
HAL Id: hal-01527682
https://centralesupelec.hal.science/hal-01527682

Submitted on 24 May 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Scaling FMI-CS Based Multi-Simulation Beyond
Thousand FMUs on Infiniband Cluster

Stéphane Vialle, Jean-Philippe Tavella, Cherifa Dad, Remi Corniglion,
Mathieu Caujolle, Vincent Reinbold

To cite this version:
Stéphane Vialle, Jean-Philippe Tavella, Cherifa Dad, Remi Corniglion, Mathieu Caujolle, et al.. Scal-
ing FMI-CS Based Multi-Simulation Beyond Thousand FMUs on Infiniband Cluster. 12th Interna-
tional Modelica Conference 2017, May 2017, Prague, Czech Republic. �hal-01527682�

https://centralesupelec.hal.science/hal-01527682
https://hal.archives-ouvertes.fr


Scaling FMI-CS Based Multi-Simulation Beyond Thousand FMUs
on Infiniband Cluster

Stephane Vialle1,2 Jean-Philippe Tavella3 Cherifa Dad1 Remi Corniglion3 Mathieu Caujolle3

Vincent Reinbold 4

1UMI 2958 - GT-CNRS, CentraleSupelec, Université Paris-Saclay, 57070 Metz, France
2LRI - UMR 8623, 91190 Gif-sur-Yvette, France

3EDF Lab Saclay, 91120 Palaiseau, France
4University of Leuven, Department of Civil Engineering, 3001 Leuven, Belgium

Abstract
In recent years, co-simulation has become an increasingly
industrial tool to simulate Cyber Physical Systems includ-
ing multi-physics and control, like smart electric grids,
since it allows to involve different modeling tools within
the same temporal simulation. The challenge now is to in-
tegrate in a single calculation scheme very numerous and
intensely inter-connected models, and to do it without any
loss in model accuracy. This will avoid neglecting fine
phenomena or moving away from the basic principle of
equation-based modeling.

Offering both a large number of computing cores and
a large amount of distributed memory, multi-core PC
clusters can address this key issue in order to achieve
huge multi-simulations in acceptable time. This paper in-
troduces all our efforts to parallelize and distribute our
co-simulation environment based on the FMI for Co-
Simulation standard (FMI-CS). At the end of 2016 we suc-
ceeded to scale beyond 1000 FMUs and 1000 computing
cores on different PC-clusters, including the most recent
HPC Infiniband-cluster available at EDF.

Keywords: Multi-Simulation, FMI, Scaling, Multi-core,
PC Cluster

1 Introduction and Objectives
A multi-simulation based on the FMI for Co-Simulation
standard is a graph of communicating components (named
FMUs) achieving a time stepped integration, under super-
vision of a global control unit (named Master Algorithm
in the standard), as illustrated in Fig. 1. During a time
step, all FMU inputs remain constant and all FMUs can be
run concurrently. When all FMU computations of a time
step are finished, the FMU outputs are routed to connected
FMU inputs, and all FMUs communicate with the Master
Algorithm. When using adaptive time steps or managing
events inside the time steps, the Master Algorithm has a
complex role to decide on the next time step to execute.

In order to run wide multi-simulations requiring large
memory and heavy CPU resource consumption, we first
need to distribute and process a co-simulation graph on
several PCs. Second, to achieve scaling we need (1) to
speedup a co-simulation using more computing resources
(cores and PCs), and (2) to strive to maintain the same ex-
ecution time when running larger co-simulations on more

Figure 1. Generic FMU graph implementing a multi-simulation

PCs. Of course to achieve this, we attempt to minimize the
global execution time as the sum of all the parallel FMU
computation substeps, the FMU communication substeps,
and the graph control substeps.

In 2014 we designed a distributed and parallel
FMI based multi-simulation environment, named DAC-
COSIM1 (Galtier et al., 2015), integrating a hierarchi-
cal and distributed Master Algorithm. Available under
AGPL for both Windows and Linux operating systems,
DACCOSIM2 achieves a multi-threaded execution of lo-
cal FMUs on each node with concurrent run of different
FMUs on cluster nodes, and frequent data exchange be-
tween nodes (see section 2). Then, we decided to opti-
mize and facilitate the execution of our environment on
multi-core PC clusters, which are our typical computing
platforms. Unfortunately, FMUs are kind of opaque com-
puting tasks frequently exchanging small messages. They
are very different from optimized High Performance Com-
puting tasks, and we faced different difficulties. In 2016
we succeeded to exhibit scaling on a co-simulation of heat
transfers in a set of n three-floor buildings, and we effi-
ciently run up to 81 FMUs on a 12-node PC cluster with a
10 Gbit/s Ethernet interconnect and 6 cores per node (Dad
et al., 2016). However, we needed to identify the op-
timal distribution of one building on a minimum set of
cluster nodes after running several benchmarks, and we
scaled our co-simulation replicating our initial building
and its optimal distribution. This approach has proven it is
possible to achieve scaling on distributed FMI based co-
simulations, despite the unusual features of an FMU task
graph, from a classic parallel computing point of view. We
have carried on with this work, in order to automate the ef-

1https://daccosim.foundry.supelec.fr
2Partially supported by Region Lorraine (France)

https://daccosim.foundry.supelec.fr


ficient distribution of wide co-simulations on large multi-
core PC clusters, aiming to distributed thousands of FMUs
on thousands of computing cores.

The paper is organized as follow. Next section de-
scribes the features of an FMU graph execution, the prin-
ciples of its execution, and the choices done when de-
signing the DACCOSIM architecture. Section 3 lists all
sources of parallelism and also performance losses in an
FMU graph running on a multi-core PC cluster, in or-
der to design an efficient software architecture of multi-
simulation. Section 4 investigates the distribution of the
FMU graph on a multi-core PC cluster, with poor or rich
meta-data on the FMU graph, in order to maximize per-
formance. Then, section 5 introduces our new large scale
benchmark detailing reached numerical results, perfor-
mance and scalability. Finally, section 6 lists our current
results and remaining challenges.

2 FMI-CS based Multi-Simulations
2.1 FMI-CS Strengths and Limitations
Modern electric systems are made of numerous interact-
ing subsystems: power grid, automated meter manage-
ment, centralized and decentralized production, demand
side management (including smart charging for electric
vehicle), storage, ICT resources. . . Beyond a consensus on
the language to use, modeling wide and complex systems
in one universal modeling tool implies to make some sim-
plifications that may lead to minimize important phenom-
ena. As historic and domain-specific tools validated their
business libraries since a long time, the most rational ap-
proach to simulate wide Cyber Physical Systems (CPSs)
consists in recycling specialized simulation tools in a co-
simulation approach.

The Functional Mock-up Interface for Co-Simulation
(FMI-CS) specification can now be considered as a well-
established standard for co-simulation thanks to numer-
ous developments done by industrial parties (Blochwitz
et al., 2011). A growing number of business tools - like
EMTP-RV3 for electromagnetic transient modeling - have
adopted the standard and added FMI connectors to their
products. FMI-CS allows to obtain a fairly realistic repre-
sentation of the whole system behavior since all the sub-
systems are equally taken into account without the pre-
eminence of a domain (e.g. ICT) on another (e.g. physics).
It allows the building of stand-alone active components
(FMUs) that can be executed independently of each other.
FMUs exchange data (with other FMUs or with external
components) only at some discrete communication points.
In the time interval between two communication points
each FMU model is simulated by its own numerical solver,
and a Master Algorithm controls the FMU graph at each
communication point (see Fig. 1).

An FMU for Co-Simulation consists of a ZIP file con-
taining an XML-based model description and a dynamic

3http://emtp-software.com/

Figure 2. DACCOSIM software architecture

library being either a self-contained executable compo-
nent or a call to a third-party tool at run-time (tool cou-
pling). FMI-CS is focused on the slave side (FMU) and
remains very discreet on the master side (Master Algo-
rithm). The way a simulation tool utilizes the functional-
ity provided by FMUs is strongly related to the simulation
paradigm on which the tool relies:

• Some co-simulation middleware use the Agent & Ar-
tifact paradigm (Ricci et al., 2007) to describe an het-
erogeneous multi-model, and they rely on the Dis-
crete EVent System Specification (DEVS) formal-
ism (Zeigler et al., 2000) to conceive a decentralized
execution algorithm respecting causality constraints.
But conservative algorithms, such as Chandy-Misra-
Bryant (Chandy and Misra, 1979) used in some A&A
tools like MECSYCO4, do not integrate the concept of
rollback. They must be adapted to restore FMUs to a
previous state and adjust the step size in case of events
or fast system dynamics (Camus et al., 2016).

• Another class of tools is based on the synchronization
of the communication points of all the FMUs involved
in a calculation graph. Unfortunately these tools often
stick to the master pseudo codes given as examples in
the FMI standard with a centralized algorithm acting as
a bottleneck for all the communication (data exchanges
and control information).

2.2 DACCOSIM Architecture Choices
In our attempts to design, distribute and co-simulate on
cluster nodes very wide systems composed of thousands
of FMUs, we need both to synchronize all the communi-
cation points (for accuracy purpose) and decentralize the
usual control function of the Master Algorithm (for per-
formance purpose). First versions of these features were
available within DACCOSIM in 2014.

DACCOSIM 2017 emphasizes a complete and user-
friendly Graphical User Interface (GUI) to configure and
perform local or distributed co-simulations with poten-
tially many heterogeneous FMUs compliant with the co-

4http://mecsyco.com/

 http://emtp-software.com/
http://mecsyco.com/


simulation part of the FMI 2.0 standard (FMI-CS 2.0). A
DACCOSIM calculation graph consists of blocks (mainly
FMUs) that are connected by data-flow links and poten-
tially distributed on different computation nodes. The
graph is then translated into Java master codes in confor-
mance with the features described in the FMI-CS 2.0 stan-
dard. More precisely, DACCOSIM notably offers for the
co-initialization of its calculation graph:

• Automatic construction of the global causal depen-
dency graph, built both from the FMUs internal de-
pendencies and the calculation graph external depen-
dencies. An acyclic view of the graph is generated by
aggregating each cycle as a super-node composed of
Strongly Connected Components (SCCs);

• Generalized distributed co-initialization algorithm,
mixing a sequential propagation method applied to
the acyclic dependency graph, and a Newton-Raphson
method solving its SCCs.

And for co-simulation, it offers among others:

• Implementation of each FMU wrapper as two threads
allowing to concurrently run computations and send
messages (FMU & control) while receiving incoming
messages;

• Overlapped (optimistic) or ordered (pessimistic) data
synchronization inside distributed masters (see section
3.3), that can operate with constant time steps or with
adaptive time steps controlled by one-step methods
(Euler or Richardson) or a multi-step method (Adams-
Bashforth);

• Approximate event detection while waiting for a new
version of the FMI standard able to correctly handle hy-
brid co-simulations (Tavella et al., 2016).

DACCOSIM generated master codes follow a central-
ized hierarchical approach (see Fig. 2). A unique global
master located on one cluster node is in charge of han-
dling the control data coming from several local masters
located on other cluster nodes and taking step by step de-
cisions based on this information. Every master, whether
global or local, aggregates these control data that are com-
ing from each FMU wrapper present on its cluster node.
This is done before communicating synthesized informa-
tion to the global master. The control data exchanged be-
tween masters and between FMUs and masters are called
vertical data. Of course when the co-simulation is run on
a single machine, only one master code is generated.

An original feature of the DACCOSIM architecture lies
in the fact that the FMU variable values to be exchanged at
each communication step are directly transmitted from the
senders to receivers without passing by a master. The mas-
ters, the wrapped blocks (mainly FMUs with wrappers) as
well as the communication channels between them are au-
tomatically generated by DACCOSIM by translating the
calculation graph defined by the user via its GUI. All com-
munications are implemented using ZeroMQ (or ZMQ)

Figure 3. Concurrent run times on a 2x4-core node

Figure 4. Slow down of concurrent runs on a 2x4-core node

middleware, allowing direct communications between dif-
ferent threads located on the same or on different PC clus-
ter nodes. For intra-node communications, a mechanism
of shared message queue is also available.

3 Parallelism Sources and Limitations
3.1 FMU Computations
Each computing substep is a high source of parallelism,
as all FMUs can concurrently achieve their computations.
However, running n f FMUs on nc cores of the same com-
puting node can lead to imperfect concurrency: (1) when
there are less cores than FMUs (nc < n f ), and (2) when the
FMU computations access the node memory and saturate
the memory bandwith. Taking into account this FMU con-
currency imperfection, we will deduce the optimal number
of FMUs to run on each computing node, and so the total
number of nodes to use (see section 4).

3.1.1 FMU Concurrency Experiment
We concurrently run HPC computing kernels of dense ma-
trix product (C = A×B, a reference HPC benchmark) on
one of our cluster computing node. We used an OpenBLAS
dgemm kernel, and a NUMA dual-haswell node with 2×4
physical cores at 3.5 GHz, and 2×15 MB of cache mem-
ory. Fig. 3 shows the execution times measured on dif-
ferent problem sizes, with optimized OpenBLAS kernels
blocking data in cache to minimize the memory bandwidth
consumption. For each problem size, we concurrently run
from 1 up to 64 threads, each thread executing one com-
plete call to the kernel on locally allocated data structures.
We considered (1) two large matrix sizes: 2048× 2048
matrices of 32 MB and 4096×4096 matrices of 128 MB,



Figure 5. Size up experiments on 1 Gb/s and 10 Gb/s clusters

each matrix being larger than the entire node cache, and
(2) a smaller problem with 1024×1024 matrices of 8 MB,
allowing to store the three matrices of the problem into
one node cache. Each curve illustrates the global execu-
tion time evolution when running more concurrent com-
putations.

Fig. 4 shows the slow down observed when increas-
ing the number of concurrent computations: SD(n) =
t(n)/t(1). Our optimized OpenBLAS kernel exhibits
good concurrent performance, with a very limited slow
down up to the 8 physical cores, followed by a first slow
down increase up to the 16 logical cores (exploiting hyper-
threading), and a linear increase when running more con-
current tasks serially processed by the node cores. Then,
we concurrently run several threads executing the same
FMU5, modeling heat transfers and achieving significant
computations with the cvode solver6. We can observe
in Fig. 4 that these concurrent FMU executions (1) ex-
hibit a limited slow down, up to (nc−2) FMU computing
threads, similar to the behavior of concurrent OpenBLAS
kernels, and (2) then quickly increase their slow down be-
yond (nc − 2) FMU computing threads per node, going
away from OpenBLAS kernel curves.

In fact some extra tasks are running in parallel of the
FMU computation threads in DACCOSIM, and it is not
surprising the slow down starts to increase a little bit be-
fore deploying one FMU per physical core. But the slow
down increase appears stronger than with OpenBLAS ker-
nels, and is militantly in favour of running only (nc− 2)
FMUs per computing node and using additive nodes. Of
course, this experimental study will need to be conducted
on different cluster nodes with different FMUs in the near
future to confirm the definition of the ideal number of
FMUs to deploy and run on a multi-core cluster node.

3.1.2 Unsuccessful Performance Improvement

When the number of available computing nodes is limited,
it leads to run many FMUs on a same node, many more
than (nc−2). Then, we attempted to reduce the computa-
tion time limiting the number of FMUs simultaneously run
in parallel on a same computing node. We implemented a
semaphore-based synchronization-mechanism, authoriz-
ing only nmax FMUs to concurrently run their computa-

5FMUs were designed at EDF Lab Les Renardières using
BuildSysPro models, and generated with Dymola 2016

6Sundials suite of nonlinear and differential/algebraic equation
solvers, of the LLNL’s Center for Applied Scientific Computing

tions (a new FMU could enter its computation substep
only when a previous one finished its substep).

But performance measured when limiting the concur-
rency of many FMUs on a same node were disappointing:
the total computation time still increased. We have not
succeeded to improve the execution of many concurrent
FMUs per node with a basic scheduling mechanism.

3.2 FMU Communications
3.2.1 Main Features of Inter-FMU Communications

There is no order in the inter-FMU communications of a
time step, they can all be routed in parallel, fully exploit-
ing the cluster interconnect bandwidth. Moreover, FMU
communications inside a computing node can be achieved
faster (no crossing of network connections no network
software layer). But data exchanged between two FMUs
are usually small (like one or a few floating point values).
Each FMU communication is sensitive to the network and
applicative latency: time to transfer a byte from one JVM
(running FMUs) on one node to another JVM on another
node, in current DACCOSIM implementation. Moreover,
an FMU graph has many connections generating commu-
nications at the end of each time step.

So, communication features of multi-simulations are
different from classic HPC application ones, which always
attempt to group data and exchange large messages not too
frequently. FMU communications are small, numerous
and frequent, however their implementation can be par-
allelized.

3.2.2 Sensitivity to Latency and Bandwidth

Respective weights of FMU computations and commu-
nications depend on the FMU graph and the multi-
simulation. We have run some size up experiments on
our multi-simulation of heat transfer inside buildings. We
have implemented larger simulations using greater num-
ber of computing nodes, replicating buildings on new
nodes. Theoretically, the execution time of the multi-
simulation should have remain almost constant (FMU
computation time remained constant on each node, and
communications were routed in parallel). Experimentally,
Fig. 5 shows the execution time increase on PC clusters
with 1 Gb/s and 10 Gb/s Ethernet interconnects. This time
increase is more limited on the 10 Gb/s Ethernet intercon-
nect. These experiments of heat transfer multi-simulations
have pointed out the importance of the communications
and the sensitivity to the interconnect speed.

3.2.3 Difficulty to Fully Use Infiniband Interconnect

In order to reduce cost of these intensive and short com-
munications, an interesting issue consists in using low la-
tency and high bandwidth interconnects of standard HPC
clusters, like some Infiniband networks. However, it re-
quires to use some constrained middleware or communi-
cation libraries from HPC technologies (like MPI library),
with native Infiniband interface. Using modern and con-
fortable middleware (like ZMQ in DACCOSIM environ-



Figure 6. Relaxed synchronization of time step subparts

ment) leads to use Infiniband networks over TCP/IP adap-
tors and to loose their very low latency (Secco et al., 2014).

We attempted to use the MPI library to implement
our multi-simulation communications, but MPI has been
designed for process-to-process communications and ap-
peared not adapted to DACCOSIM thread-to-thread com-
munications, where each thread manages an FMU. We
have currently suspended this investigation, and we use
Infiniband networks over TCP/IP adaptors.

3.2.4 Minimizing Message Sizes

Current communication mechanisms of DACCOSIM send
FMU output data as strings, and send input name strings
instead of short input identifiers (like input indexes). Fu-
ture versions of DACCOSIM will implement shorter data
encoding in order to reduce message sizes and bandwidth
consumption.

3.3 Time Step Subparts Orchestration

3.3.1 Ordered Orchestration with Relaxed Synchro-
nization

Basic orchestration of a time step is illustrated on Fig. 6,
and follows a relaxed synchronization mechanism. All
FMU computations are run in parallel to progress from ti
up to ti+1 = ti + h, and as soon as an FMU has finished
its computation substep it sends its requirements to the
Master Algorithm (M.A.): to roll back and rerun with a
smaller time step (to increase accuracy), to continue with
the same time step, or to continue with a greater time step.
Then, the M.A. processes each received requirement but
awaits all requirements (synchronization point S0) before
taking a global decision, and broadcasting its decision to
all FMUs. All FMUs wait for the M.A. global decision,
and as soon as an FMU receives the M.A. decision (sync.
point S1), it rolls back or continues its time step.

• If an FMU receives the command to continue (top of
Fig. 6), it enters its communication substep, sending its
output results to connected FMUs and waiting for the
update of all its input values (sync. point S2). Finally,

Figure 7. Overlapped orchestration mode

when it has updated all its inputs, it enters its next com-
putation substep.

• If an FMU receives the command to roll back (bottom
of Fig. 6), it restores its previous state at ti and reruns
its computation step, but progresses from ti up to t ′i+1 =
ti+h′, with h′ < h the new time step broadcasted by the
M.A.

So, the only global synchronization barrier is the M.A.
decision broadcast, that all FMUs are waiting for. Oth-
ers synchronization points are relaxed ones, that stop only
one task (the M.A. or one FMU). Then, each task going
over a relaxed synchronization point carries on with its
work independently of others tasks. Relaxed synchroniza-
tion allows to increase performance, avoiding time con-
suming synchronization barriers and avoiding to synchro-
nize all FMUs on the current slowest ones (the ones with
longest computations or communications at current time
step). Algorithms with relaxed synchronization schemes
are usually more complex to implement and to debug, but
ZMQ middleware has allowed an easy and efficient imple-
mentation of these communication and synchronization
mechanisms between threads across a PC cluster.

3.3.2 Overlapping Strategy

To still reduce the communication cost, a solution consists
in overlapping some of the communications with some
FMU computations, and with the Master Algorithm deci-
sion pending. Fig. 7 illustrates these mechanisms. When
an FMU has finished its computation substep, it sends its
requirements to the M.A. and, not waiting for M.A. de-
cision broadcast, enters its communication substep. So,
FMUs update their input values while the M.A. collects
their requirements and broadcasts its global decision.

But, depending on the pending time of the M.A decison
and on the number of inter-FMU communications, each
FMU can cross its synchronization points S1 (M.A. deci-
sion broadcast) and S2 (all input update received) in any
order (see FMU1 and FMU2 examples on Fig. 7). So,
when both S1 and S2 synchronization points have been



crossed, each FMU considers the M.A. decision:

• If the M.A. has broadcasted a command to continue,
then each FMU enters its new computation substep
(see top of Fig. 7), and has saved some execution
time achieving its inter-FMU communications while
the M.A. decision was pending.

• If the M.A. has broadcasted a command to rollback,
then each FMU waits for the end of its communications,
restores its state at the beginning of the time step, and
reruns its computation from ti up to t ′i+1. In this case,
the overlapping mechanism has a little bit increased the
execution time, achieving unnecessary inter-FMU com-
munications.

From a theoretical point of view, our overlapping mech-
anism reduces the execution time when there are few roll-
backs, or when using constant time steps. But from a
technical point of view, some threads will work to send
and receive messages while some threads will achieve the
end of long FMU computations (M.A. decision broadcast
is no longer a synchronization barrier). The communica-
tion threads could disturb the ongoing computations and
slow down the multi-simulation, especially when running
more threads than available physical cores (see section
3.1). Nevertheless, our overlapped orchestration mode has
appeared efficient on our multi-simulation of heat transfer
inside three floor building, run on a 6-core node cluster
with a 10 Gb/s Ethernet interconnect. Section 5 will show
the performance achieved on our benchmark of power grid
multi-simulation.

3.4 Event Handling Impact
To increase their genericity, it seems necessary for CPSs to
handle more signal kinds especially continuous & piece-
wise differentiable signals, piecewise continuous & dif-
ferentiable signals and piecewise constant signals, which
are sources of events. The current FMI-CS 2.0 re-
lease (Blochwitz et al., 2011) can theoretically approach
events thanks to for example a bisectional search using
variable step size integration (Camus et al., 2016). But
only events due to piecewise constant signal changes can
be detected. And the solution involves bad performance
as it is based on rollbacks and finally some inaccuracies
appear due to the last non zero integration step size.

We proposed to add new primitives in the FMI-CS stan-
dard (Tavella et al., 2016) in order to integrate hybrid co-
simulation in a pure FMI-CS environment. Our solution
does not require any model adaptation and allows to cou-
ple physics model with continuous variability and con-
trollers with discrete variability. Moreover, parallelism is
not reduced by our approach, as all FMUs continue to run
concurrently either when processing shorter time steps,
or when executing rollbacks. So, event handling by the
FMI-CS evolution we have proposed does not require to
change our parallel and distribution strategy of FMU co-
simulation graph.

From a computing performance point of view, this FMI-

CS standard improvement leads to execute a maximum of
one rollback per FMU each time an unpredictable event
appears during a time step. In the end, we do not know
in advance how much the execution time will decrease but
we are sure to achieve higher accuracy while improving
the computation performance.

4 FMU Placement Strategies
4.1 Not a Dependence Graph Problem
A DACCOSIM program running a total of nF FMUs is
composed of nF FMU wrapper tasks, nF data receiver
tasks, plus a local or global control task per computing
node (implementing our hierarchical M.A., see section
2.2). Of course, a DACCOSIM program can be consid-
ered as a dependency task graph, and some strategies exist
to distribute such a graph on a PC cluster (Sadayappan and
Ercal, 1988; Kaci et al., 2016). However, a DACCOSIM
task graph has some specific task dependencies. During
one time step in ordered orchestration mode, all FMUs
execute three substeps as illustrated on Fig. 8:

• The computation substep (Fig. 8 part a): all FMU wrap-
per tasks run concurrently and autonomously, achiev-
ing the FMU computations. There is no dependence
between these tasks during this substep. The only opti-
mizations consist in load balancing the FMU computa-
tions among the computing nodes, and to set only nc−2
FMU per nodes when there are enough available com-
puting nodes, according to section 3.1.

• The control substep (Fig. 8 part b): each FMU wrapper
task sends its wish to the control task for the next op-
eration (rollback or continuation, and size of the future
time step) and waits for its global decision. There is a
total dependence of the control task to all the wrapper
tasks, followed by a total dependence of all the wrap-
per tasks to the control task, close to a synchronization
barrier for the FMU wrapper tasks (see section 3.3).
There is no optimization to achieve when distributing
the FMU graph, excepted to implement a local control
task on each node to manage its FMU wrapper tasks.

• The communication substep (Fig. 8 part c): it is only
achieved when no rollback is ordered by the control
task. Each FMU wrapper task sends its new outputs
to connected FMU inputs, while each FMU receiving
task ensures the reception of the new input values of the
FMU. These communication operations are not CPU
consuming. So, we run in parallel up to 2×n f tasks on
each computing node hosting n f FMUs, in order to op-
timize the communications (see section 3.3). All these
tasks run without any synchronization nor dependence
during the communication substep, and the only opti-
mization when distributing the FMU graph consists in
grouping on the same node the most strongly connected
FMUs (fighting with the load balancing objective).

In fact, we can classify our DACCOSIM task graph as a
periodic task graph. Its period is equal to one time step,



Figure 8. Multi-task synchronization overview (ordered mode)

and includes 2 phases (a and c) with pure concurrent task
executions, and one phase (b) which is a kind of synchro-
nization barrier (with only the control task working). So,
we do not consider the task dependencies to distribute our
FMU graph on a PC cluster. We focus on load balancing,
on grouping the most connected FMUs, and on limiting
the number of FMU per nodes (when there are enough
available nodes).

IFP EN and INRIA succeeded to parallelize compu-
tation inside wide FMUs thanks to a fine scheduling of
basic operation executions on one multi-core node (Saidi
et al., 2016). The practical speed-up observed by our col-
leagues is achieved by imposing a constrained allocation
of all the operations of a same FMU to the same core.
Their approach is complementary to ours as they optimize
the co-simulation of FMUs on the different processors of
the same calculation node while we are optimizing the de-
ployment of a calculation graph composed with lots FMUs
on a possibly wide set of multi-core nodes.

4.2 Different Contexts and Approaches
The main trouble to establish a good distribution of the
FMU graph on a PC cluster is the lack of metadata about
FMU computations in the FMI-CS standard. There is no
information about FMU computation time, or computa-
tion complexity. Dynamic load balancing is out of reach
of our current implementation, and static load balancing
of the computations on the nodes of a PC cluster remains
difficult. This section introduces the different approaches
we identified to distribute FMU graphs.

4.2.1 Previous Experimental Approach

In the beginning of 2016 we distributed on two PC clusters
a first multi-simulations of heat transfers inside buildings.
Each building was a subgraph of only 10 FMUs. We ran
a small one-building problem setting only one FMU per
node, so that FMUs could run the real simulation with-
out disturbing each other (not sharing cache memory, nor
memory bandwidth, nor cores. . . ). We measured the com-
putation time of each FMU (to characterize our different
FMUs), and then we established the most load balanced
FMU distributions on various number of nodes. Finally,
some complementary experiments allowed to identify the
most efficient distribution of a one-building problem on
each PC cluster.

When the best distribution of a one-building problem
(using n0 nodes) was identified, we enlarged the prob-
lem with k buildings, replicating our best distribution (us-
ing k× n0 nodes). We successfully scaled up (Dad et al.,
2016): processing larger problem on larger cluster in
similar time. But this approach takes too long develop-
ment times, and replicating the best elementary distribu-
tion leads to use too many nodes, some cores remaining
unused. This approach cannot be a generic solution.

4.2.2 Approach function of the User Knowledge
From our point of view, distributing a totally unknown
FMU graph or a fully characterized FMU graph should
be infrequent DACCOSIM use cases. Users build co-
simulations based on their expertise and have an initial
knowledge about computation loads and communication
volumes in their FMU graphs, allowing to use basic dis-
tribution mechanisms. When testing and improving their
co-simulations they accumulate knowledge on their FMU
graphs, and can use more complex heuristics. However, it
is not obvious to design an efficient heuristic.

During the development phase of a co-simulation many
FMU graphs are only run a few times and the FMU graph
distribution has to be computed quickly, without long cali-
bration steps. But when a co-simulation design is finished
and successful, it can enter a long exploitation phase, re-
quiring frequent runs. Then, it can be profitable to make
detailed performance measurements and to compute a fine
distribution of the FMU graph, in order to use less com-
puting nodes and/or to decrease the co-simulation time.

Considering current and future usage of DACCOSIM at
EDF, for smart grid co-simulations, we identified 3 levels
of user knowledge, and we propose 3 associated generic
FMU distribution approaches.

a - Identifying FMU Families: when users have only
minimal technical and skill information about their co-
simulations, and are able just to group the FMUs in fami-
lies with close computing load.
Proposed approach: each family will form an FMU list,
and the concatenated list of all FMU families will be dis-
tributed on the computing nodes according to a round-
robin algorithm. This approach requires light knowledge
on the FMUs used, and succeeded to load balance the
FMU computations on our benchmark (see section 5).
Extreme use case: If no information is available on some
external FMUs, it is possible to group these FMUs in a
particular family to spread over the computing nodes. If
no pertinent information is available on any FMUs, it is
also possible to group all FMUs in a unique family, to
achieve a random distribution and to track a statistical load
balancing.

b - Cumulating Knowledge for Heuristics: when users
progress in their co-simulation development they improve
their knowledge about their FMUs and FMU graph. This
extra-knowledge can be exploited by more or less generic
heuristics to improve the FMU distribution. For example:



• running and testing different configurations of the FMU
graph allows to learn some relative computing weights
(ex: tcomput

FMU2 ≈ 0.5× tcomput
FMU1 ),

• analyzing the FMU graph allows to detect some regular
patterns strongly connected (ex: a city area connected
on one medium voltage network of a smart grid).

Proposed approach: design and use an heuristic (1) to op-
timize load balancing in order to reduce the global compu-
tation time, and/or (2) to group on same nodes the FMUs
strongly interconnected in order to reduce the global com-
munication time.

Warning: our experiments have shown the load balancing
optimization is the most important criterion, however de-
signing an efficient heuristic (improving performance of
the previous approach) remains difficult.

c - Building Models of Computation and Communica-
tion Times: when an FMU graph enters an exploitation
phase, it can be profitable to establish an execution time
model of the co-simulation, to optimize its distribution and
the computing resource usage.

Proposed approach: (1) run smaller but similar co-
simulations, deploying only one or very few FMUs per
node (to avoid mutual disruption between FMUs) and
measure each FMU computation time on the nodes of
the target cluster, (2) analyse the FMU graph to compute
the volume of each inter-FMU communication, and mea-
sure the experimental applicative latency and bandwidth
on the target cluster. Then, establish a computation and a
communication time model of the co-simulation, to feed a
solver looking for the best distribution of the FMU graph.

Warning: This approach requires long experimental mea-
surements.

The IDEAS test case described in section 5, has been
distributed on different PC clusters according to the Iden-
tifying FMU families and the Cumulating knowledge for
heuristics approaches.

4.3 FMU Distribution on Virtual Nodes
When the FMU graph is defined, the DACCOSIM soft-
ware suite distributes the FMUs and generates Java source
files for a set of virtual nodes, and maps the virtual nodes
on the available physical computing nodes at runtime.
Then the Java source codes are compiled, a JVM is started
for each virtual node and its Java program is executed.
We defined intermediate virtual nodes in order to generate
Java source files independent of physical node names and
IP addresses, and to make the deployment more flexible on
nodes with Non Uniform Memory Architecture (NUMA).

Modern computing nodes have several processors and
memory banks interconnected across a small network. But
memory access time becomes function of the distance be-
tween the core running the code and the memory bank
storing the data (NUMA principle). Creating one pro-
cess (one JVM, one virtual node) per NUMA subnode in-

I
1
2

3
4

5
18

19
20

1
2

3
4XX

thermal 
envelope

ventilation

building model

occupancy
behavior

heating system

Figure 9. Topology of the large scale testbed using IDEAS lib.

stead of creating a unique JVM per node managing all the
threads, can increase data locality and performance.

5 Large Scale Experiments
5.1 Experiment Objectives
The co-simulation of a large scale District Energy Sys-
tem was chosen as a testbed. Co-simulation methods are
foreseen to handle several bottlenecks encountered during
CPS simulation on one single simulation tool, such as:
• Multi-Physics integration (electrical, hydraulic, ther-

mal, etc.),
• Multiple time-scales and dynamics,
• Implementation of controllers,
• Scalability, i.e. the capability to study a growing num-

ber of buildings and the growing size of the power grid.
The numerical experiment consists in a complex multi-
physical district energy system. The main purpose of
this section is thus to propose a proof of concept of co-
simulation with lots of FMUs on a HPC cluster and to
highlight the advantages of such an approach for large
scale systems.

5.2 Testbed Description
In this section, we propose to assess DACCOSIM Master
Algorithm efficiency by co-simulating an electrical distri-
bution grid using a variable number of cluster nodes. The
model has been completely implemented using Modelica
and the OpenIDEAS library7 (Baetens et al., 2015). Nei-
ther the electrical grid, the heating systems nor the build-
ing envelops have been simplified.

The general structure of the use case is shown on Fig.
9. It is composed of 1000 buildings connected to low volt-
age (LV) feeders, each of them including a thermal enve-
lope, ventilation and heating systems and a stochastic oc-
cupancy behavior. The buildings are dispatched on 20 low
voltage LV feeders, each modeled as one FMU, noted I to
XX on Fig. 9. These feeders are connected to a medium
voltage (MV) network that is also simulated with a single
FMU. A data-reading FMU provides real medium volt-
age measurements that are imposed at the MV substation
busbar. The electric grid frequency is provided to differ-
ent FMUs (buildings and feeders) by 20 additional FMUs.

7EFRO-SALK project, with support of the European Union, the
European Regional Development Fund, Flanders Innovation & En-
trepreneurship and the Province of Limburg



This distributed frequency FMU implementation is meant
to reduce inter-node communications since the frequency
has to be dispatched to all the FMUs of the use case. Fi-
nally, the co-simulation holds a total of 1042 FMUs ex-
ported from Dymola 2016 FD01 in conformance with the
FMI-CS 2.0 standard. A smaller use-case with less build-
ings and only 442 FMUs, has also been designed to eval-
uate the scalability of our solution.

The test case was run on two different clusters: (1)
Sarah at CentraleSupelec Metz, composed of dual 4-cores
Intel Xeon E5-2637 v3 at 3.5 GHz (Haswell) with a 10
Gb/s Ethernet communication network, and (2) Porthos
at EDF R&D, composed of dual 14-cores Intel Xeon E5-
2697 v3 at 2.60 GHz (Haswell) with Infiniband FDR com-
munication network. These clusters are labeled "sar" and
"por" on performance curves of section 5.4. On both clus-
ters, DacRun is used to deploy and run the DACCOSIM
co-simulation. DacRun is implemented in Python 2.7, is
compliant with OAR and SLURM cluster management
environments, and can also be used on standalone ma-
chines (for small experiments). It achieves Java source
files compilation, virtual/physical nodes mapping, JVMs
starting and can ensure to gather the results and logs.

5.3 Numerical Results
The runs are done for a one-day simulation with one-
minute constant step size. The co-simulation gives realis-
tic results according to expert judgment. Moreover the en-
ergy consumption of the buildings follows the same trend
as the one observed on a Dymola simulation limited to one
20-building feeder. To assess the correctness of the co-
simulation on cluster, we selected a single building of the
test case and simulated it with Dymola by injecting sam-
pled voltage data obtained from the cluster co-simulation.
The power consumed by the building simulated with Dy-
mola and the one co-simulated on cluster should be the
same as the two selected buildings have the same environ-
ment: same input voltage, same weather data and same
occupancy data. The root mean square error on the cur-
rent between those two simulations is 1.16×10−2 A, with
current mainly in the range 1−10A. The two currents for
the one-day simulation are plotted on top of Fig. 10 with
a close-up on its bottom. The dynamic of the power con-
sumption is well reproduced thus the cluster co-simulation
seems reliable.

5.4 Performance and Scaling
The FMUs were dispatched on the nodes following two
different approaches introduced in section 4.2: with (1)
a Cumulated knowledge for heuristic approach exploit-
ing the problem topology with balanced load ("KHBL" on
Fig. 11), and (2) according to an Identifying FMU families
approach associated to a round-robin mechanism ("FFRR"
on Fig. 11). Experimentations were conducted on our
clusters in the ranges 32− 1024 and 112− 1792 cores,
with overlapped and ordered orchestration modes ("over"
and "order"), on both 442 and 1042 FMUs use-cases.

Figure 10. Current from a building of the DACCOSIM co-
simulation and its Dymola counterpart

Scalability Achievement: time curves on Fig. 11 appear
very linear on this full logarithmic scale graphic, slope is
close to −1 on HPC Porthos cluster, and time curves of
different problem sizes are parallel. So, execution time
regularly decreases when using more cores, and similar
performance can be achieved when running larger prob-
lems on larger number of cores (from 442 to 1042 FMU
benchmark curves). Of course, when using as many cores
as FMUs the execution stops to decrease (right-hand side
of Porthos curves).
Interconnect and Communication Impact: time curve
slope is smaller on Sarah cluster and its 10 G/s Ethernet
interconnect, than on Porthos and its high performance In-
finiband FDR interconnect. Communications are not neg-
ligible, and a high performance interconnect (low latency
and high bandwidth) improves the scalability.
Complex Choice of the Orchestration Mode: Over-
lapped mode was the fastest one on a previous use case
run on a cluster with smaller nodes (Dad et al., 2016). But
when running IDEAS use case on Sarah cluster, the over-
lapped mode appears slower than the ordered one, and
when run on Porthos cluster, both orchestration modes
have close performances up to allocate enough nodes to
get one core per FMU. Beyond this limit it remains free
cores on each node to manage communications, and the
execution time of the overlapped mode roughly decreases
and really becomes the smaller one. So, both orchestra-
tion modes are interesting, but strategy to foresee the right
one is still under investigation.
Difficulty to Design Efficient Heuristics: our heuristic
based on FMU graph knowledge, aiming to group con-
nected FMUs on the same node with respect to load bal-



Figure 11. IDEAS benchmark with 442 FMUs run on clusters

ancing, requires in our testbed some accurate number of
nodes (5, 10 or 20 on our example) and does not achieve
better performance than round-robin distribution of FMU
families. An efficient heuristic remains hard to design
and our round-robin on FMU families algorithm appears
a good solution

6 Conclusion and Perspectives
With DACCOSIM generating Java files for Linux and its
Python add-in DacRun easily compiling, running and col-
lecting the results of a DACCOSIM application on clus-
ters, we have illustrated in this paper the capability of
our FMI-CS based environment to manage very wide co-
simulations. Our testbed is a realistic case study using
the OpenIDEAS library and involving the detailed model-
ing of 1000 buildings scattered on a distribution grid. We
have demonstrated the feasibility of scaling-up the multi-
simulation by pushing very far the limits of the simulation
and taking advantage of Porthos, the EDF cluster ranked
310th in the 48th edition of the TOP500 list published in
November 2016.

Work is currently being carried out to further improve
the capabilities of our co-simulation tools suite. Some
can be performed with the current FMI-CS 2.0 standard
(e.g. minimizing inter-FMU message sizes), while oth-
ers would require an evolution of the standard (e.g. event
handling of accurate hybrid co-simulation).

A collection of generic heuristics for FMU graph distri-
bution, when knowledge on co-simulation has been accu-
mulated, is also under development, to make easier large
scale deployments of more complex co-simulations.

References
R. Baetens, R. De Coninck, F. Jorissen, D. Picard, L. Helsen,

and D. Saelens. OPENIDEAS - An Open Framework for
Integrated District Energy Simulations. In Proceedings of
Building Simulation Conference 2015 (BS 2015), Hyderabad,
India, December 2015.

T. Blochwitz, M. Otter, M. Arnold, C. Bausch, C. Clauß,

H. Elmqvist, A. Junghanns, J. Mauss, M. Monteiro, T. Neid-
hold, D. Neumerkel, H. Olsson, J.-V. Peetz, and S. Wolf. The
Functional Mockup Interface for Tool independent Exchange
of Simulation Models. In Proceedings of the 8th International
Modelica Conference, Dresden, Germany, March 2011.

B. Camus, V. Galtier, and M. Caujolle. Hybrid Co-Simulation
of FMUs using DEV and DESS in MECSYCO. In Proceed-
ings of the 2016 Spring Simulation Multiconference, Sympo-
sium on Theory of Modeling and Simulation (TMS/DEVS’16),
Pasadena, CA, USA, April 2016.

K. M. Chandy and J. Misra. Distributed Simulation: A Case
Study in Design and Verification of Distributed Programs.
IEEE Trans. Softw. Eng., 5(5), September 1979.

C. Dad, S. Vialle, M. Caujolle, J.-Ph. Tavella, and M. Ian-
otto. Scaling of Distributed Multi-Simulations on Multi-Core
Clusters. In Proceedings of 25th International Conference
on Enabling Technologies: Infrastructure for Collaborative
Enterprises (WETICE 2016), Paris, France, June 2016.

V. Galtier, S. Vialle, C. Dad, J.-Ph. Tavella, J.-Ph. Lam-Yee-Mui,
and G. Plessis. FMI-Based Distributed Multi-Simulation with
DACCOSIM. In Proceedings of the 2015 Spring Simula-
tion Multiconference, Symposium on Theory of Modeling and
Simulation (TMS/DEVS’15), USA, April 2015.

A. Kaci, H. N. Nguyen, A. Nakib, and P. Siarry. Hybrid Heuris-
tics for Mapping Task Problem on Large Scale Heteroge-
neous Platforms. In Proceedings of the 6th IEEE Work-
shop on Parallel Computing and Optimization (PCO 2016),
IPDPS Workshop 2016, Chicago, IL, USA, May 2016.

A. Ricci, M. Viroli, and A. Omicini. Give Agents Their Arti-
facts: The A&A Approach for Engineering Working Envi-
ronments in MAS. In Proceedings of the 6th International
Joint Conference on Autonomous Agents and Multiagent Sys-
tems (AAMAS’07), Honolulu, HI, USA, May 2007. ACM.

P. Sadayappan and F. Ercal. Cluster-partitioning Approaches to
Mapping Parallel Programs Onto a Hypercube. In Proceed-
ings of the 1st International Conference on Supercomputing
(ICS 1988), Athens, Greece, June 1988. Springer-Verlag.

S. E. Saidi, N. Pernet, Y. Sorel, and A. Ben Khaled. Accel-
eration of FMU Co-Simulation On Multi-core Architectures.
In Proceedings of 1st Japanese Modelica Conference, Tokyo,
Japan, May 2016.

A. Secco, I. Uddin, G. P. Pezzi, and M. Torquati. Message Pass-
ing on InfiniBand RDMA for Parallel Run-Time Supports.
In Proceedings of the 22nd Euromicro International Confer-
ence on Parallel, Distributed, and Network-Based Processing
(PDP 2014), Turin, Italy, February 2014.

J.-Ph. Tavella, M. Caujolle, S. Vialle, C. Dad, Ch. Tan,
G. Plessis, M. Schumann, A. Cuccuru, and S. Revol. To-
ward an Accurate and Fast Hybrid Multi-Simulation with the
FMI-CS Standard. In Proceedings of the IEEE 21st Inter-
national Conference on Emerging Technologies and Factory
Automation (ETFA 2016), Berlin, Germany, September 2016.

B. P. Zeigler, T. G. Kim, and H. Praehofer. Theory of Modeling
and Simulation : Integrating Discrete Event and Continuous
Complex Dynamic Systems. Academic Press, 2000.


	Introduction and Objectives
	FMI-CS based Multi-Simulations
	FMI-CS Strengths and Limitations
	DACCOSIM Architecture Choices

	Parallelism Sources and Limitations
	FMU Computations
	FMU Concurrency Experiment
	Unsuccessful Performance Improvement

	FMU Communications
	Main Features of Inter-FMU Communications
	Sensitivity to Latency and Bandwidth
	Difficulty to Fully Use Infiniband Interconnect
	Minimizing Message Sizes

	Time Step Subparts Orchestration
	Ordered Orchestration with Relaxed Synchronization
	Overlapping Strategy

	Event Handling Impact

	FMU Placement Strategies
	Not a Dependence Graph Problem
	Different Contexts and Approaches
	Previous Experimental Approach
	Approach function of the User Knowledge

	FMU Distribution on Virtual Nodes

	Large Scale Experiments
	Experiment Objectives
	Testbed Description
	Numerical Results
	Performance and Scaling

	Conclusion and Perspectives

