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A class of Weiss-Weinstein bounds and its
relationship with the Bobrovsky-Mayer-Wolf-Zakaı̈

bounds
Eric Chaumette, Alexandre Renaux and Mohammed Nabil El Korso

Abstract

A fairly general class of Bayesian ”large-error” lower bounds of the Weiss-Weinstein family, essentially free
from regularity conditions on the probability density functions support, and for which a limiting form yields a
generalized Bayesian Cramér-Rao bound (BCRB), is introduced. In a large number of cases, the generalized BCRB
appears to be the Bobrovsky-Mayer-Wolf-Zakai bound (BMZB). Interestingly enough, a regularized form of the
Bobrovsky-Zakai bound (BZB), applicable when the support of the prior is a constrained parameter set, is obtained.
Modified Weiss-Weinstein bound and BZB which limiting form is the BMZB are proposed, in expectation of an
increased tightness in the threshold region. Some of the proposed results are exemplified with a reference problem
in signal processing: the Gaussian observation model with parameterized mean and uniform prior.

Index Terms

Performance analysis, Bayesian bound, parameter estimation.

I. INTRODUCTION

Under the mean square error (MSE) criterion, the mean of the a posteriori probability density function (pdf) of a
random parameter, conditioned on the observed data, is the optimal solution to the parameter estimation problem.
However, except for a few special cases, determining the posterior mean is computationally prohibitive, and various
approaches have been developed as alternatives. It is therefore of interest to determine the degradation in accuracy
resulting from the use of suboptimal methods [1][2]. Unfortunately again, the computation of the MSE of the
conditional mean estimator generally requires multiple integration, a computationally intensive task [1][2]. This has
led to a large body of work [3][4][5] seeking to find both computationally tractable and tight Bayesian lower bounds
(BLBs) on the attainable MSE to which the performance of the optimal estimator or any suboptimal estimation
scheme can be compared.

Historically, computational tractability and ease of use seem to have been the prominent qualities requested for
a lower bound, as exemplified by the Bayesian Cramér-Rao bound (BCRB), the first Bayesian lower bound to
be derived [6][7], and still the most commonly used BLB. Nevertheless, it is now well known that the BCRB
is an optimistic bound in a non-linear estimation problem where the outliers effect generally appears, leading to
a characteristic behavior of estimators MSE which exhibits three distinct regions of operation depending on the
number of (independent) observations and/or on the signal to noise ratio (SNR) [3]. More precisely, at high SNR
and/or for a high number of observations, i.e., in the asymptotic region, the outliers effect can be neglected and
the ultimate performance are generally described by the BCRB. However, when the SNR and/or the number of
observations decrease, the outliers effect leads to a quick increase of the MSE: this is the so-called threshold effect
which is not predicted by the BCRB. Finally, at low SNR and/or at low number of observations, the observations
provide little information, and the MSE is close to that obtained from the prior knowledge about the problem
yielding the no-information region.

Therefore after computational tractability, tightness and/or relaxation of some regularity assumptions on the prob-
lem setting [8][9][10][11] have become the prominent qualities looked for a lower bound in non-linear estimation
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problems. Indeed, from a practical point of view, the knowledge of the particular value for which the threshold
effect appears is a key feature allowing to define estimators optimal operating area. This has led to a large body
of research based, so far, on two main families, i) the Ziv-Zakai family (ZZF) resulting from the conversion of an
estimation bounding problem into one bounding binary hypothesis testing [8][9][12] and, ii) the Weiss-Weinstein
family (WWF), derived from a covariance inequality principle [5][6][7][10][11][13][14][15][17][16]. In each family,
some bounds, generally called ”large-error” bounds (in contrast with ”small-error” bounds such as the BCRB), can
predict the threshold effect [3].

In the present paper we focus on the Weiss-Weinstein family. The main contribution of the paper is to introduce
a fairly general class of ”large-error” bounds of the WWF essentially free from regularity conditions and for which
a limiting form yields a generalized BCRB. Indeed, within this class of lower bounds, the supports of the joint and
conditional pdfs must only be a countable union of disjoint non empty intervals of R (which naturally includes
connected or disconnected subsets of R, bounded or unbounded intervals) and the bound-generating functions must
only have a finite second order moment. Additionally, we provide (Propositions 1 and 2) some mild regularity
conditions in order to obtain a non trivial limiting form (non zero generalized BCRB) of the ”large-error” bound
considered. In a large number of cases, this limiting form appears to be the Bobrovsky-Mayer-Wolf-Zakai bound
(BMZB) [14]. Therefore, the proposed class of Bayesian lower bounds defines a wide range of Bayesian estimation
problems for which a non trivial generalized BCRB exists, which is a key result from a practical viewpoint. Indeed,
the computational cost of large-error bounds is prohibitive in most applications when the number of unknown
parameters increases.
Interestingly enough, the proposed class of lower bounds provides the expression of all existing bounds of the
WWF mentioned in [4] and [5] when the pdfs support is a constrained parameter set, including a regularized form
of the Bobrovsky-Zakai bound (BZB) [10]. From a practical viewpoint, it is another noticeable result, since the
BZB is the easiest to use ”large-error” bound, but was believed to be inapplicable in that case [10, Section II][11,
p682][13, p340][3, p39].
Last, as a by-product, since the BMZB may provide a tighter bound than the historical BCRB in the asymptotic
region [14][3, p36], it would seem sensible to introduce modified Weiss-Weinstein bound (WWB) and BZB which
limiting form is the BMZB, in expectation of an increased tightness in the threshold region as well.

Some of the proposed results are exemplified with a reference problem in signal processing: the Gaussian
observation model with parameterized mean depending on a random parameter with uniform prior. For numerical
evaluations, we focus on the estimation of a single tone.

For sake of legibility, we only discuss in details the case of a single random parameter. Extension of the proposed
results to a vector of parameters can be done by resorting to the covariance matrix inequality as shown in [13,
p341][14, p1429].

II. A NEW CLASS OF BAYESIAN LOWER BOUNDS OF THE WEISS-WEINSTEIN FAMILY

Throughout the present paper scalars, vectors and matrices are represented, respectively, by italic (as in a or A),
bold lowercase (as in a) and bold uppercase (as in A) characters. The n-th row and m-th column element of the
matrix A is denoted by {A}n,m, whereas, {a}n represents the n-th coordinate of the column vector a. The real
and imaginary part of A, are denoted, respectively, by Re {A} and Im {A}. The transpose, transpose conjugate
operator are indicated, respectively, by .T and .H . The identity matrix of size M is denoted by IM . For any given
two matrices A and B, A � B means that A −B is positive semi-definite matrix. E [.] denotes the expectation
operator and 1A (x) is the indicator function of subset A of RN .

A. Definitions and Assumptions

Throughout the present paper:
• x denotes a N -dimensional complex random observation vector belonging to the observation space X ⊂ CN .
• θ denotes a real random parameter belonging to the parameter space Θ ⊂ R.
• SX ,Θ ⊂ CN×R denotes the support of the the joint pdf p (x, θ) of x and θ such that SX ,Θ =

{(
xT , θ

)T ∈ CN × R : p (x, θ) > 0
}

.
• SΘ ⊂ R denotes the support of the prior pdf of θ denoted p (θ), i.e., SΘ = {θ ∈ R : p (θ) > 0}.
• SX ⊂ CN denotes the support of the marginal pdf of x denoted p (x), i.e., SX =

{
x ∈ CN : p (x) > 0

}
.
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• Furthermore, ∀x ∈ SX , let us denote SΘ|x = {θ ∈ R : p (x, θ) > 0} and ∀θ ∈ SΘ, SX|θ =
{
x ∈ CN : p (x, θ) > 0

}
.

Then:

p (θ) =

∫
CN

p (x, θ) 1SX|θ (x) dx =

∫
SX|θ

p (x, θ) dx, p (x) =

∫
R

p (x, θ) 1SΘ|x (x) dθ =

∫
SΘ|x

p (x, θ) dθ.

Thus, for a given function f : X ×Θ→ R, deterministic, unknown and measurable function, one has:

Ex,θ [f (x, θ)] =

∫
CN

∫
R

f (x, θ) p (x, θ) 1SX ,Θ(x, θ)dxdθ =

∫
SX

∫
SΘ|x

f (x, θ) p (x, θ) dxdθ,

Ex|θ [f (x, θ)] =

∫
CN

f (x, θ) p (x|θ) 1SX|θ(x)dx =

∫
SX|θ

f (x, θ) p (x|θ) dx,

Eθ|x [f (x, θ)] =

∫
R

f (x, θ) p (θ|x) 1SΘ|x(θ)dθ =

∫
SΘ|x

f (x, θ) p (θ|x) dθ,

Ex [f (x, θ)] =

∫
CN

f (x, θ) p (x) 1SX (x)dx =

∫
SX

f (x, θ) p (x) dx,

Eθ [f (x, θ)] =

∫
R

f (x, θ) p (θ) 1SΘ
(θ)dθ =

∫
SΘ

f (x, θ) p (θ) dθ,

Ex,θ [f (x, θ)] =

∫
SX

 ∫
SΘ|x

f (x, θ)
p (x, θ)

p (x)
dθ

 p (x) dx = Ex

[
Eθ|x [f (x, θ)]

]
,

Ex,θ [f (x, θ)] =

∫
SΘ

 ∫
SX|θ

f (x, θ)
p (x, θ)

p (θ)
dx

 p (θ) dθ = Eθ
[
Ex|θ [f (x, θ)]

]
.

Additionally, we assume that:
• A1) g(θ) : R → R, g(.) ∈ L2(SΘ|x), ∀x ∈ SX , is the deterministic, known, measurable function to be

estimated, where L2(SΘ|x) denotes the space of square integrable functions w.r.t. p(θ|x), i.e., Eθ|x[g(θ)2] <∞.
• A2) ĝ(x) : X → R, ĝ(.) ∈ L2(SX ), denotes any deterministic, known, measurable estimator of g(θ), where
L2(SX ) denotes the space of square integrable functions w.r.t. p(x), i.e., Ex[ĝ(x)2] <∞.

• A3) ψ (x, θ) : X × R → R, ψ (.) ∈ L2(SX ,Θ), denotes a deterministic, known, measurable function, where
L2(SX ,Θ) denotes the space of square integrable functions w.r.t. p(x, θ), i.e., Ex,θ[ψ(x, θ)2] <∞, and satisfying
0 < Ex,θ[ψ(x, θ)2].

B. Background on covariance inequality

Under the assumptions A1), A2) and A3), the Cauchy-Schwartz inequality states that:

Ex,θ [(ĝ(x)− g (θ))ψ (x, θ)]2 ≤ Ex,θ

[
(ĝ(x)− g (θ))2

]
Ex,θ

[
ψ (x, θ)2

]
. (1a)

Therefore:

Ex,θ

[
(ĝ(x)− g (θ))2

]
≥
Ex,θ [(ĝ(x)− g (θ))ψ (x, θ)]2

Ex,θ

[
ψ (x, θ)2

] =
(Ex,θ [ĝ(x)ψ (x, θ)]− Ex,θ [g (θ)ψ (x, θ)])2

Ex,θ

[
ψ (x, θ)2

] . (1b)

A necessary condition on ψ (x, θ) in order to obtain a lower bound on the MSE of ĝ(x), i.e., an expression
independent from the estimator ĝ(x) in the right-hand side of (1b), is to satisfy [13]:

Ex,θ [ĝ(x)ψ (x, θ)] = 0. (2a)
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As ĝ (x) is θ independent, thus, (2a) can be rewritten as:

Ex,θ [ĝ(x)ψ (x, θ)] = Ex

[
Eθ|x [ĝ(x)ψ (x, θ)]

]
= Ex

[
ĝ (x)Eθ|x [ψ (x, θ)]

]
. (2b)

Consequently, a sufficient condition for a judicious choice of ψ (x, θ) is simply [13]:

Eθ|x [ψ (x, θ)] = 0. (2c)

Finally, a non trivial bound is obtained from (1b) for the family of functions ψ (x, θ) satisfying both (2c) and
Ex,θ [g (θ)ψ (x, θ)] 6= 0, yielding the Weiss-Weinstein family of Bayesian lower bounds [13] given by:

Ex,θ

[
(ĝ(x)− g (θ))2

]
≥
Ex,θ [g (θ)ψ (x, θ)]2

Ex,θ

[
ψ (x, θ)2

] . (3)

C. Proposed class of Bayesian lower bounds

Let us consider a function q (x, θ) : X × R → R. Thus, one can notice that, since p (θ|x) = p (θ|x) 1SΘ|x (θ),
then, ∀x ∈ SX :∫

SΘ|x

q (x, θ + h) p (θ + h|x) 1SΘ|x (θ) dθ =

∫
R

q (x, θ + h) p (θ + h|x) 1SΘ|x (θ + h) 1SΘ|x (θ) dθ (4a)

=

∫
R

q (x, θ) p (θ|x) 1SΘ|x (θ) 1SΘ|x (θ − h) dθ (4b)

=

∫
SΘ|x

q (x, θ) p (θ|x) 1SΘ|x (θ − h) 1SΘ|x (θ) dθ (4c)

leading to: ∫
SΘ|x

q (x, θ + h) p (θ + h|x) 1SΘ|x (θ) dθ −
∫
SΘ|x

q (x, θ) p (θ|x) 1SΘ|x (θ − h) 1SΘ|x (θ) dθ = 0. (5)

Consequently, in order to fulfill (2c), we propose to use the following class of bound-generating functions:

ψhq (x, θ) =

{(
p(θ+h|x)
p(θ|x) q (x, θ + h)− q (x, θ) 1SΘ|x (θ − h)

)
1SΘ|x (θ) , if (x, θ) ∈ SX ,Θ

0, otherwise
, (6)

for which the choice of the function q(.) is only subject to: 0 < Ex,θ

[
ψhq (x, θ)2

]
<∞.

Now, we can derive the right-hand side of (3). As:

Eθ|x

[
g (θ)ψhq (x, θ)

]
=

∫
SΘ|x

g (θ) q (x, θ + h) p (θ + h|x) 1SΘ|x (θ) dθ

−
∫
SΘ|x

g (θ) q (x, θ) 1SΘ|x (θ − h) p (θ|x) dθ, (7)

and the first integral of the above equation can be written as:∫
SΘ|x

g (θ) q (x, θ + h) p (θ + h|x) 1SΘ|x (θ) dθ =

∫
R

g (θ) q (x, θ + h) p (θ + h|x) 1SΘ|x (θ + h) 1SΘ|x (θ) dθ,

(8a)

=

∫
R

g (θ − h) q (x, θ) p (θ|x) 1SΘ|x (θ) 1SΘ|x (θ − h) dθ, (8b)

=

∫
SΘ|x

g (θ − h) q (x, θ) 1SΘ|x (θ − h) p (θ|x) dθ, (8c)
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therefore:

Eθ|x

[
g (θ)ψhq (x, θ)

]
=

∫
SΘ|x

(g (θ − h)− g (θ)) q (x, θ) 1SΘ|x (θ − h) p (θ|x) dθ (9a)

= Eθ|x
[
(g (θ − h)− g (θ)) q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ)

]
(9b)

Finally, the proposed class of BLBs is given by:

BLBh
q (g (θ)) =

Ex,θ

[
(g (θ − h)− g (θ)) q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ)

]2
Ex,θ

[(
q (x, θ + h) p(θ+h|x)

p(θ|x) − q (x, θ) 1SΘ|x (θ − h)
)2

1SΘ|x (θ)

] , (10)

and tighter BLBs can be obtained as:

sup
ql(.),1≤l≤L,h∈R: ψhql (.)∈L2(SX ,Θ)

{
BLBh

ql (g (θ))
}
. (11)

Let us recall that Bayesian lower bounds are actually posterior lower bounds, i.e. lower bounding the MSE of the
posterior mean Eθ|x [g (θ)]. However as:

p (θ + h|x)

p (θ|x)
=
p (x,θ + h)

p (x,θ)
,∀ (x, θ) ∈ SX ,Θ, (12a)

we also resort to the alternative form of (10):

BLBh
q (g (θ)) =

Ex,θ

[
(g (θ − h)− g (θ)) q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ)

]2
Ex,θ

[(
q (x, θ + h) p(x,θ+h)

p(x,θ) − q (x, θ) 1SΘ|x (θ − h)
)2

1SΘ|x (θ)

] . (12b)

III. A NEW CLASS OF BCRBS AND ITS RELATIONSHIP WITH THE BMZBS

From the literature [13][15][3, p39], the historical BCRB [7] is given as the limiting form of the BZB where
SΘ|x = R, that is:

BCRB (g (θ)) = lim
h→0

Ex,θ

[
g (θ) 1

h

(
p(θ+h|x)
p(θ|x) − 1

)]2

Ex,θ

[(
1
h

(
p(θ+h|x)
p(θ|x) − 1

))2
] =

Ex,θ

[
dg(θ)
dθ

]2

Ex,θ

[(
∂ ln p(θ|x)

∂θ

)2
] . (13)

Mutatis mutandis, we can use this definition for every function q (x, θ) in order to define a generalized BCRB as
follows:

BCRBq (g (θ)) = max

 lim
h→0+

Ex,θ

[
g (θ) 1

hψ
h
q (x, θ)

]2
Ex,θ

[(
1
hψ

h
q (x, θ)

)2] , lim
h→0−

Ex,θ

[
g (θ) 1

hψ
h
q (x, θ)

]2
Ex,θ

[(
1
hψ

h
q (x, θ)

)2]
 . (14)

Interestingly enough, under the assumptions A1), A2) and A3), any ”large-error” bounds of the proposed class,
i.e. BLBh

q (g (θ)) (10), admits a finite limiting form BCRBq (g (θ)) (14). Moreover, under some mild regularity
conditions (see Propositions 1 and 2 below), the generalized BCRB is non zero, and in a large number of cases, this
limiting form appears to be the BMZB [14]. Therefore, the proposed class of BLBs defines a wide range of Bayesian
estimation problems for which a non trivial BCRB exists, which is a key result from a practical viewpoint. Indeed,
the computational cost of large-error bounds is prohibitive in most applications when the number of unknown
parameters increases [4][5].
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A. Case where SΘ|x is an interval of R
Then we can state the following

Proposition 1 : If ∀x ∈ SX :
• SΘ|x is an interval of R with endpoints ax, bx ∈ [−∞,+∞], ax < bx,
• q (x, θ) admits a finite limit at endpoints,
• g (θ) is piecewise C1 w.r.t. θ over SΘ|x,
• t (x, θ) , q (x, θ) p (θ|x) is piecewise C1 w.r.t. θ over SΘ|x and such as ∂t(x,θ)

∂θ admits a finite limit at endpoints,
• u (x, θ) , q (x, θ) t (x, θ) is C2 w.r.t. θ at the vicinity of endpoints and such as u (x, θ) , ∂u(x,θ)

∂θ and ∂2u(x,θ)
∂2θ

admit a finite limit at endpoints,
then a necessary and sufficient condition in order to obtain a non trivial BCRBq bound (14) is:

lim
θ→ax

t (x, θ) = 0 = lim
θ→bx

t (x, θ) , (15a)

which leads to:

BCRBq (g (θ)) =
Ex,θ

[
dg(θ)
dθ q (x, θ)

]2

Ex,θ

[(
∂t(x,θ)

∂θ

p(θ|x)

)2
]

+ min


Ex

[
5
2 lim
θ→ax

v (x, θ)− 1
2 lim
θ→bx

v (x, θ)

]
,

Ex

[
1
2 lim
θ→ax

v (x, θ)− 5
2 lim
θ→bx

v (x, θ)

]


(15b)

where v (x, θ) = q (x, θ)2 ∂p(θ|x)
∂θ .

Proof: see Appendix VII-A and Appendix VII-B.

In order to obtain a tight BCRBq (g (θ)), it seems judicious to choose q (x, θ) such that:

∀x ∈ SX : lim
θ→ax

q (x, θ) = 0 = lim
θ→bx

q (x, θ) . (16a)

Indeed, then (15b) reduces to:

BCRBq (g (θ)) =
Ex,θ

[
dg(θ)
dθ q (x, θ)

]2

Ex,θ

[(
∂t(x,θ)

∂θ

p(θ|x)

)2
] = BMZBq (g (θ)) , (16b)

where BMZBq (g (θ)) stands for the BMZB [14, (24)].
Note that:
• the above condition (15a) is not explicitly given in the original paper of [14, §4] nor in [3, p35]. Nevertheless,
it is applied implicitly when SΘ|x = R and explicitly in some specific examples when SΘ|x  R for which the
function q(x, θ) tends to zero at the endpoints of SΘ|x (see [14, Ex. 4.2], [3, Ex. 9]).
• the following alternative constraint

∀x ∈ SX : lim
θ→ax

p (θ|x) = 0 = lim
θ→ax

∂p (θ|x)

∂θ
and lim

θ→bx
p (θ|x) = 0 = lim

θ→bx

∂p (θ|x)

∂θ
, (16c)

leads to the BMZBq as well (but not mentioned in [14, §4]).
As conditions (16a) and (16c) may hold in many cases, Proposition 1 highlights the fact that the BMZB is not
only a class of BCRBs (as initially introduced in [14]) or weighted BCRBs (so-called in [3]), but rather the general
form of tight BCRBs (16b) when defined as the limiting form of some large-error bounds.



7

B. Case where SΘ|x is a countable union of disjoint intervals of R
Interestingly enough, Proposition 1 and, as a consequence, the BMZBq, can be formulated in the general case

where SΘ|x is a countable union of disjoint intervals IkΘ|x of R:

∀x ∈ SX , SΘ|x =
⋃
k∈Kx

IkΘ|x, IkΘ|x ∩ I
l
Θ|x = ∅, ∀k, l ∈ Kx, k 6= l, (17)

where Kx denotes a subset of N.
Indeed, we can state the following:
Proposition 2 : If ∀x ∈ SX :
• SΘ|x is a countable union of disjoint intervals IkΘ|x of R (17) with endpoints akx, b

k
x ∈ [−∞,+∞], akx < bkx,

• q (x, θ) admits a finite limit at endpoints of IkΘ|x,
• g (θ) is piecewise C1 w.r.t. θ over IkΘ|x,

• t (x, θ) , q (x, θ) p (θ|x) is piecewise C1 w.r.t. θ over IkΘ|x and such as ∂t(x,θ)
∂θ admits a finite limit at endpoints

of IkΘ|x,

• u (x, θ) , q (x, θ)2 p (θ|x) is C2 w.r.t. θ at the vicinity of endpoints of IkΘ|x and such as u (x, θ) , ∂u(x,θ)
∂θ and

∂2u(x,θ)
∂2θ admit a finite limit at endpoints of IkΘ|x,

then a necessary and sufficient condition in order to obtain a non trivial BCRBq is:

lim
θ→akx

t (x, θ) = 0 = lim
θ→bkx

t (x, θ) , ∀k ∈ Kx, (18a)

leading to:

BCRBq (g (θ)) =
Ex,θ

[
dg(θ)
dθ q (x, θ)

]2

Ex,θ

[(
∂t(x,θ)

∂θ

p(θ|x)

)2
]

+ min


∑
k∈Kx

Ex

[
5
2 lim
θ→akx

v (x, θ)− 1
2 lim
θ→bkx

v (x, θ)

]
,

∑
k∈Kx

Ex

[
1
2 lim
θ→akx

v (x, θ)− 5
2 lim
θ→bkx

v (x, θ)

]


(18b)

where v (x, θ) = q (x, θ)2 ∂p(θ|x)
∂θ .

Proof: see Appendix VII-C.

Choosing q (x, θ) such that

∀x ∈ SX ,∀k ∈ Kx : lim
θ→akx

q (x, θ) = lim
θ→bkx

q (x, θ) = 0, (19a)

then (18b) reduces to BMZBq (g (θ)) (16b). Last, note that the following alternative constraints

lim
θ→akx

p (θ|x) = lim
θ→akx

∂p (θ|x)

∂θ
= 0 and lim

θ→bkx
p (θ|x) = lim

θ→bkx

∂p (θ|x)

∂θ
= 0, ∀k ∈ Kx, (19b)

leads to the BMZBq (16b) as well.

IV. EXAMPLES OF BAYESIAN LOWER BOUNDS OF THE PROPOSED CLASS

A. Reformulation of existing Bayesian bounds

We show in this section that expression (10), with a judicious choice of the function q, allows for a general
formulation of existing BLBs whatever SΘ|x ⊂ R, including naturally the cases of a bounded connected subset of
R (see Section V) or a disjoint subset of R [18].
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1) Case of the Weiss-Weinstein lower bound:
In order to obtain the WWB, we specify, for s ∈]0, 1[, the function:

qh,sWW (x, θ) =


(
p(θ−h|x)
p(θ|x)

)1−s
1SΘ|x (θ − h) 1SΘ|x (θ) , if (x, θ) ∈ SX ,Θ

0, otherwise
. (20a)

Consequently, using qh,sWW (x, θ) into (6), one obtains the function:

ψh,sWW (x, θ) =


((

p(θ+h|x)
p(θ|x)

)s
1SΘ|x (θ + h)−

(
p(θ−h|x)
p(θ|x)

)1−s
1SΘ|x (θ − h)

)
1SΘ|x (θ) , if (x, θ) ∈ SX ,Θ

0, otherwise
,

(20b)
and an explicit form of WWB introduced in [11] is:

WWB (g (θ)) = sup
s∈]0,1[,h∈R: ψh,sWW(.)∈L2(SX ,Θ)

{
WWBh,s (g (θ))

}
, (21a)

WWBh,s (g (θ)) =

Ex,θ

[
(g (θ − h)− g (θ))

(
p(θ−h|x)
p(θ|x)

)1−s
1SΘ|x (θ − h) 1SΘ|x (θ)

]2

Ex,θ

[((
p(θ+h|x)
p(θ|x)

)s
1SΘ|x (θ + h)−

(
p(θ−h|x)
p(θ|x)

)1−s
1SΘ|x (θ − h)

)2

1SΘ|x (θ)

] (21b)

It is worth noting that the use of the compact form [13, (20-21)] can be a source of error in the formulation of the
integration domains involved in the computations of the various expectations when SΘ|x is a bounded connected
subset of R or a disjoint subset of R, as exemplified in [18].

2) Case of the Bobrovsky-Zakai bound:
In order to obtain the BZB, we set qhBZ (x, θ) = 1

h leading to:

ψhBZ (x, θ) =

{
1
h

(
p(θ+h|x)
p(θ|x) 1SΘ|x (θ + h)− 1SΘ|x (θ − h)

)
1SΘ|x (θ) , if (x, θ) ∈ SX ,Θ

0, otherwise
. (22)

Consequently, a regularized explicit form of BZB is given by:

BZB (g (θ)) = sup
h∈R: ψhBZ(.)∈L2(SX ,Θ)

{
BZBh (g (θ))

}
, (23a)

BZBh (g (θ)) =
Ex,θ

[(
g(θ−h)−g(θ)

h

)
1SΘ|x (θ − h) 1SΘ|x (θ)

]2

Ex,θ

[(
p(θ+h|x)1SΘ|x (θ+h)−p(θ|x)1SΘ|x (θ−h)

hp(θ|x)

)2

1SΘ|x (θ)

] , (23b)

which is a generalization of the bound introduced in [10] whatever SΘ|x. From a practical viewpoint, it is a
noticeable result, since the BZB is the easiest to use ”large-error” bound, but was believed to be inapplicable
where SΘ|x is a bounded connected subset of R [10, Section II][11, p682][13, p340][3, p39]. Moreover, since,
∀y > 0, lim

s→1−
y1−s = 1, therefore, ∀h ∈ R and ∀ (x, θ) ∈ SX ,Θ:

lim
s→1−

qh,sWW (x, θ) = 1SΘ|x (θ − h) 1SΘ|x (θ) , (24a)

leading to:

lim
s→1−

ψh,sWW (x, θ) =

(
p (θ + h|x)

p (θ|x)
1SΘ|x (θ + h)− 1SΘ|x (θ − h)

)
1SΘ|x (θ) = hψhBZ (x, θ) , (24b)

and:
lim
s→1−

WWBh,s (g (θ)) = BZBh (g (θ)) , (24c)

which is an extension of the result introduced in [13] whatever SΘ|x.



9

3) Generalization:
It is straightforward to extend the derivation of all the other existing BLBs mentioned in [4] and [5] whatever
SΘ|x, namely the historical BCRB, the BMZB, the Bayesian Bhattacharayya bound [13], the Reuven-Messer bound
[15], the combined Cramér-Rao/Weiss-Weinstein bound [16], the Bayesian Abel bound [17], and the Bayesian
Todros-Tabrikian bound [5], by updating the definitions of νRM (x, θ, τ) [5, (32)] and νWW (x, θ, τ) [5, (33)] as
follows:

νRM (x, θ, τ) = ψτBZ (x, θ) , νWW (x, θ, τ) = ψ
τ ,β(τ)
WW (x, θ) . (25)

B. Modified Weiss-Weinstein and Bobrovsky-Zakai lower bounds

It is now known and exemplified [14][3, p36] that the BMZB not only allows to derive a non trivial BCRB in
cases where the historical BCRB is trivial but may also provides a tighter bound than the historical BCRB in the
asymptotic region. Since the limiting form of the WWB (21a-21b) and BZB (23a-23b) is the historical BCRB, it
would seem sensible to define modified WWB and BZB which limiting form is the BMZB, in expectation of an
increased tightness in the threshold region as well. In that perspective, a modified WWB, denoted WWBq in the
following, which limiting form is BMZBq (16b), can be obtained by modifying the definition of qh,sWW (x, θ) (20a)
as follows:

qh,sMWW (x, θ) =


(
p(θ−h|x)
p(θ|x)

)1−s
q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ) , if (x, θ) ∈ SX ,Θ

0, otherwise
, (26)

provided that one of the conditions (16a), (16c), (19a), (19b) holds, since, according to (24a):

lim
s→1−

qh,sMWW (x, θ) = q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ) . (27)

Thus:

WWBq (g (θ)) = sup
s∈]0,1[,h∈R: ψh,sMWW(.)∈L2(SX ,Θ)

{
WWBh,s

q (g (θ))
}
, (28a)

WWBh,s
q (g (θ)) =

Ex,θ

[
(g (θ − h)− g (θ))

(
p(θ−h|x)
p(θ|x)

)1−s
q (x, θ) 1SΘ|x (θ − h) 1SΘ|x (θ)

]2

Ex,θ



(
p(θ+h|x)
p(θ|x)

)s
q (x, θ + h) 1SΘ|x (θ + h)−(

p(θ−h|x)
p(θ|x)

)1−s
q (x, θ) 1SΘ|x (θ − h)

2

1SΘ|x (θ)


(28b)

Note that the usual WWB is obtained for q (x, θ) = 1SX ,Θ (x, θ) and the modified BZB, denoted BZBq in the
following, is obtained for qhMBZ (x, θ) = lim

s→1−
qh,sMWW (x, θ), leading to:

BZBq (g (θ)) = sup
h∈R: ψhMBZ(.)∈L2(SX ,Θ)

{
BZBh

q (g (θ))
}
, (29a)

BZBh
q (g (θ)) =

Ex,θ

[(
g(θ−h)−g(θ)

h

)
1SΘ|x (θ − h) 1SΘ|x (θ)

]2

Ex,θ

[(
p(θ+h|x)q(x,θ+h)1SΘ|x (θ+h)−p(θ|x)q(x,θ)1SΘ|x (θ−h)

hp(θ|x)

)2

1SΘ|x (θ)

] . (29b)

V. APPLICATION TO THE GAUSSIAN OBSERVATION MODEL WITH PARAMETERIZED MEAN AND UNIFORM PRIOR

This section is dedicated to exemplify some of the results introduced above with a reference problem in signal
processing: the Gaussian observation model with a parameterized mean depending on a random parameter with
uniform prior. For numerical evaluations, we focus on the estimation of a single tone. Thus the parametric model
under consideration is:

x = (x1, . . . , xN )T = m (θ) + n, p (x|θ) =
e
− ‖x−m(θ)‖2

σ2
n

(πσ2
n)N

, p (θ) =
1Θ (θ)

b− a
, (30)
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where SX|θ = SX = CN and SΘ|x = SΘ = [a, b].
In the case of single tone estimation, m (θ) = α

(
1, ej2πθ, . . . , ej(N−1)2πθ

)T
, α ∈ C, [a, b] , [0, 1], and g (θ) , θ.

A motivation for choosing the parametric model (30) is the belief in the open literature that both the BCRB and
the BZB are inapplicable in that case [10, Section II][11, p682][13, p340][3, p39].

A. The WWB and its limiting form

For the parametric model (30), the WWB (21a-21b) is given by [19, Section 4]:

WWB (g (θ)) = sup
s∈]0,1[,|h|<b−a

{
WWBh,s (g (θ))

}
, (31a)

WWBh,s (g (θ)) =

Eθ

[
(g (θ − h)− g (θ)) e

− (1−s)s
σ2
n
‖m(θ−h)−m(θ)‖2

1SΘ
(θ − h)

]2


Eθ

[
e
− 2s(1−2s)

σ2
n
‖m(θ+h)−m(θ)‖2

1SΘ
(θ + h)

]
+

Eθ

[
e
− 2(1−s)(2s−1)

σ2
n

‖m(θ−h)−m(θ)‖2
1SΘ

(θ − h)

]
−

2Eθ

[
e
− s(1−s)

σ2
n
‖m(θ+h)−m(θ−h)‖2

1SΘ
(θ − h) 1SΘ

(θ + h)

]



. (31b)

As stated by Proposition 1, since t (x, θ) , q (x, θ) p (θ|x) = 1SX ,Θ (x, θ) 1Θ (θ) = 1Θ (θ), thus t (x, θ) does not
verify (15a) and the associated generalized BCRB1SX ,Θ

(14) is trivial.
Indeed, since ∀h : |h| < 1, Eθ [1SΘ

(θ ± h)] = 1 − |h|, Eθ [1SΘ
(θ + h) 1SΘ

(θ − h)] = sup {1− 2 |h| , 0}, and

lim
h1,h2→0

‖m (θ + h1)−m (θ + h2)‖2 =
∥∥∥∂m(θ)

∂θ

∥∥∥2
(h1 − h2)2, then:

lim
h→0

WWBh,s (g (θ)) =
h2Eθ

[
∂g(θ)
∂θ

]2

2 |h|+ 2h2Eθ

[
‖ ∂m(θ)

∂θ ‖
2

σ2
n

] =
Eθ

[
∂g(θ)
∂θ

]2

2
|h| + 2Eθ

[
‖ ∂m(θ)

∂θ ‖
2

σ2
n

] , (32a)

and (14)(24c):

BCRB1SX ,Θ
(g (θ)) = lim

h→0
BZBh (g (θ)) = lim

h→0

(
lim
s→1−

WWBh,s (g (θ))

)
= lim

s→1−

(
lim
h→0

WWBh,s (g (θ))

)
= 0.

(32b)

B. Some BMZBs and their associated modified WWBs

We consider the family of BMZBq (g (θ)) (16b) obtained where q (x, θ) , q (θ) satisfying (16a):

BMZBq (g (θ)) =
Eθ

[
dg(θ)
dθ q (θ)

]2

Eθ

[
Ex|θ

[(
∂q(θ)
∂θ + q (θ) ∂ ln p(θ|x)

∂θ

)2
]] , lim

θ→a
q (θ) = 0 = lim

θ→b
q (θ) . (33)

Then, on one hand:

Ex|θ

[(
∂q (θ)

∂θ
+ q (θ)

∂ ln p (θ|x)

∂θ

)2
]

= Ex|θ

[(
∂q (θ)

∂θ

)2

+ q (θ)2

(
∂ ln p (θ|x)

∂θ

)2

+ 2
∂q (θ)

∂θ
q (θ)

∂ ln p (θ|x)

∂θ

]
(34a)

and, on the other hand, ∀θ ∈ SΘ|x :

Ex|θ

[
∂ ln p (θ|x)

∂θ

]
=
∂ ln p (θ)

∂θ
= 0, Ex|θ

[(
∂ ln p (θ|x)

∂θ

)2
]

= −Ex|θ

[
∂2 ln p (x|θ)

∂θ2

]
=

2

σ2
n

∥∥∥∥∂m (θ)

∂θ

∥∥∥∥2

.

(34b)
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Consequently,

Ex|θ

[(
∂q (θ)

∂θ
+ q (θ)

∂ ln p (θ|x)

∂θ

)2
]

=

(
∂q (θ)

∂θ

)2

+
2q (θ)2

σ2
n

∥∥∥∥∂m (θ)

∂θ

∥∥∥∥2

, (34c)

and a tighter BCRB (θ) related to the parametric model (30) can be defined as:

BCRB (θ) = sup
ql(.) s.t. (16a),1≤l≤L

{BMZBql (θ)} , (35a)

BMZBql (g (θ)) =
Eθ

[
dg(θ)
dθ ql (θ)

]2

Eθ

[(
∂ql(θ)
∂θ

)2
]

+ Eθ

[
c (θ) ql (θ)

2
] , c (θ) =

2

σ2
n

∥∥∥∥∂m (θ)

∂θ

∥∥∥∥2

. (35b)

Furthermore, the associated modified WWB (28a-28b) becomes:

WWBq (θ) = sup
s∈]0,1[,|h|<b−a

{
WWBh,s

q (θ)
}
, (36a)

WWBh,s
q (θ) =

Eθ

[
(g (θ − h)− g (θ)) e

− (1−s)s
σ2
n
‖m(θ−h)−m(θ)‖2

q (θ) 1SΘ
(θ − h)

]2


Eθ

[
e
− 2s(1−2s)

σ2
n
‖m(θ+h)−m(θ)‖2

q (θ + h)2 1SΘ
(θ + h)

]
+

Eθ

[
e
− 2(1−s)(2s−1)

σ2
n

‖m(θ−h)−m(θ)‖2
q (θ)2 1SΘ

(θ − h)

]
−

2Eθ

[
e
− s(1−s)

σ2
n
‖m(θ+h)−m(θ−h)‖2

q (θ + h) q (θ) 1SΘ
(θ − h) 1SΘ

(θ + h)

]



. (36b)

As an example, two possible choices of the function q (θ) are:

qδ1 (θ) =


1
2

(
1 + sin

(
π
(
θ
δ −

1
2

)))
, if θ ∈ [0, δ]

1, if θ ∈ ]δ, 1− δ[
1
2

(
1− sin

(
π
(
θ−1+δ
δ − 1

2

)))
, if θ ∈ [1− δ, 1]

0, otherwise

, (37a)

and [3, p36][14, p1433]:

qα2 (θ) =

{
θα−1 (1− θ)α−1 , if θ ∈ [0, 1]

0, otherwise
, α >

3

2
. . (37b)

In the case of single tone estimation, (35b) reduces to (after a few lines of calculus):

BMZBqδ1
(θ) =

(1− δ)2

π2

4δ + 4
3π

2ρN (N − 1) (2N − 1)
(
1− 5

4δ
) , (38a)

BMZBqα2 (θ) =

Γ(α)4

Γ(2α)2

2 (α− 1)2 Γ(2α−3)Γ(2α−1)−Γ(2(α−1))2

Γ(4(α−1)) + 4π2ρN(N−1)(2N−1)
3

Γ(2α−1)2

Γ(2(2α−1))

, (38b)

where Γ (α) =
∫∞

0 xα−1e−xdx is the gamma function, and WWBq (36a-36b) becomes:

WWBq (θ) = sup
s∈]0,1[,|h|<1

{
WWBh,s

q (θ)
}
, (39a)

WWBh,s
q (θ) =



h2

(
1∫
h

q(θ)dθ

)2

e4(s−1)sρv(h)

(e4s(2s−1)ρv(h)+e4(s−1)(2s−1)ρv(h))

1∫
h

q(θ)2dθ−2e2s(s−1)ρv(2h)

1−h∫
h

q(θ)q(θ+h)dθ

, if h ∈ [0, 1[

h2

1+h∫
0

q(θ)dθ

2

e4(s−1)sρv(h)

(e4s(2s−1)ρv(h)+e4(s−1)(2s−1)ρv(h))

1+h∫
0

q(θ)2dθ−2e2s(s−1)ρv(2h)

1+h∫
−h

q(θ)q(θ+h)dθ

, if h ∈ ]−1, 0[

, (39b)
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where ρ = α2

σ2
n

denotes the (input) SNR and:

v (h) =

{
N
(

1− cos (π (N − 1)h) sin(πNh)
N sin(πh)

)
, if h 6= 0

0, if h = 0
. (39c)

C. Comparisons and analysis for the single tone estimation

First, we can derive from (35b) an upper bound for BCRB (θ) (35a) in the asymptotic region. Indeed, in the
case of single tone estimation:

BMZBql (g (θ)) =
Eθ

[
dg(θ)
dθ ql (θ)

]2

Eθ

[(
∂ql(θ)
∂θ

)2
]

+ Eθ

[
c (θ) ql (θ)

2
] ≤ 1

c

Eθ [ql (θ)]
2

Eθ

[
ql (θ)

2
] ≤ 1

c
, (40)

where c = 4π2(N−1)(2N−1)
3 Nρ. Thus:

BCRB (θ) ≈
Nρ→∞

BMZBUB (θ) =
3

4π2(N − 1)(2N − 1)

1

Nρ
. (41)

Moreover, an upper bound on the minimum MSE, and therefore on any lower bound on the MSE, is:

σ2
θ = Eθ

[
θ2
]
− Eθ [θ]2 =

1

12
, (42)

which is also the MSE of the maximum a posteriori (MAP) estimator (which coincides with the maximum likelihood
estimate for uniform prior) in the no-information region [3].
As shown in figure (6)1, the WWB (31a-31b) and the BZB (WWB where s→ 1−) coincide with the BMZBUB (θ)
(41) in the asymptotic region (where the WWB and the BZB coincide with the MSE of the MAP [3, pp 41-43]),
although its limiting form BCRB1SX ,Θ

(θ) (32b) is zero. Actually, this paradox can be explained by the fact that
(32a):

BCRB1SX ,Θ
(θ) = lim

h→0
BZBh (θ) = lim

h→0

(
lim
s→1−

WWBh,s (θ)

)
= lim

h→0

1
2
|h| + 4

3π
2ρN (N − 1) (2N − 1)

, (43a)

is similar to:

lim
δ→0

BMZBqδ1
(θ) =

(1− δ)2

π2

4δ + 4
3π

2ρN (N − 1) (2N − 1)
(
1− 5

4δ
) = lim

δ→0

1
π2

4δ + 4
3π

2ρN (N − 1) (2N − 1)
(43b)

provided that, for any δ � 1 one chooses h � 1 satisfying |h| = 8δ/π2. Therefore the limiting behavior of
BZBh (θ) and WWBh,s (θ), where h → 0, is the limiting behavior of BMZBqδ1

(θ), where δ → 0, which is
exemplified in figure (6) as well, for δ ∈

{
10−3, 10−4, 10−5, 10−6

}
. As mentioned above, BMZBqδ1

(θ) always
yields asymptotically BMZBUB (θ) but is also upper bounded by:

BMZBqδ1
(θ) ≤ 4δ

π2
(44)

which tends to 0 when δ → 0. However, this adverse numerical behaviour can be easily circumvented by resorting
to BMZBqδ1

(θ) and a tight BCRB in the asymptotic region can be obtained as sup
0<δ≤0.5

{
BMZBqδ1

(θ)
}

(35a), as

shown in figure (2). It is also worth noting that some families of BMZBq (θ) does not allow to obtain a tight BCRB
in the asymptotic region, as already mentioned in [3, pp 36-37], and again exemplified in the studied case in figure
(2), if we consider sup

α≥ 3

2

{
BMZBqα2 (θ)

}
, which is however tight in the no-information region. Of course, one can

1In all figures, WWB(θ) (31a) and WWBq (θ) (39a) are the supremum computed over h = −1 + k10−4, 1 ≤ k ≤ 1999, and
s = l10−2, 1 ≤ l ≤ 99.
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Fig. 1. Single tone estimation: illustration of the relationship between BZB (θ), WWB(θ) (31a) and BMZBqδ1
(θ) (38a), N = 32, SNR

step is 0.5 dB.

combine the two families of BMZB as in (35a), in order to obtain a BCRB tight both in the asymptotic and the
no-information region:

BCRB (θ) = sup

{
sup

0<δ≤0.5

{
BMZBqδ1

(θ)
}
, sup
α≥ 3

2

{
BMZBqα2 (θ)

}}
, (45)

as also shown in figure (2).
Last, in figure (3) we display two different modified WWBq (θ) (39a), namely the WWBq0.5

1
(θ) and the WWBq2

2
(θ),

and the associated modified BZBq0.5
1

(θ) and BZBq2
2

(θ) , for a comparison with the WWB (θ) (31a) and the
associated BZB (θ). Figure (3) highlights the following result: if the non zero limiting form of a large-error bound
is tighter in the asymptotic region than the non zero limiting form of another large-error bound, this tightness
relationship is still valid in the threshold region for the two large-error bounds. Although not displayed, we have
checked this result in all the numerous comparisons we have done between representatives of BMZBqδ1

(θ) and
BMZBqα2 (θ), within the same family or not. More precisely, we have noticed that for both the WWB and the BZB,
the threshold value does not change (with a precision of 0.1 dB), but the relative bound tightness in the threshold
region depends on the relative bound tightness in the asymptotic region. This observation allows to understand why
the WWB (θ) and the BZB (θ) remain the tightest bounds in the threshold region. Indeed as:

WWB (θ) = lim
δ→0

{
WWBqδ1

(θ)
}

and BZB (θ) = lim
δ→0

{
BZBqδ1

(θ)
}
, (46)

therefore, asymptotically, the limiting form of both the WWB (θ) and the BZB (θ) is BMZBqδ1
(θ), which asymp-

totically coincides with BMZBUB (θ), the tightest value of BMZBq (θ).



14

−50 −40 −30 −20 −10 0 10 20

−70

−60

−50

−40

−30

−20

−10

Output SNR (dB)

M
S

E
 (

dB
)

 

 

BZB
WWB
BMZB

UB

σ θ 
2

sup{BMZB
q

1

δ}

sup{BMZB
q

2

α}

BCRB

Fig. 2. Single tone estimation: comparison of some BCRB (35a) obtained from two families of BMZBq (θ) (38a-38b), N = 32, SNR step
is 0.5 dB.

VI. CONCLUSION

In the present paper, a fairly general class of ”large-error” BLBs of the WWF, essentially free from regularity
conditions on the pdfs support and for which a limiting form yields a generalized BCRB, has been introduced. The
proposed class of BLBs defines a wide range of Bayesian estimation problems for which a non trivial generalized
BCRB exists, which is a key result from a practical viewpoint. In a large number of cases, this limiting form
appears to be the BMZB. This theoretical result open new perspectives in the search of tight lower-bounds in the
threshold region, new ones or some modified existing ones. Indeed, since the BMZB may provide a tighter bound
than the historical BCRB in the asymptotic region, modified WWB and BZB which limiting form is the BMZB has
been proposed. The analysis of the behavior of the proposed modified bounds in an application case has led us to
postulate the following conjecture: if the non zero limiting form of a large-error bound is tighter in the asymptotic
region than the non zero limiting form of another large-error bound, this tightness relationship is still valid in the
threshold region for the two large-error bounds. Further study cases need to be addressed in order to quantify how
general or specific is this conjecture.

VII. APPENDIX

In this Appendix, Propositions 1 and its extension, Proposition 2, are derived.

A. Case of bounded intervals

First, let us address the case of closed intervals:

∀x ∈ SX , SΘ|x = [ax, bx] : −∞ < ax < bx < +∞. (47)
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Fig. 3. Single tone estimation: comparision of various modified BZBs and WWBs (39a), N = 32, SNR step is 0.1 dB.

Step 1

First, one needs to asses:

lim
h→0

Ex,θ

[
g (θ)

ψhq (x, θ)

h

]
= lim

h→0
Ex,θ

[
g (θ − h)− g (θ)

h
q (x, θ) 1SΘ|x (θ − h)

]
(48)

According to (47), ∀x ∈ SX ,∀h > 0:

Eθ|x

[
g(θ−h)−g(θ)

h q (x, θ) 1SΘ|x (θ − h)
]

= −
bx∫

ax+h

(
g(θ−h)−g(θ)

−h

)
q (x, θ) p (θ|x) dθ

Eθ|x

[
g(θ+h)−g(θ)

−h q (x, θ) 1SΘ|x (θ + h)
]

= −
bx−h∫
ax

(
g(θ+h)−g(θ)

h

)
q (x, θ) p (θ|x) dθ

(49a)

Assuming that g (θ) is of class C1 over SΘ|x, by invoking the mean value theorem [20], one obtains

∃γ+ (h) ∈ [0, h] : g(θ+h)−g(θ)
h = dg(θ+γ+(h))

dθ

∃γ− (h) ∈ [0, h] : g(θ)−g(θ−h)
h = dg(θ−γ−(h))

dθ

(49b)
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Thus, we deduce that, ∀x ∈ SX :

lim
h→0+

Eθ|x

[
g(θ−h)−g(θ)

h q (x, θ) 1SΘ|x (θ − h)
]

= − lim
h→0+

bx∫
ax+h

dg(θ)
dθ q (x, θ) p (θ|x) dθ

+ lim
h→0+

bx∫
ax+h

(
dg(θ)
dθ −

dg(θ−γ−(h))
dθ

)
q (x, θ) p (θ|x) dθ

(49c)

lim
h→0+

Eθ|x

[
g(θ+h)−g(θ)

−h q (x, θ) 1SΘ|x (θ + h)
]

= − lim
h→0+

bx−h∫
ax

dg(θ)
dθ q (x, θ) p (θ|x) dθ

+ lim
h→0+

bx−h∫
ax

(
dg(θ)
dθ −

dg(θ+γ+(h))
dθ

)
q (x, θ) p (θ|x) dθ

(49d)

According to Heine theorem [20]:

∀ε > 0,∃h > 0 | ∀
(
θ, θ′

)
∈ Sθ|x,

∣∣θ − θ′∣∣ < h ⇒

∣∣∣∣∣dg (θ)

dθ
−
dg
(
θ′
)

dθ

∣∣∣∣∣ < ε, (50a)

one can state that

∀ε > 0,∃h > 0 |

 ∀γ
+ (h) < h ⇒

∣∣∣dg(θ)dθ −
dg(θ+γ+(h))

dθ

∣∣∣ < ε

∀γ− (h) < h ⇒
∣∣∣dg(θ)dθ −

dg(θ−γ−(h))
dθ

∣∣∣ < ε
. (50b)

Consequently,∀x ∈ SX , ∀ε > 0, ∃h > 0 such that:∣∣∣∣∣∣
bx∫

ax+h

(
dg(θ)
dθ −
dg(θ−γ−(h))

dθ

)
q (x, θ) p (θ|x) dθ

∣∣∣∣∣∣ ≤
bx∫

ax+h

∣∣∣∣dg (θ)

dθ
− dg (θ − γ− (h))

dθ

∣∣∣∣ |q (x, θ)| p (θ|x) dθ (50c)

≤
bx∫
ax

∣∣∣∣dg (θ)

dθ
− dg (θ − γ− (h))

dθ

∣∣∣∣ |q (x, θ)| p (θ|x) dθ (50d)

< εEθ|x [|q (x, θ)|] (50e)

leading to:

∀x ∈ SX : lim
h→0

Eθ|x

[
g (θ)

ψhq (x, θ)

h

]
= −Eθ|x

[
∂g (θ)

∂θ
q (x, θ)

]
, (51a)

and:

lim
h→0

Ex,θ

[
g (θ)

ψhq (x, θ)

h

]
= −Ex,θ

[
∂g (θ)

∂θ
q (x, θ)

]
. (51b)

Step 2
Second, one needs to asses:

lim
h→0

Ex,θ

(ψhq (x, θ)

h

)2
 . (52)
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According to (47), ∀x ∈ SX ,∀h > 0:

Eθ|x

[
ψhq (x, θ)2

h2

]
=

1

h2

bx∫
ax

(
q (x, θ + h) p (θ + h|x) 1Sθ|x (θ + h)
−q (x, θ) p (θ|x) 1SΘ|x (θ − h)

)2
dθ

p (θ|x)
(53a)

Eθ|x

[
ψhq (x, θ)2

h2

]
=

bx−h∫
ax

(q(x,θ+h)p(θ+h|x)−q(x,θ)p(θ|x))2

h2
dθ

p(θ|x)

+ 2
h

ax+h∫
ax

q(x,θ+h)p(θ+h|x)−q(x,θ)p(θ|x)
h q (x, θ) dθ

+ 1
h2

ax+h∫
ax

q (x, θ)2 p (θ|x) dθ +

bx∫
bx−h

q (x, θ)2 p (θ|x) dθ


(53b)

and

Eθ|x

[
ψ−hq (x, θ)2

(−h)2

]
=

1

h2

bx∫
ax

(
q (x, θ − h) p (θ − h|x) 1Sθ|x (θ − h)
−q (x, θ) p (θ|x) 1Sθ|x (θ + h)

)2
dθ

p (θ|x)
(53c)

Eθ|x

[
ψ−hq (x, θ)2

(−h)2

]
=

bx∫
ax+h

(q(x,θ+h)p(θ+h|x)−q(x,θ)p(θ|x))2

(−h)2
dθ

p(θ|x)

− 2
h

bx∫
bx−h

q(x,θ−h)p(θ−h|x)−q(x,θ)p(θ|x)
−h q (x, θ) dθ

+ 1
h2

ax+h∫
ax

q (x, θ)2 p (θ|x) dθ +

bx∫
bx−h

q (x, θ)2 p (θ|x) dθ


(53d)

Assuming that t (x, θ) = q (x, θ) p (θ|x) is of class C1 w.r.t. θ over SΘ|x, thus
(
∂t(x,θ)
∂θ

)2
is continuous over

SΘ|x. Then, using the same rationale as in step 1 based on the mean value theorem and the Heine theorem, one
can easily prove that, ∀x ∈ SX :

lim
h→0+

Eθ|x

(ψhq (x, θ)

h

)2
 =

Eθ|x

[(
1

p(θ|x)
∂t(x,θ)
∂θ

)2
]

+ 2q (x, ax) ∂t(x,θ)
∂θ

∣∣∣
θ=ax

+ 1
h2

ax+h∫
ax

u (x, θ) dθ +

bx∫
bx−h

u (x, θ) dθ

 (53e)

and

lim
h→0+

Eθ|x

(ψ−hq (x, θ)

−h

)2
 =

Eθ|x

[(
1

p(θ|x)
∂t(x,θ)
∂θ

)2
]
− 2q (x, bx) ∂t(x,θ)

∂θ

∣∣∣
θ=bx

+ 1
h2

ax+h∫
ax

u (x, θ) dθ +

bx∫
bx−h

u (x, θ) dθ

 (53f)
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where u (x, θ) = t (x, θ) q (x, θ) = q (x, θ)2 p (θ|x). Assuming that u (x, θ) is of class C2 w.r.t. θ at the vicinity of
endpoints ax and bx, one can prove that (see Appendix VII-D):

lim
h→0+

1

h2

ax+h∫
ax

u (x, θ) dθ +

bx∫
bx−h

u (x, θ) dθ

 =
u (x, bx) + u (x, ax)

h

+
1

2

(
∂u (x, θ)

∂θ

∣∣∣∣
θ=ax

− ∂u (x, θ)

∂θ

∣∣∣∣
θ=bx

)
(54)

Therefore, in order to obtain a non trivial BCRBq from (53e-53f), the following necessary and sufficient conditions
must hold:

u (x, bx) + u (x, ax) = q (x, ax)2 p (ax|x) + q (x, bx)2 p (bx|x) = 0, (55a)

that is:
q (x, ax) p (ax|x) = 0 and q (x, bx) p (bx|x) = 0. (55b)

Plugging (55b) into the following identities
∂u (x, θ)

∂θ
= 2

∂q (x, θ)

∂θ
q (x, θ) p (θ|x) + q (x, θ)2 ∂p (θ|x)

∂θ
, (55c)

∂t (x, θ)

∂θ
q (x, θ) =

∂q (x, θ)

∂θ
q (x, θ) p (θ|x) + q (x, θ)2 ∂p (θ|x)

∂θ2 , (55d)

one obtains
∂t (x, θ)

∂θ

∣∣∣∣
θ=ax

q (x, ax) = q (x, ax)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=ax

=
∂u (x, θ)

∂θ

∣∣∣∣
θ=ax

, (55e)

∂t (x, θ)

∂θ

∣∣∣∣
θ=bx

q (x, ax) = q (x, bx)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=bx

=
∂u (x, θ)

∂θ

∣∣∣∣
θ=bx

, (55f)

leading to, ∀x ∈ SX :

lim
h→0+

Eθ|x

(ψhq (x, θ)

h

)2
 =

Eθ|x

[(
1

p(θ|x)
∂t(x,θ)
∂θ

)2
]

+5
2q (x, ax)2 ∂p(θ|x)

∂θ

∣∣∣
θ=ax

− 1
2q (x, bx)2 ∂p(θ|x)

∂θ

∣∣∣
θ=bx

(56a)

lim
h→0+

Eθ|x

(ψ−hq (x, θ)

−h

)2
 =

Eθ|x

[(
1

p(θ|x)
∂t(x,θ)
∂θ

)2
]

−5
2q (x, bx)2 ∂p(θ|x)

∂θ

∣∣∣
θ=bx

+ 1
2q (x, ax)2 ∂p(θ|x)

∂θ

∣∣∣
θ=ax

(56b)

Furthermore, the endpoints condition u (x, ax) = 0 and u (x, bx) = 0 implies that the function u (x, θ) is increasing
at the vicinity of ax and decreasing at the vicinity of bx. Thus:

5

2
q (x, ax)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=ax

− 1

2
q (x, bx)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=bx

≥ 0 (57a)

and
−5

2
q (x, bx)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=bx

+
1

2
q (x, ax)2 ∂p (θ|x)

∂θ

∣∣∣∣
θ=ax

≥ 0 (57b)

Consequently:

lim
h→0

Eθ|x

(ψhq (x, θ)

h

)2
 ≥ Eθ|x

[(
1

p (θ|x)

∂t (x, θ)

∂θ

)2
]

(58a)

in which, the equality holds for q (x, ax) = q (x, bx) = 0. Last, let v (x, θ) = q (x, θ)2 ∂p(θ|x)
∂θ ; by taking the

expectation with respect to x of (56a-56b), one gets the following inequality:

lim
h→0

Ex,θ

(ψhq (x, θ)

h

)2
 ≤ Ex,θ

( ∂t(x,θ)
∂θ

p (θ|x)

)2
+ min

{
Ex

[
5
2v (x, ax)− 1

2v (x, bx)
]
,

Ex

[
1
2v (x, ax)− 5

2v (x, bx)
] }

, (58b)
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which, combined with (51b) lead to (15b).
It is straightforward to extend the above rationale to the general case of bounded intervals SΘ|x = [ax, bx[, SΘ|x =

]ax, bx], SΘ|x = ]ax, bx[, −∞ < ax < bx < +∞, provided that : q (x, θ), ∂t(x,θ)
∂θ , u (x, θ), ∂u(x,θ)

∂θ and ∂2u(x,θ)
∂2θ are

bounded functions at the vicinity of endpoints ax and bx.
Moreover, (58b) is uniquely integral calculus based, thus, due to the fact that the result does not change by a finite
number of discontinuities, we conclude that the above conditions can be relaxed to : g (θ) and q (x, θ) p (θ|x) are
piecewise C1 function w.r.t. θ over SΘ|x.

B. Case of unbounded intervals

In the case of unbounded intervals, one has ax = −∞ and/or bx = +∞. Then, let us define a sequence of
intervals given by

S lΘ|x =
]
alx, b

l
x

[
,−∞ < alx < blx <∞ subject to S lΘ|x ⊂ SΘ|x and lim

l→∞
S lΘ|x = SΘ|x

In the same way, we define S lX ,Θ =
{

(x, θ) | x ∈ SX and θ ∈ S lΘ|x
}

and denote:

pl (x, θ) =
p (x, θ)∫∫

SlX ,Θ

p (x, θ) dxdθ

, pl (θ|x) =
p (θ|x)∫

SlΘ|x

p (θ|x) dθ

, (59a)

which defines:

Elx,θ [q (x, θ)] =

∫∫
SlX ,Θ

q (x, θ) pl (x, θ) dxdθ, Elθ|x [q (x, θ)] =

∫
SlΘ|x

q (x, θ) pl (θ|x) dθ (59b)

Then, the analysis and results given in the previous Section VII-A can be applied to the restricted intervals S lX ,Θ,S lΘ|x
and their associated pdfs pl (x, θ) , pl (θ|x), respectively. By definition:∫∫

SX ,Θ

(
Eθ|x [g (θ)]− g (θ)

)2
pl(x, θ)dθdx ≥

∫∫
SlX ,Θ

(
Eθ|x [g (θ)]− g (θ)

)2
pl(x, θ)dθdx, (60a)

that is:
Ex,θ

[(
Eθ|x [g (θ)]− g (θ)

)2]∫∫
Sl

p (x, θ) dxdθ

≥ Elx,θ
[(
Eθ|x [g (θ)]− g (θ)

)2]
. (60b)

Moreover, as:

Elx,θ

[(
Eθ|x [g (θ)]− g (θ)

)2] ≥ Elx,θ [(Elθ|x [g (θ)]− g (θ)
)2
]
, (60c)

therefore:
Ex,θ

[(
Eθ|x [g (θ)]− g (θ)

)2]∫∫
SlX ,Θ

p (x, θ) dxdθ

≥ Elx,θ
[(
Elθ|x [g (θ)]− g (θ)

)2
]
. (60d)

Finally, since lim
l→∞
S lΘ|x = SΘ|x, one has:

Ex,θ

[(
Eθ|x [g (θ)]− g (θ)

)2] ≥ lim
l→∞

Elx,θ

[(
Elθ|x [g (θ)]− g (θ)

)2
]
, (60e)

which allows to state Proposition 1 as the limiting form of the bounded intervals case.
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C. Case of a countable union of disjoint intervals of R
First we consider the case where SΘ|x results from a finite union of disjoint bounded intervals IkΘ|x  R:

∀x ∈ SX , SΘ|x =
⋃

1≤k≤Kx

IkΘ|x, such that Kx ∈ N and IkΘ|x ∩ I
l
Θ|x = ∅ if k 6= l.

Let us denote the endpoints of IkΘ|x by akx and bkx, akx < akx. Then

Eθ|x

[
g (θ)

ψhq (x,θ)

h

]
= −

Kx∑
k=1

bkx∫
akx+h

(
g(θ−h)−g(θ)

−h

)
q (x, θ) p (θ|x) dθ,

Eθ|x

[
g (θ)

ψhq (x,θ)

h

]
= −

Kx∑
k=1

bkx−h∫
akx

(
g(θ+h)−g(θ)

h

)
q (x, θ) p (θ|x) dθ,

Eθ|x

[
ψhq (x,θ)2

h2

]
= 1

h2

Kx∑
k=1

bkx∫
akx+h

(
q (x, θ + h) p (θ + h|x) 1SΘ|x (θ + h)
−q (x, θ) p (θ|x) 1SΘ|x (θ − h)

)2
1

p(θ|x)dθ,

Eθ|x

[
ψ−hq (x,θ)2

(−h)2

]
= 1

h2

Kx∑
k=1

bkx−h∫
akx

(
q (x, θ − h) p (θ − h|x) 1SΘ|x (θ − h)
−q (x, θ) p (θ|x) 1SΘ|x (θ + h)

)2
1

p(θ|x)dθ,

(61)

which means that all the rationale introduced in Appendix VII-A can be applied to each IkΘ|x individually. Therefore
if, 1 ≤ k ≤ Kx:
• q (x, θ) admits a finite limit at endpoints of IkΘ|x,
• g (θ) is piecewise C1 w.r.t. θ over IkΘ|x,

• t (x, θ) , q (x, θ) p (θ|x) is piecewise C1 w.r.t. θ over IkΘ|x and such as ∂t(x,θ)
∂θ admits a finite limit at endpoints

of IkΘ|x,

• u (x, θ) , q (x, θ)2 p (θ|x) is C2 w.r.t. θ at the vicinity of endpoints of IkΘ|x and such as u (x, θ) , ∂u(x,θ)
∂θ and

∂2u(x,θ)
∂2θ admit a finite limit at endpoints of IkΘ|x,

then a necessary and sufficient condition in order to obtain a non trivial BCRBq is:

q
(
x, akx

)
p
(
akx|x

)
= q

(
x, bkx

)
p
(
bkx|x

)
= 0, 1 ≤ k ≤ Kx, (62a)

leading to:

BCRBq (g (θ)) =
Ex,θ

[
dg(θ)
dθ q (x, θ)

]2

Ex,θ

[(
∂t(x,θ)

∂θ

p(θ|x)

)2
]

+ min


Kx∑
k=1

Ex

[
5
2v
(
x, akx

)
− 1

2v
(
x, bkx

)]
,

Kx∑
k=1

Ex

[
1
2v
(
x, akx

)
− 5

2v
(
x, bkx

)]


(62b)

If I1
Θ|x is a left-unbounded interval and/or IKx

Θ|x is a right-unbounded interval, then the above results still hold
provided that (see Appendix VII-B) for k = 1 and/or k = Kx :

q
(
x, akx

)
p
(
akx|x

)
, lim

θ→akx
q (x, θ) p (θ) , q

(
x, bkx

)
p
(
bkx|x

)
, lim

θ→bkx
q (x, θ) p (θ) , (63a)

q
(
x, akx

)2 ∂p
(
akx|x

)
∂θ

, lim
θ→akx

q (x, θ)2 ∂p (θ|x)

∂θ
, q
(
x, bkx

)2 ∂p
(
bkx|x

)
∂θ

, lim
θ→bkx

q (x, θ)2 ∂p (θ|x)

∂θ
. (63b)

Last, (61) holds as well for a a countable union of disjoint intervals of R, QED.
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D. Proof of (54)

Let us consider a function u : X × [a, b]→ R, a < b, in which u is of C2 w.r.t. θ. Then, ∀x ∈ SX :

b∫
a

u (x, θ) dθ = (b− a)u (x, a) +
1

2
(b− a)2 ∂u (x, a)

∂θ
+

1

2

b∫
a

(b− θ)2 ∂
2u (x, θ)

∂2θ
dθ, (64a)

b∫
a

u (x, θ) dθ = (b− a)u (x, b)− 1

2
(b− a)2 ∂u (x, b)

∂θ
+

1

2

b∫
a

(θ − a)2 ∂
2u (x, θ)

∂2θ
dθ. (64b)

Consequently, if u is of C2 w.r.t. θ over X × [ax, ax + h] and X × [bx − h, bx], 0 < h, ax < bx, one obtains:

ax+h∫
ax

u (x, θ) dθ = hu (x, ax) +
h2

2

∂u (x, ax)

∂θ
+

ax+h∫
ax

(
θ − ax − h

h

)2 ∂2u (x, θ)

∂θ2 dθ

 , (65a)

bx∫
bx−h

u (x, θ) dθ = hu (x, bx)− h2

2

∂u (x, bx)

∂θ
+

bx∫
bx−h

(
bx − θ − h

h

)2 ∂2u (x, θ)

∂θ2 dθ

 . (65b)

Additionally, as: {
ax ≤ θ ≤ ax + h⇒

(
θ−ax−h

h

)2 ≤ 1

bx − h ≤ θ ≤ bx ⇒
(
bx−θ−h

h

)2 ≤ 1
(66a)

therefore:∣∣∣∣∣∣
ax+h∫
ax

(
θ − ax − h

h

)2 ∂2u (x, θ)

∂θ2 dθ

∣∣∣∣∣∣ ≤
ax+h∫
ax

(
θ − ax − h

h

)2 ∣∣∣∣∂2u (x, θ)

∂θ2

∣∣∣∣ dθ ≤
ax+h∫
ax

∣∣∣∣∂2u (x, θ)

∂θ2

∣∣∣∣ dθ, (66b)

∣∣∣∣∣∣
bx∫

bx−h

(
bx − θ − h

h

)2 ∂2u (x, θ)

∂θ2 dθ

∣∣∣∣∣∣ ≤
bx∫

bx−h

(
bx − θ − h

h

)2 ∣∣∣∣∂2u (x, θ)

∂θ2

∣∣∣∣ dθ ≤
bx∫

bx−h

∣∣∣∣∂2u (x, θ)

∂θ2

∣∣∣∣ dθ. (66c)

Finally, since u is of C2 w.r.t. θ over X × [ax, ax + h] and X × [bx − h, bx], then
∣∣∣∂2u(x,ax)

∂θ2

∣∣∣ and
∣∣∣∂2u(x,bx)

∂θ2

∣∣∣ are
finite values and:

lim
h→0+

1

h2

ax+h∫
ax

u (x, θ) dθ +

bx∫
bx−h

u (x, θ) dθ

 =
u (x, bx) + u (x, ax)

h

+
1

2

(
∂u (x, ax)

∂θ
− ∂u (x, bx)

∂θ

)
(67)
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