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ABSTRACT
This paper derives lower bounds for the mean square errors of pa-
rameter estimators in the case of Poisson distributed data subjected
to multiple abrupt changes. Since both change locations (discrete pa-
rameters) and parameters of the Poisson distribution (continuous pa-
rameters) are unknown, it is appropriate to consider a mixed Cramér-
Rao/Weiss-Weinstein bound for which we derive closed-form ex-
pressions and illustrate its tightness by numerical simulations.

Index Terms— Bayesian Cramér-Rao bound, Weiss-Weinstein
bound, change-point, Poisson time series.

1. INTRODUCTION
The problem of estimating change-point locations in time series has
received much attention in the literature [1–3]. Specifically, discrete
Poisson time series submitted to multiple abrupt changes are of spe-
cific interest, since Poisson distributions are involved in most prob-
lems dealing with counting processes [4, 5]. This type of models
arise in signal processing, for applications such as astronomical time
series segmentation [6–8]. In this context, the observed data (dis-
tributed according to a Poisson distribution) are subjected to abrupt
changes whose locations are unknown. The values of the Poisson pa-
rameters associated with each interval are also unknown quantities
that need to be estimated [9]. Several strategies have been investi-
gated in the literature [10–14]. However, to the best of our knowl-
edge, lower bounds for the mean square error of the resulting simula-
tors have been derived only in a few specific cases. For instance, the
case of a single change-point in the observation window was stud-
ied in [15]. The case of multiple changes was considered in [16].
The difficulty of deriving bounds for the parameters of piece-wise
stationary data is mainly due to the discrete nature of change-point
locations for which classical bounds such as the Cramér-Rao bound
(CRB) are not appropriate anymore [17]. In [15,16], the authors con-
sidered a lower bound for the mean square error (MSE) that does not
require the differentiability of the log-likelihood function. Specif-
ically, deterministic bounds, such as the Chapman-Robbins bound,
have been derived for a single change-point in [15], and then ex-
tended to multiple changes in [16], with the strong assumptions that
the Poisson parameters are known. On the other hand, and in or-
der to improve the tightness of the resulting bound, we proposed
in [18, 19] the use of the Weiss-Weinstein bound (WWB), which is
known to be one of the tightest bound in the family of the Bayesian
bounds [20, 21]. Nevertheless, these analyses were limited to the
case of known Poisson parameters both in the single [18] and multi-
ple [19] change-point scenarios.

In this paper, we fill this gap by proposing and deriving a new
Bayesian lower bound for the global MSE (GMSE) of the parame-
ters of Poisson distributed data subjected to multiple change-points.

The proposed bound is a mixed Bayesian Cramér-Rao (CR)/Weiss-
Weinstein (WW) bound adapted to the fact that some unknown
parameters are discrete (the WW part of the mixed bound is asso-
ciated with the change locations) and that the other parameters are
continuous (the CR part of the mixed bound is associated with the
Poisson parameters). The idea of combining these two bounds was
introduced in [22], with a recursive form. Of course, using a WWB
for both discrete and continuous parameters would be theoretically
possible. However, the WW bound is expressed as the supremum
of a set of matrices whose computation is unfeasible in our sce-
nario. Thus, the mixed Bayesian Cramér-Rao/Weiss-Weinstein
bound (BCRWWB) is the appropriate alternative, whose compu-
tation can be achieved using a convex optimization procedure to
compute this supremum based on the computation of the minimum
volume ellipsoid covering a union of derived ellipsoids.

2. MULTIPLE CHANGE-POINTS IN POISSON
TIME-SERIES: PROBLEM FORMULATION

We consider an independent discrete Poisson time series sub-
jected to multiple changes. The resulting observation vector
x = [x1, . . . , xT ]T (of length T ) is defined as


xt ∼ P (λ1) , for t = 1, . . . , t1

xt ∼ P (λ2) , for t = t1 + 1, . . . , t2
...

...
xt ∼ P (λK+1) , for t = tK + 1, . . . , T,

(1)

where P (λk), for k = 1, . . . ,K + 1, denotes the Poisson distri-
bution of parameter λk on the k-th segment, i.e., Pr(xt = κt) =
λκt
k exp{−λk}/(κt!), K denotes the total number of changes (as-

sumed to be known), and tk denotes the k-th change location, i.e.,
the sample point after which the parameter λk of the current seg-
ment switches to λk+1. The segmentation problem addressed in
this work consists of i) segmenting the time series x, i.e., estimat-
ing the locations of the changes tk, and ii) estimating the Poisson
parameters λk on each segment. The resulting unknown param-
eter vector is θ =

[
λT , tT

]T , with λ ∆
= [λ1, . . . , λK+1]T and

t
∆
= [t1, . . . , tK ]T . This unknown parameter vector lies in the pa-

rameter space Θ = RK+1
+ × {1, . . . , T}K , where R+ denotes the

set of real positive numbers. Using a Bayesian framework, we con-
sider that both vectors λ and t are assigned a known prior. More pre-
cisely, the Poisson parameters λk are assumed to be independent and
identically distributed (i.i.d.), and are assigned the conjugate gamma
distributions with parameters αk and β (as in [8]), leading to the



following prior

f (λ) =

K+1∏
k=1

βαk

Γ (αk)
λ
αk−1
k exp (−βλk) IR+ (λk) (2)

in which IE (.) denotes the indicator function on the set E , and
Γ(.) denotes the usual gamma function, i.e., for α > 0, Γ(α) =∫ +∞

0
xα−1 exp(−x)dx. On the other hand, we assume that each

change location tk, for k = 1, . . . ,K, is defined as the following
random walk tk = tk−1 + εk where εk are i.i.d. variables following
a discrete uniform distribution on the set of integers {1, . . . , τ},
and t0 = 0. The value of τ is chosen so that the final change
tK does not exceed T , i.e., the maximum possible value for τ is
τmax = b(T − 1) /Kc, where b.c denotes the floor function. This
assumption might seem quite restrictive since there is generally
no reason for all durations to be restricted to τ . However, this
hypothesis is necessary to make the derivations tractable. Conse-
quently, using the probability chain rule, we obtain the following
prior distribution for the unknown vector t

Pr (t = `) =
1

τK

K∏
k=1

I{`k−1+1,...,`k−1+τ} (`k) (3)

with `0 = 0. Since vectors λ and t are independent, the joint prior
for λ and t is expressed as f (λ, t = `) = f (λ) Pr (t = `).

From the model (1), the likelihood of the observations can be
written as

f (x = κ|λ, t = `) =

K+1∏
k=1

`k∏
t=`k−1+1

λκt
k

κt!
exp {−λk} . (4)

The aim of the present paper is to study the estimation perfor-
mance of the vector θ by deriving a lower bound on the mean square
error (MSE) of any Bayesian estimator θ̂(x) of θ. Both subvectors
λ and t of θ have to be estimated simultaneously. However, as al-
ready mentioned in Section 1, the Cramér-Rao bound is not suited
for changepoint analysis, since ` is a vector of discrete parameters.
Thus, the idea is to use two different lower bounds w.r.t. each sub-
vector of θ, resulting in a “mixed” Bayesian bound that corresponds
to the Bayesian CR bound for the first subvector λ of θ, and that
corresponds to the so-called WW bound for the second subvector t
of θ. As already mentioned, the use of such a combined CR/WW
lower bound was proposed in [22] in a target tracking context. Since
our framework is different, the next section is devoted to the presen-
tation of this bound referred to as BCRWWB. It is in fact a special
case of a general family of lower bounds exposed in [23].

3. BAYESIAN CRAMÉR-RAO/WEISS-WEINSTEIN BOUND
We are interested in studying the estimation performance of a pa-
rameter vector θ that lies in a parameter space Θ = RK+1 × NK .
As explained in the previous section, this parameter vector can be
split into two subvectors, λ ∈ Θλ = RK+1

+ and t ∈ Θt = NK , so
that θ =

[
λT , tT

]T and Θ = Θλ ×Θt. From a set of observations
x ∈ Ω, the vector θ can be estimated by using any Bayesian estima-
tion scheme, leading to an estimator θ̂ (x) =

[
λ̂ (x)T , t̂ (x)T

]T .
Let us recall that we aim at obtaining a lower bound on the global
mean square error (GMSE) of this estimator, which corresponds to
the Bayesian CR bound w.r.t. λ, and which corresponds to the WW
bound w.r.t. t. The GMSE of θ̂ (x) is defined as the (2K + 1) ×
(2K + 1) matrix

GMSE
(
θ̂
)

= Ex,θ
{[
θ − θ̂ (x)

][
θ − θ̂ (x)

]T} (5)

in which Ex,θ {.} denotes the expectation operation w.r.t. the joint
distribution f (x,θ) which depends on both the observations and
the parameters. Based on [23], by appropriately choosing some real-
valued measurable functions ψk (x,θ), k = 1, . . . , 2K + 1, de-
fined on Ω × Θ such that the following integrals exist and satisfy∫

Θ
ψk (x,θ) f (x,θ) dθ = 0 for almost every (a.e.) x ∈ Ω and for

k = 1, . . . , 2K + 1, the following matrix inequality holds

GMSE
(
θ̂
)
� V P−1V T (6)

in which V is a (2K + 1) × (2K + 1) matrix whose elements are
given by

[V ]k,l = Ex,θ {θkψl (x,θ)} (7)

and P is a (2K+1)× (2K+1) symmetric matrix, whose elements
are given by

[P ]k,l = Ex,θ {ψk (x,θ)ψl (x,θ)} . (8)

Note that the matrix inequality (6) means that the difference between
its left and its right hand sides is a nonnegative definite matrix. One
key point in the theory developed in [23] is the choice of the measur-
able functions ψk. For k restricted to {1, . . . ,K + 1} (continuous
Poisson parameters), we define these functions as for the CR bound,
i.e.,

ψk (x,θ) =

{
∂ ln f(x,θ)

∂λk
, if θ ∈ Θ′

0, if θ /∈ Θ′
(9)

where Θ′ = {θ ∈ Θ : f (x,θ) > 0 a.e. x ∈ Ω}. Conversely, for
k restricted to {1, . . . ,K}, we define these measurable functions as
for the WW bound, i.e.,

ψK+1+k (x,θ) =

√
f (x,θ + hk)

f (x,θ)
−

√
f (x,θ − hk)

f (x,θ)
(10)

where hk is any vector of size 2K + 1 of the form hk =
[
0TK+1,

0Tk−1, hk,0
T
K−k

]T , for k = 1, . . . ,K, in which 0k denotes the zero
vector of length k. Note that the value of hk can be arbitrarily chosen
by the user as far as it allows the invertibility of P .

The next step in our analysis is to derive the matrix V. Denote
as V 22 the K × K diagonal matrix whose elements are, for any
k ∈ {1, . . . ,K}

[V 22]k,k = −hkEx,θ

{√
f (x,θ + hk)

f (x,θ)

}
. (11)

Substituting (9) and (10) into (7), we obtain

V =

[
−IK+1 0(K+1)×K

0K×(K+1) V 22

]
(12)

where IK+1 denotes the (K + 1) × (K + 1) identity matrix and
0(K+1)×K is the (K + 1)×K zero matrix, provided the following
conditions are satisfied

1. f (x,θ) is absolutely continuous w.r.t. λk, k = 1, . . . ,K+1,
a.e. x ∈ Ω;

2. limλk→0 λkf (x,θ) = limλk→+∞ λkf (x,θ) = 0, k =
1, . . . ,K + 1, a.e. x ∈ Ω.

Note that these two conditions correspond to the necessary and usual
regularity conditions for the derivation of the Bayesian CR bound.

Similarly, by plugging (9) and (10) into (8), we obtain the ex-
pression of the matrix P , which can be split into four blocks as fol-
lows

P =

[
P 11 P 12

P T
12 P 22

]
(13)



in which P 11 is the (K + 1)× (K + 1) matrix whose elements are

[P 11]k,l = Ex,θ
{
∂ ln f (x,θ)

∂λk

∂ ln f (x,θ)

∂λl

}
(14)

P 12 is the (K + 1)×K matrix whose elements are

[P 12]k,l = Ex,θ

{
∂ ln f (x,θ)

∂λk

(√
f (x,θ + hl)

f (x,θ)

−

√
f (x,θ − hl)
f (x,θ)

)}
(15)

and finally P 22 is the K ×K matrix whose elements are

[P 22]k,l= Ex,θ

{(√
f (x,θ + hk)

f (x,θ)
−

√
f (x,θ − hk)

f (x,θ)

)

×

(√
f (x,θ + hl)

f (x,θ)
−

√
f (x,θ − hl)
f (x,θ)

)}
. (16)

Note that the same bound can be obtained by defining all
the functions ψk for k ∈ {1, . . . , 2K + 1} as in (10), with
hk =

[
0Tk−1, hk,0

T
2K+1−k

]T , by letting hk tend to 0 for k =
1, . . . ,K + 1, and by using a Taylor expansion. Finally, the tightest
lower bound is obtained by maximizing the right hand side of (6)
w.r.t. h1, . . . , hK .

4. APPLICATION TO MULTIPLE CHANGE-POINTS IN
POISSON TIME-SERIES

This section presents the main results about the derivation of the
lower bound presented in Section 3 for the problem formulated in
Section 2. Due to space limitations, it is not possible to provide
the full calculation details in this paper. However, all details can be
found in the open-access technical report [24]. The joint distribution
of the observation and parameter vectors can be expressed as

f (x = κ,θ) = f (x = κ|λ, t = `) f (λ, t = `) . (17)

After plugging (2), (3) and (4) into (17), we can deduce the expres-
sions of f (x,θ + hk) for k = 1, . . . ,K, and ∂f (x,θ) /∂λk for
k = 1, . . . ,K + 1. Let us first introduce some useful notations for
the following mathematical functions. We first define the function
ϕhk

(y) of the vector y = [y1, y2]T ∈ R2
+ as

ϕhk
(y) =

y
αk−1
1 y

αk+1−1

2 exp

{
−β (y1 + y2)− |hk|

(√
y2 −

√
y1

)2
2

}
(18)

and the following integral as

Φ (hk) =
βαk+αk+1

Γ (αk) Γ (αk+1)

∫
R2
+

ϕhk (y) dy. (19)

We also define the function φhk,hk+1
(z) of the vector z =

[z1, z2, z3]T ∈ R3
+ as the trivariate version of ϕhk , i.e.,

φhk,hk+1
(z) = z

αk−1
1 z

αk+1−1

2 z
αk+2−1

3

× exp

{
−β (z1 + z2 + z3)− |hk|

(
√
z2 −

√
z1)2

2

− |hk+1|
(
√
z3 −

√
z2)2

2

}
.(20)

We finally define the three functions u, v and w as follows

u (τ , hk) =


(τ−|hk|)2

τ2
if k ≤ K − 1 and |hk| ≤ τ

τ−|hK |
τ

if k = K and |hK | ≤ τ
0 if |hk| > τ

(21)

v (τ , hk, hk+1) =


(τ−|hk|)(τ−|hk+1|)

τ3
if k ≤ K − 1

and max (|hk| , |hk+1|) ≤ τ ;
τ−|hK |
τ2

if k = K and |hK | ≤ τ ;
0 if max (|hk| , |hk+1|) > τ ,

(22)

w (z, τ , hk, hk+1) = 2 max (τ − |hk| − |hk+1|, 0)

−max
(
τ −max (|hk|, |hk+1|) , 0

)
−max (τ − |hk| − |hk+1|+ 1, 0)

+
1− r1−min(|hk|,|hk+1|) (z)

1− r (z)

(23)

in which r (z) = exp {−z2 +
√
z1z2 +

√
z2z3 −

√
z1z3}. Using

these functions, we now give the expressions of the matrix blocks
composing V and P , i.e., V 22, P 11, P 12, P 21 and P 22 which
were introduced in Section 3.

After plugging (17) into (11) and computing the expectations,
we obtain, for k = 1, . . . ,K

[V 22]k,k = −hk u (τ , hk) Φ (hk) . (24)

The expression ofP 11 is obtained by substituting (17) into (14),
which leads to a diagonal matrix whose elements have the following
form (for αk > 2)

[P 11]k,k =
β (τ + 1)

2 (αk − 1)
+

β2

αk − 2
. (25)

Similarly, the expressions of P 12 (of size (K + 1) × K) and P 21

(of size K × (K + 1)) can be obtained after plugging (17) into (15),
which leads to

P 12 = P T
21 =



A1,1 0 · · · 0

A2,1 A2,2

. . .
...

0 A3,2

. . . 0
...

. . .
. . . AK,K

0 · · · 0 AK+1,K


(26)

where, for k = 1, . . . ,K, and l = k or l = k − 1,

Ak,l = ±hl u (τ , hl)
βαl+αl+1

Γ(αl)Γ(αl+1)

∫
R2
+

[√(
y1

y2

)±1

− 1

]
ϕhl

(y)dy

(27)
in which both “±” signs are “+” signs if l = k − 1, and they are
“−” signs if l = k.

Finally, by substituting (17) into (16), the matrix P 22 can be
written as the following symmetric tridiagonal matrix

P 22 =



B1 C1 0 · · · 0

C1 B2 C2

. . .
...

0 C2 B3

. . . 0
...

. . .
. . .

. . . CK−1

0 · · · 0 CK−1 BK


(28)



where, for k = 1, . . . ,K, Bk = 2
(
u(τ , hk)−u (τ , 2hk) Φ (2hk)

)
,

and for k = 1, . . . ,K − 1,

Ck = v (τ , hk, hk+1)
βαk+αk+1+αk+2

Γ (αk) Γ (αk+1) Γ (αk+2)

×
∫
R3
+

φhk,hk+1
(z)w(z, τ , hk, hk+1)dz. (29)

• Practical computation of the bound:
The lower bound given by the right-hand side of (6), that we

will denote byR can be computed using the previous formulas, i.e.,
from (24) to (29). It can be noticed that some integrals (in (24),
(27) and (29)), do not have any closed-form expression requiring
some numerical scheme for their computation. In this paper, we
have used the adaptive quadrature method [25] that proved efficient
for our computations.

In addition, we would like to stress that, even if it does not ap-
pear explicitly with the adopted notations, the matrix R actually
depends on the parameters α1, . . . , αK+1, β, τ , h1, . . . , hK (only
the dependency on h1, . . . , hK has been mentioned from (18) to
(23)). Since each vector h = (h1, . . . , hK) leads to a lower bound
R(h), one obtains a finite set of lower bounds W = {R(h) |
h ∈ H}, in which H is the set of all possible values of h. As
already mentioned, the proper Cramér-Rao/Weiss-Weinstein lower
bound is the tightest value of R(h), namely the supremum of W ,
that we denote by B = sup(W) = suph1,...,hK

R(h). The supre-
mum operation has to be taken w.r.t. the Loewner partial ordering,
denoted by “�” [26]. This ordering implies that a unique supre-
mum in the finite set W might not exist. However, it is possi-
ble to approximate this supremum by computing a minimal upper-
bound B∗ of the set W: this bound is such that, for all h ∈ H,
B∗ � R(h), and there is no smaller matrixB′ � B∗ that also ver-
ifies B′ � R(h), ∀h ∈ H. It has been shown in [16, 27] that find-
ingB∗ is equivalent to finding the minimum volume hyper-ellipsoid
ε(B∗) = {x ∈ RK | xTB∗x ≤ 1} that covers the union of hyper-
ellipsoids ε

(
R(h)

)
= {x ∈ RK | xTR(h)x ≤ 1}. The search

of this ellipsoid can actually be formulated as the following convex
optimization problem [27]:

minimize log
(
det(B1/2)

)
(30)

subject to


b1 ≥ 0, b2 ≥ 0, . . . , bNh ≥ 0,[
B−1 − bn

(
R(h)n

)−1
0(2K+1)×1

01×(2K+1) bn − 1

]
� 02K+2

(n = 1, . . . , Nh)

in which Nh denotes the number of elements of the set H, and
R(h)n ∈ W is an indexed version of R(h) (i.e., when n varies
from 1 to Nh, h runs through all the possible combinations of
h1, . . . , hK , and R(h)n runs through all the elements ofW). The
problem (30) can be solved efficiently using a semidefinite program-
ming tool, such as the one provided in the CVX package [28].

5. NUMERICAL RESULTS
This section analyzes the evolution of the proposed bound as a func-
tion of a parameter that is classically used for changepoint estima-
tion performance. This parameter is either referred to as “amount
of change” [29], “magnitude of change” or “signal-to-noise ratio”
(SNR): in [15, 16, 18], for Poisson distributed data, the SNR is de-
fined as ν = (λk+1 − λk)2/λ2

k, for k = 1, . . . ,K + 1. In our
context, since each λk is a random variable with a gamma distribu-
tion of parameters αk and β (as stated in (2)), this leads to a lower
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Fig. 1. Estimated GRMSE and proposed lower bound w.r.t. the
change-point t1, versus SNR, with T = 80 snapshots and K = 1
change in the mean rate of a Poisson time series.

boundB that does not depend on λ1, . . . , λK+1, and a fortiori on ν.
However, the bound depends upon the parameters αk and β, which
can then be used to drive the average (λk)mean = αk/β generated
by the Gamma prior. Thus, by substituting (λk)mean with λk in the
definition of ν, we obtain ν̄ = (αk+1 − αk)2/α2

k. Such a definition
implies that the higher ν̄, the higher the amount of change between
two consecutive segments, on average.

In this study, we present some simulation results obtained for
T = 80 observations, K = 1 change, and with ν̄ ranging from
−20 dB to 15 dB. Such a choice for the value of K is justified by
the fact that it yields less complex expressions of the estimators given
in (31) and (32). We chose α1 = 3, and the subsequent α2 is given
by α2 = α1(1 +

√
ν̄). We compare the proposed bound with the

estimated global mean square error (GMSE) of the maximum a pos-
teriori (MAP) estimator of θ = [λ1, λ2, t1]T . It is worth mentioning
that, given the posterior density f(λ, t|x = κ) (that is proportional
to (17)), there is a closed-form expression of the MAP estimator of
λ, for a given `, that is, for k = 1, . . . ,K + 1:

λ̂
MAP

k (`k−1, `k) =
αk +

(∑`k
t=`k−1+1 κt

)
− 1

β + (`k − `k−1)
. (31)

This closed form expression is then used to obtain the MAP estima-
tor of t

t̂
MAP

= arg max
`

ln f
(
λ̂

MAP
(`), t = `|x = κ

)
. (32)

The estimated global root mean square error (GRMSE) of t̂
MAP

com-
puted using 1000 Monte-Carlo runs and the associated lower bound
are compared in Fig. 1. Even if there exists a gap between the
GRMSE and the bound, the difference decreases as ν̄ increases: at
ν̄ = 10 dB, the difference in terms of number of samples is not more
than 3 samples; at ν̄ = 15 dB, it is less than 0.1 samples. This gap
is actually due to the discrete nature of the change-point location
parameter t1: when the estimator has an error of one sample, this
corresponds to an error of Ts (that is the signal sampling period).
Thus, it is usual to obtain such a gap in this context. The MAP be-
havior even seems to be closer to the bound for ν̄ ≥ 15 dB. However,
it could not be displayed for numerical reasons, the GRMSE tending
steeply to zero. Finally, the derived bound provides a fair approx-
imation of the change-point estimation behavior, in this context of
Poisson data when the Poisson parameters λk are unknown.
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