ + h)

2 1 p(θ|x) dθ, (61) 
which means that all the rationale introduced in Appendix VII-A can be applied to each I k Θ|x individually. Therefore if, 1 ≤ k ≤ K x : • q (x, θ) admits a finite limit at endpoints of I k Θ|x , • g (θ) is piecewise C 1 w.r.t. θ over I k Θ|x , • t (x, θ) q (x, θ) p (θ|x) is piecewise C 1 w.r.t. θ over I k Θ|x and such as ∂t(x,θ) ∂θ admits a finite limit at endpoints of I k Θ|x , • u (x, θ) q (x, θ) 2 p (θ|x) is C 2 w.r.t. θ at the vicinity of endpoints of I k Θ|x and such as u (x, θ) , ∂u(x,θ) ∂θ and ∂ 2 u(x,θ) ∂ 2 θ admit a finite limit at endpoints of I k Θ|x , then a necessary and sufficient condition in order to obtain a non trivial BCRB q is:

q x, a k x p a k x |x = q x, b k x p b k x |x = 0, 1 ≤ k ≤ K x , (62a) 
leading to:

BCRB q (g (θ)) = E x,θ dg(θ) dθ q (x, θ) 

       Kx k=1 E x 5 2 v x, a k x -1 2 v x, b k x , Kx k=1 E x 1 2 v x, a k x -5 2 v x, b k x        (62b) 
If I 1 Θ|x is a left-unbounded interval and/or I Kx Θ|x is a right-unbounded interval, then the above results still hold provided that (see Appendix VII-B) for k = 1 and/or k = K x : q x, a k x p a k x |x lim 

Additionally, as:

a x ≤ θ ≤ a x + h ⇒ θ-ax-h h 2 ≤ 1 b x -h ≤ θ ≤ b x ⇒ bx-θ-h h 2 ≤ 1 (66a) 
therefore: 

ax+h ax θ -a x -h h 2 ∂ 2 u (x, θ) ∂θ 2 dθ ≤ ax+h ax θ -a x -h h 2 ∂ 2 u (x, θ) ∂θ 2 dθ ≤ ax+h ax ∂ 2 u (x, θ) ∂θ 2 dθ, (66b) 
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 22365411 Fig.1. Single tone estimation: illustration of the relationship between BZB (θ), WWB (θ) (31a) and BMZB q δ 1 (θ) (38a), N = 32, SNR step is 0.5 dB.
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 2 Fig. 2. Single tone estimation: comparison of some BCRB (35a) obtained from two families of BMZBq (θ) (38a-38b), N = 32, SNR step is 0.5 dB.

2 E

 2 

u 2 u 2 

 22 61) holds as well for a a countable union of disjoint intervals of R, QED.D. Proof of (54)Let us consider a functionu : X × [a, b] → R, a < b, in which u is of C 2 w.r.t. θ. Then, ∀x ∈ S X : b a u (x, θ) dθ = (b -a) u (x, a) (x, θ) dθ = (b -a) u (x, b)u is of C 2 w.r.t. θ over X × [a x , a x + h] and X × [b x -h, b x ], 0 < h, a x < b x , one obtains: ax+h ax u (x, θ) dθ = hu (x, a x ) + h 2 ∂u (x, a x ) (x, θ) dθ = hu (x, b x ) -h 2 ∂u (x, b x )

2 and ∂ 2 uu 2 ∂u

 222 u is of C 2 w.r.t. θ over X × [a x , a x + h] and X × [b x -h, b x ], then ∂ 2 u(x,ax) ∂θ (x, b x ) + u (x, a x ) h + 1 (x, a x ) ∂θ -∂u (x, b x ) ∂θ(67)

  T , α ∈ C, [a, b] [0, 1], and g (θ) θ. A motivation for choosing the parametric model (30) is the belief in the open literature that both the BCRB and the BZB are inapplicable in that case [10, Section II][11, p682][13, p340][3, p39].

In all figures, WWB (θ) (31a) and WWBq (θ) (39a) are the supremum computed over h = -1 + k10 -4 , 1 ≤ k ≤ 1999, and s = l10 -2 , 1 ≤ l ≤ 99.