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Abstract

The proliferation of mobile devices, such as smartphones or connected objects with rich sensing

capabilities, has given rise to a new fast-growing sensing paradigm: mobile crowdsensing. Mobile

crowdsensing (MCS) takes advantage of the ubiquity of the devices to process and collect informa-

tion through voluntary sensing.

This paper focuses on one specific issue: decentralized data collection via MCS. While numerous

techniques from managed networks can be adapted, one of the most efficient (from the energy and

spectrum use perspective) is network coding (NC). NC is well suited to networks with mobility and

unreliability, however, practical NC requires a precise identification of individual packets that have

been mixed together. In a purely decentralized system, this requires either conveying identifiers in

headers along with coded information, or integrating a more complex protocol in order to efficiently

identify the sources (participants) and their payloads.

This paper presents a novel solution, Network Coding with Random Packet Index Assignment

(NeCoRPIA), where packet indices in NC headers are selected in a decentralized way, by simply

choosing them randomly. Traditional network decoding techniques apply directly when all original

packets have different indices. When this is not the case, i.e., in case of collisions of indices, a specific

decoding algorithm is proposed. A theoretical analysis of its performance in terms of complexity

and decoding error probability is described. Simulation results match well the theoretical results.

Using NeCoRPIA, NC may be performed without coordination between agents. Compared to

classical NC, generations of 60 packets may be considered with a header overhead of 66 %, a

DRAFT



2

vanishing decoding error probability, and a decoding complexity about 10 times that of Gaussian

elimination.

Index Terms

Network coding, random source index, mobile crowdsensing, broadcast, data collection.

I. INTRODUCTION

Currently, smartphones, as well as various connected objects with advanced connectivity

and sensing capabilities are more and more widespread. This trend leads to the emergence

of a novel category of applications, termed mobile crowdsensing (MCS) [1] where individual

users or devices participate voluntarily to gather collectively environmental information. An

example of practical experimentation of MCS is given by Nericell [2] in Bangalore where

road and traffic conditions (including potholes, braking, and honking) were monitored through

mobile phones. One of the challenges that has to be addressed is the distributed nature of the

network with unpredictable stability, high churn rate, and node mobility. In this paper, we

focus on scenarios of MCS where local measurements from some area are collected through

multi-hop communication (e.g., through WiFi or D2D communication [3], saving energy and

cellular spectrum use) as represented later in Figure 1.

For these scenarios, a suitable communication technique is Network Coding (NC) [4]. NC

is a transmission paradigm for multi-hop networks, in which, rather than merely relaying

packets, the intermediate nodes may mix the packets they receive. In general, in wireless

networks, the inherent broadcast capacity of the channel provides added benefits and improves

the communication efficiency [5], [6], [7]. Moreover, some techniques permit to implement

it in a more distributed manner [8], [9] fitting mobile and dynamic network requirements.

Although NC is ideally suited for the considered MCS applications, in practical NC

(PNC) protocols, the mixing of the packets is achieved through linear combinations, and

the corresponding coding coefficients are generally included in each mixed packet, either

as an encoding vector [9], or in some compressed form [10], [11] (see Figure 4). In this

way, a coefficient can be uniquely associated with the corresponding packet: the downside

is the requirement for a global indexing of all packets in the network. Such global indexing

is difficult to perform in a purely distributed system, where sources may appear, move, and

disappear.
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The major contribution of this paper is a novel approach that allows one to overcome

this major hurdle: we propose Network Coding with Random Packet-Index Assignment

(NeCoRPIA). With NeCoRPIA, packet indices in NC headers are selected in a decentralized

way, by simply choosing them randomly. A preliminary version of this idea was first presented

in [12]. Such random assignment is simple, fast, and fully distributed but does present the

possibility of collisions, that is, two packets being assigned to the same index by different

nodes. Here, we extend the idea in [12], by considering a random assignment of several

indexes to each packet. This significantly reduces the probability of collision compared to

a single index, even if represented on the same number of bits as several indexes. Since

collisions cannot be totally avoided, we also propose an elaborate algorithm to decode

the received packets in spite of possible collisions, also taking advantage of the content

of the crowdsensing data packets themselves. We additionally detail how this approach is

encompassed in a practical MCS NC protocol.

This paper reviews related work in Section II. Section III presents the architecture and

protocol of NeCoRPIA, our version of PNC dedicated to MCS. Section IV describes network

decoding techniques within the NeCoRPIA framework. Section V analyses the complexity

of the proposed approach. Section VI evaluates the performance of NeCoRPIA. Finally,

Section VII provides some conclusions and future research directions.

II. RELATED WORK

The generic problem of efficiently collecting information from multiple sources to one

or several sinks in multi-hop networks has been extensively studied in the literature: for

instance, for static deployments of wireless sensor networks, a routing protocol such as the

Collection Tree Protocol (CTP) [13] is typical. Focusing on our envisioned MCS applications

[1], performance can be improved by the use of NC, as exemplified by [5] where NC is

shown to outperform routing in a scenario with multiple sources (all-to-all broadcast). NC

for broadcast is even proved to be asymptotically optimal [14].

Motivated by performance gains, a large number of PNC protocols have been proposed

for wireless multi-hop networks: most of them adopt random linear coding [8] and the key

proposal of prepending a global encoding vector to coded payloads [9] (see top of Figure 4).

A practical concern is the overhead brought by the encoding vector: [15] explores the

trade-off between field size and generation (hence encoding vector) size. Two examples of

different approaches aim at reducing its size: in [10], encoding vectors are themselves coded
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(compressed) yielding gains when only limited subsets of linear combinations are possible,

whereas in [11] a special coding scheme permits to represent it with one single symbol at

the expense of generation size.

In the case of multiple sources, constructing an efficient encoding vector is more difficult

as evidenced by COPE [6], one of the first NC implementations for a testbed: it resorts to

a header that explicitly includes one identifier (32-bit hash) for each of the coded packets

(generalized in Figure 4).

Going further, the encoding vectors may be entirely removed from the header of packets.

Network decoding may then be seen as a source separation problem: recovering source

vectors defined over a field (e.g., R or C) from observations linearly combined through

an unknown encoding matrix [16]. In R, one classical approach to source separation is

Independent Component Analysis (ICA) [17], [18], which estimates the sources as the set of

linear combinations that minimizes the joint entropy and the mutual similarity among vectors.

ICA can still be used over a finite field Fq [19], [20] by minimizing the marginal entropy of

the estimated sources. In previous work, we have proposed different techniques that exploit

ICA over finite fields in the context of NC: in [21], network-coded packets without encoding

vectors are decoded using entropy minimization jointly with channel encoding, while in [22],

we exploit the redundancy introduced by communication protocols to assist the receiver in

decoding, via the solution of a maximum a posteriori (MAP) estimation problem. The price

to pay is a significantly larger decoding complexity compared to simple Gaussian elimination

when considering classical NC.

In a preliminary version of this paper [12], a simple random encoding vector was con-

sidered. This vector had to be quite large for generations with a typical number of packets

in order to avoid collisions. This paper extends the idea of [12] by considering a random

encoding vector split into nv independent random subvectors. For a given level of performance

(collision probability), this leads to a significant decrease of the size of the encoding vector,

and thus reduces the NC overhead.

III. NECORPIA ARCHITECTURE AND PROTOCOL

A. Mobile Crowdsensing Application Objective

An MCS architecture is considered where a set S = {S1, . . . , SN} of N static nodes

gathering measurements performed by mobile sensing nodes. Each node Si, located in θi, in

some reference frame F , acts as a data collection point for all mobile nodes located in its
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Figure 1. MCS data collection scenario: the static node Si gathers measurements from all mobile nodes (with limited

communication range) in its assigned data collection area Ri in grey

Sensor	
Mesurements	

Network	Coding	
Broadcast	Protocol	

Coding	Payloads	with	
Random	Packet	

Index	Assignement	

Decoding	with	
DeRPIA	

Figure 2. Modules of NeCoRPIA architecture

assigned areaRi (e.g., its Voronoi cell) as in Figure 1. The data consist, for instance, in a set of

measurements of some physical quantity D(ξ), e.g., temperature, associated with the vector ξ,

representing the experimental conditions under which the measurements were taken (location,

time instant, regressor vector in case of model linear in some unknown parameters). Note

that for MCS applications, the identity of the node that took the measurements is secondary,

provided that there are no node polluting the set of measurements with outliers.

Typically, a mobile node measures periodically D under the experimental conditions ξ. The

MCS application objective is to collect the tuples (ξ,d), where d = D(ξ), to the appropriate

collection point Si (responsible for the area Ri where the mobile node finds itself).

B. General Architecture

For fulfilling the objectives of the previous section, a communication architecture based

on NC is designed where information is propagated to the closest sink through dissemination

of coded packets.

Figure 2 represents the modules involved in NeCoRPIA. The sensing module is in charge

of collecting local sensor information with associated experimental conditions, i.e., the tuple
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Figure 3. NeCoRPIA packet format

(ξ,d). The encoding module takes as input (ξ,d) and creates packets containing the data pay-

load, and our specific NeCoRPIA header. The NC protocol aims at ensuring that all (coded)

packets reach the collection points, by transmitting at intermediate nodes (re)combinations

of received packets. The decoding module at the collection points applies the algorithm from

Section IV to recover the experimental data collected in the considered area Ri.

C. Network Encoding Format

Figure 3 represents the general packet format used in NeCoRPIA: it includes a control

header used by the NC dissemination protocol, followed by an encoded content, considered

as symbols from Fq, the Galois field with q elements.

The control header itself includes, as generation identifier (GI), a spatio-temporal slot

(STS) (r, t), where r is the index of the sink Sr and t is the index of the considered time

slot, within which the data has been collected. Only packets with the same GI are combined

together by the protocol. The rest of the packet can be formally written as a vector x of Lx

entries in Fq as

x = (v1, . . . ,vnv ,π,h) , (1)

where v` ∈ FL`
q , ` = 1, . . . , nv represent the encoding subvectors, π = (ξ,d) is the payload,

where ξ and d are represented with finite precision on a fixed number Lπ of symbols in Fq,

and h = h(π) ∈ FLh
q is the hash of π. In classical NC, nv = 1, and v1 corresponds to one

of the canonical vectors of FL1
q . The choice of the canonical vector requires an agreement

among mobile sensing nodes, to avoid the same vector being selected by two or more mobile

nodes in the same STS.

To avoid this resource-consuming agreement step, when a source generates a packet,

NeCoRPIA assigns random canonical vectors ei ∈ FL`
q to each v`, ` = 1, . . . , nv. For

each new payload π, the random NC vector is then represented by (v1, . . . ,vnv). One may

choose nv = 1, but in this case, L1 should be quite long to avoid collisions, even for a

moderate number of packets in each STS (this is reminiscent to the birthday paradox [23]),
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Figure 4. NeCoRPIA encoding vector format (case nv = 1), compared with classical formats, for a linear combination

7d1 + 3d2 + d3 + 2d4

see Section V-E1. This results in an encoding vector with the format represented in Figure 4

for the case nv = 1.

The hash h is included to assist the decoding process in case of collisions.

D. Network Coding Protocol

The NC protocol is in charge of ensuring that the coded packets are properly reaching

the data collection points for later decoding. Since the main contribution of our method lies

in other parts, we only provide the sketch of a basic protocol. It operates by broadcasting

measurements to all nodes within each area Ri, with NC (in the spirit of [5]): with the effect

that the collection point Si will gather the information as well. It is a multi-hop protocol

relying on the control header, shown in Figure 3, to propagate control information to the

entire network (as DRAGONCAST [24] does for instance). The control headers are generated

by the data collection points and copied in each encoded packet by the nodes.

The baseline functioning is as follows: at the beginning of each STS, Si initiates data

collection by generating packets with an empty payload, and with a source control header

holding various parameters such as: number of encoding subvectors nv and size of each

encoding vector L`, ` = 1, . . . , nv, the buffer size GB, the STS (r, t), along with a compact

description of its area Ri, sensing parameters, etc. Upon receiving packets from a data

collection point or from other nodes, and as long its current position matches Ri, a node

periodically retransmits (coded) packets with the most up-to-date control header. When several

measurements are taken within the same STS, packets with different random encoding vectors

should be generated. Furthermore, each node maintains a buffer of (at most) GB coded

vectors: when a packet associated to a given STS is received, it is (linearly) combined with

all coded packets associated with the same STS in the buffer. Likewise, when a packet is
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generated in some STS, a linear combination of all coded packets belonging to the same

STS and stored in the buffer is computed. Si (indirectly) instructs nodes to stop recoding of

packets of a STS (and to switch to the next one) through proper indication in the control

header. Note that many improvements of this scheme exist or can be designed.

IV. ESTIMATION OF THE TRANSMITTED PACKETS

Assume that within a STS (r, s), mobile sensing nodes have generated a set of packets

x1, . . . ,xg, which may be stacked in a matrix X. Assume that g′ > g linear combinations of

the packets x1, . . . ,xg are received by the data collection point Sr and collected in a matrix

Y′ such that

Y′ = A′X = A′ (V1, . . . ,Vnv ,P) , (2)

where A′ represents the NC operations that have been performed on the packets x1, . . . ,xg.

V1, . . . ,Vnv , and P are matrices which rows are the corresponding vectors v1,i, . . . ,vnv,i,

and pi = (πi,hi) ∈ FLp
q of the packets xi, i = 1, . . . , g, with Lp = Lπ + Lh. If enough

linearly independent packets have been received, a full-rank g matrix Y may be extracted by

appropriately selecting1 g rows of Y′. The corresponding g rows of A′ form a g×g full-rank

matrix A. Then, (2) becomes

Y = A (V1, . . . ,Vnv ,P) . (3)

The problem is then to estimate the packets x1, . . . ,xg from the received packets in Y,

without knowing A.

Three situations have to be considered. The first is when the rows of (V1, . . . ,Vnv) are

linearly independent due to the presence of some V` of full rank g. The second is when

the rows of (V1, . . . ,Vnv) are linearly independent but there is no full rank V`. The third is

when the rank of (V1, . . . ,Vnv) is strictly less than g, but the rank of Y is equal to g. These

three cases are illustrated in Examples 1-3. In the last two situations, a specific decoding

procedure is required, which is detailed in Section IV-B.

Example 1. Consider a scenario where three nodes generate packets with nv = 2 random

coding subvectors in FL`
2 with L1 = L2 = 3. When the generated coding vectors are

((1, 0, 0) , (0, 1, 0)), ((1, 0, 0) , (0, 0, 1)), and ((0, 0, 1) , (1, 0, 0)), two nodes have selected the

1We assume that even if packet index collisions have occurred (which means rank (V) < g) the measurement process is

sufficiently random to ensure that X and thus Y have full rank g.

DRAFT



9

1 2 3

1

2

3

� �

�

1 2 3

1

2

3

� �

�

1 2 3

1

2

3

� �

� �

( )a ( )b ( )c

Figure 5. (a) Illustration of Example 1: No collision in the second subvectors; (b) Illustration of Example 2: single

collisions in both subvectors; (c) Illustration of Example 3: single collisions in both subvectors leading to a cycle and a

rank deficiency.

same first coding subvector, but all second coding subvectors are linearly independent, which

allows one to recover the original packets via Gaussian elimination. This situation is illustrated

in Figure 5 (a), where each coding vector may be associated to a point in a 3× 3 grid, the

first coding vector representing the row index and the second coding subvector the column

index. Three different column have been selected, decoding can be performed via Gaussian

elimination on the second coding subvectors.

Example 2. Consider the same scenario as in Example 1. When the generated coding vectors

are ((1, 0, 0) , (0, 1, 0)), ((1, 0, 0) , (0, 0, 1)), and ((0, 0, 1) , (0, 1, 0)), collisions are observed

in the first and second coding subvectors, but (V1,V2) is of full rank g = 3. This situation is

illustrated in Figure 5 (b): three different entries have been chosen randomly, decoding will

be easy.

Example 3. Consider now a scenario where four nodes generate packets with nv = 2

random coding subvectors in FL`
2 with L1 = L2 = 3. When the generated coding vectors are

((1, 0, 0) , (0, 1, 0)), ((1, 0, 0) , (0, 0, 1)), ((0, 1, 0) , (0, 1, 0)), and ((0, 1, 0) , (0, 0, 1)), the rank

of (V1,V2) is only three. Y will be of full rank g = 4 only if (V1,V2,P) is of full rank.

This situation is illustrated in Figure 5 (c): even if different entries have been chosen, the

rank deficiency comes from the fact that the chosen entries may be indexed in such a way

that they form a cycle.
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A. Decoding via Gaussian elimination

When A is a g×g full-rank matrix, a necessary and sufficient condition to have the rank of

one of the matrices AV` equal to g is that all mobile sensing nodes have chosen a different

canonical subvector for the component v` of the NC vector. Decoding may then be performed

via usual Gaussian elimination on AV`, as in classical NC. As will be seen in Section VI,

this event is unlikely, except for large values of L` compared to the number of packets g.

B. Decoding with packet index collisions

When A is a g × g full-rank matrix, the rank of AV` is strictly less than g when at least

two rows of V` are identical, i.e., two nodes have chosen the same canonical subvector. This

event is called a collision in the `-th component of the NC vector.

When A is a g × g full-rank matrix, the rank of A [V1, . . . ,Vnv ] is strictly less than g

when the rows of [V1, . . . ,Vnv ] are linearly dependent. This may obviously occur when the

NC vector chosen by two nodes are identical, i.e., there is a collision in all nv components of

their NC vector. This also occurs when there is no such collision, when nodes have randomly

generated linearly dependent NC subvectors, as illustrated in Example 3, see also Section V.

1) Main idea: In both cases, one searches a full rank matrix W such that X = WY up

to a permutation of the rows of X. We propose to build this unmixing matrix W row-by-row

exploiting the part of the packets containing the nv NC subvectors (AV1, . . . ,AVnv), which

helps defining a subspace in which admissible rows of W have to belong. Additionally, one

exploits the content of the packets and especially the hash h (π) introduced in Section III-C

to eliminate candidate rows of W leading to inconsistent payloads.

2) Exploiting the collided NC vectors: For all full rank g matrix Y, there exists a matrix

T such that TY is in reduced row echelon form (RREF)

TY =



B11 B12 B1nv C1

0 B22

0 0
. . . ...

... . . . Bnvnv

0 · · · · · · 0 Cnv+1


, (4)

where B`` is a ρ`×L` matrix with rank (B``) = ρ`. Since rank (Y) = g, Cnv+1 is a ρnv+1×Lp

matrix with rank (Cnv+1) = ρnv+1 = g−∑nv
`=1 ρ`. The matrix B11 is of rank ρ1 and its rows

are ρ1 different vectors of V1.
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One searches now for generic unmixing row vectors w of the form w = (w1,w2, . . . ,wnv ,wnv+1),

with w1 ∈ Fρ1q , w2 ∈ Fρ2q ,. . . ,wnv+1 ∈ Fρnv+1
q , such that wTY = xk for some k ∈ {1, . . . , g}.

This implies that the structure of the decoded vector wTY has to match the format introduced

in (1) and imposes some constraints on w, which components have to satisfy

w1B11 = ej1 (5)

w1B12 + w2B22 = ej2 (6)

...

w1B1,`−1 + w2B2,`−1 + · · ·+ w`−1B`−1,`−1 = ej`−1
(7)

w1B1` + w2B2` + · · ·+ w`B`` = ej` (8)

w1B1,`+1 + w2B2,`+1 + · · ·+ w`+1B`+1,`+1 = ej`+1
(9)

...

w1B1nv + w2B2nv + · · ·+ wnvBnvnv = ejnv
(10)

c (w1C1 + w2C2 + · · ·+ wnv+1Cnv+1) = 0, (11)

where ej` is the j`-th canonical vector of FL`
q and c is a hash-consistency verification function

such that

c (π,h) =

0 if h = h (π) ,

1 else,
(12)

where both components π and h are extracted from w1C1 + w2C2 + · · ·+ wnv+1Cnv+1.

The constraint (8) can be rewritten as

w`B`` = ej` − (w1B1,` + · · ·+ w`−1B`−1,`) . (13)

This is a system of linear equations in w`. Since the ρ` × L` matrix B`,` has full row rank

ρ`, for every ej` ∈ FL`
q there is at most one solution for w`. This property allows building all

candidate decoding vectors w using a branch-and-prune approach described in the following

algorithm, which takes TY as input.

Algorithm 1. DeRPIA (Decoding from Random Packet Index Assignment)

• Initialization: Initialize the root of the decoding tree with an empty unmixing vector w.

• Level 1: From the root node, find branches corresponding to all possible values of ej1 ,

j1 = 1, . . . , L1, for which there exists a value of w1 satisfying (5).

• Level 2:
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For all j1 = 1, . . . , n1

find w1 such that
w1B11 = ej1

w1 | w1B11 = [100 . . . 0]

For all j2 = 1, . . . , n2:
w2 such that

w2B22 = ej2 − w1B12 ?

No
solution

e2 = [100 . . . 0]

w1 | w1B11 = [100 . . . 0]
w2 | w1B12 + w2B22 = [010 . . . 0]

For all j3 = 1, . . . , n3:
w3 such that

w3B33 = ej3 − (w1B13 +w2B23) ?

. . . . . .

e2 = [01 . . . 0]

e1 = [100 . . . 0]

No
solution

e2 = [010 . . . 0]

. . .

. . .

w1 | w1B11 = [0 . . . 001]

For all j2 = 1, . . . , n2:
w2 such that

w2B22 = ej2 − w1B12 ?

en1 = [0 . . . 001]

Figure 1: Hello

1

Figure 6. First steps of DERPIA starting from the root of the decoding tree.

– Expand each branch at Level 1 with branches corresponding to all possible values

of ej2 , j2 = 1, . . . , L2, for which there exists a value of w2 satisfying (6).

– Prune all branches corresponding to a pair (w1,w2) for which there is no j2 =

1, . . . , L2 such that (6) is satisfied.

• Level `: Expand all remaining branches at Level `− 1 in the same way.

– Expand each branch at Level `− 1 for a given tuple (w1, . . . ,w`−1) with branches

corresponding to all possible values of ej` , j` = 1, . . . , L`, for which there exists a

value of w` satisfying (8).

– Prune all branches corresponding to tuples (w1, . . . ,w`−1) for which there is no

j` = 1, . . . , L` such that (8) is satisfied.

• Level nv + 1:

– if ρnv+1 = 0, all tuples (w1, . . . ,wnV) found at Level nv are unmixing vectors.

– if ρnv+1 > 0, each branch of the tree corresponding to a vector (w1, . . . ,wnv)

satisfying all constraints (5)-(10), is expanded with all values of wnv+1 ∈ Fρnv+1
q

such that (11) is satisfied. Note that (11) is not a linear equation.
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. . .

w1 | w1B11 = ej1
w2 | w1B12 + w2B22 = ej2

. . .
wnv

| w1B1nv
+ w2B2nv

+ . . . + wnv
Bnvnv

= ejnv

For all wnv+1 ∈ Fρnv+1
q :

Is wnv+1 such that c (w1C1 +w2C2 + · · ·+wnv+1Cnv+1) = 0 ?

No solution

w = (w1, . . . ,wnv+1) = [101100 . . . 0]

Solution found: w

w = (w1, . . . ,wnv+1) = [101100 . . . 1]

. . .

. . .

eJnv
= [0 . . . 010 . . . 0]

1

Figure 7. Last steps of DERPIA at the leaves at Level nv + 1 of the decoding tree.

The first steps of DeRPIA are illustrated in Figure 6. From the root node, several hypotheses

are considered for w1. Only those satisfying (5) are kept at Level 1. The nodes at Level 1

are then expanded with candidates for w2. Figure 7 illustrates the behavior of DeRPIA at

Level nv + 1. Several hypotheses for wnv+1 are considered. Only those such that (11) is

satisfied are kept to form the final unmixing vectors w.

3) Complexity reduction: The aim of this section is to show that at each level of the tree

built by DeRPIA, the solution of (13) does not need solving a system of linear equations but

may be performed by the search in a look-up table. From Theorem 4, one sees that w` can

take at most ρ` + 1 different values, which are the null vector and the canonical base vectors

ei of Fρ` corresponding to the pivots of B``.

Theorem 4. Each w` satisfying (5)-(8) contains at most one non-zero component. In addition,

w1 contains exactly one non-zero component.

Proof: The proof is by contradiction. Consider first ` = 1. B11 is a pivot matrix of ρ1

lines. If w1 contains more than one non-zero component, then w1B11 will contain more than

one non-zero entries corresponding to the pivots of B11 associated to the non-zero components
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of w1 and (5) cannot be satisfied. Moreover, with w1 = 0, (5) cannot be satisfied too.

Consider now some ` > 1. In (13), since TY is in RREF, B`` is a pivot matrix of

ρ` lines. Moreover all columns of the matrices B1,`, . . . ,B`−1,` which correspond to the

columns of the pivots of B`` are zero. This property is shared by the linear combination

w1B1,` + · · ·+w`−1B`−1,`. Thus ej` − (w1B1,` + · · ·+ w`−1B`−1,`) is either the null vector,

in which case w` = 0, or contains at most one non-zero entry due to ej` at the columns

corresponding to the pivots of B``. In the latter case, if w` contains more than one non-

zero component, then w`B`` will contain more than one non-zero entry corresponding to the

columns of the pivots of B`` associated to the non-zero components of w` and (8) cannot

be satisfied.

Note that for a given branch, when a set of vectors w1, . . . ,w`−1 has been found, a vector

w` satisfying (5)-(11) does not necessarily exist. In such case the corresponding branch is

pruned, see the last case of Example 7 in what follows.

Using Theorem 4, there is no linear system of equations to be solved any more. In practice,

the search for w` can be even further simplified using the following corollary.

Corollary 5. The search for w` satisfying (8) reduces to a simple look-up in a table.

Proof: Assume that there exists w` satisfying (5)-(11). Then (13) can be rewritten as:

w`B``−ej` = − (w1B1,` + · · ·+ w`−1B`−1,`). Here we assume that w` 6= 0 and then further

analyze properties established in Theorem 4:

• In the linear combination − (w1B1,` + · · ·+ w`−1B`−1,`), all components that corre-

spond to the columns of the pivots of B`` are zero.

• Both sides of (13) can have at most one non-zero entry in the columns of the pivots of

B``. If there is one, that non-zero entry must correspond to ej` .

It follows that ej` must exactly correspond to the component at the column of the unique

pivot of B`` found in the vector w`B`` and must cancel it in the expression w`B``−ej` . Since

w` (assumed non-zero) has only one non-zero entry and since coefficients corresponding to

pivots are equal to 1, the non-zero component of w` must be 1 (as it is the case for ej`). As

a result w`B`` is actually one of the row vectors of B``, and the expression w`B`` − ej` is

that row vector with a zero at the place of the component of the associated pivot. Finding

one non-zero w` satisfying (5)-(8) is then equivalent to identify all row vectors u of B``

such that u =− (w1B1,` + · · ·+ w`−1B`−1,`), where u = u− eγ(u) and γ (u) is the index of

the pivot column of u.
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One deduces the following look-up table-based algorithm, which consists in two parts. Al-

gorithm 2a is run once and builds a set of look-up tables from B1,1, . . . ,Bnv,nv . Algorithm 3b,

then uses these look-up tables, takes as input (w1, . . . ,w`−1) satisfying (7) and provides the

set of vectors (w1, . . . ,w`−1,w`) satisfying (8).

Algorithm 2a. Construction of the look-up tables from B1,1, . . . ,Bnv,nv

1) For ` = 1, . . . , nv

a) Initialization: Π` = ∅.
b) For each row vectors u of B``,

i) identify the index γ (u) of its pivot column, and denote by u the row vector

with a zero at the place of its pivot: u = u− eγ(u)

ii) if u /∈ Π`, then Π` = Π` ∪ {u}.
c) For each v ∈ Π`, evaluate

C` (v) = {ei ∈ Fρ`q , i = 1, . . . , ρ`|u=eiB`` and u− eγ(u) = v}.

The sets C` (v) contain the candidate w` that may satisfy (8).

Example 6. Assume for example that

B`,` =


1 0 0 0 1 0

0 0 1 0 1 0

0 0 0 1 1 0

0 0 0 0 0 1

 .

Using Algorithm 2a, one obtains

Π` =
{(

0 0 0 0 1 0
)
,
(

0 0 0 0 0 0
)}

and

C`
((

0 0 0 0 1 0
))

=
{(

1 0 0 0
)
,
(

0 1 0 0
)
,
(

0 0 1 0
)}

,

C`
((

0 0 0 0 0 0
))

=
{(

0 0 0 1
)}

.

Algorithm 2b. Obtain the set W` of all w` satisfying (8), from (w1, . . . ,w`−1) satisfying

(7).

1) Initialization: W` = ∅.
2) Compute v = − (w1B1,` + · · ·+ w`−1B`−1,`).
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3) If w` = 0 satisfies (8), i.e., if v + ej` = 0 for some canonical vector ej` ∈ FL`
q , then

W` = {0}.
4) If v ∈ Π`, then W` =W` ∪ C`(v).

Example 7. Consider the results of Example 6 and a branch at level `− 1 of the decoding

tree associated to (w1, . . . ,w`−1). One searches the set of w`s satisfying

w`B`` = ej` − (w1B1,` + · · ·+ w`−1B`−1,`) . (14)

Assume first that (w1, . . . ,w`−1) is such that

v1=− (w1B1,` + · · ·+ w`−1B`−1,`)

=
(

0 0 0 0 1 0
)

then w = 0 is a solution of (14) associated to ej` = e5 =
(

0 0 0 0 1 0
)

. The other

solutions are given by C` (v1) =
{(

1 0 0 0
)
,
(

0 1 0 0
)
,
(

0 0 1 0
)}

and

W` =
{(

0 0 0 0
)
,
(

1 0 0 0
)
,
(

0 1 0 0
)
,
(

0 0 1 0
)}

.

Assume now that (w1, . . . ,w`−1) is such that

v2=− (w1B1,` + · · ·+ w`−1B`−1,`)

=
(

0 1 0 0 0 0
)
,

then w = 0 is a solution of (14) associated to ej` = e2 =
(

0 1 0 0 0 0
)

. There is

no other solution, since v2 /∈ Π`.

Assume finally that that (w1, . . . ,w`−1) is such that

v3=− (w1B1,` + · · ·+ w`−1B`−1,`)

=
(

1 0 0 1 0 0
)
,

then W` = ∅, since w = 0 is not a solution of (14) and v3 /∈ Π`.

V. COMPLEXITY EVALUATION

To evaluate the arithmetic complexity of the NeCoRPIA decoding algorithms, one assumes

that the complexity of the product of an n×m matrix and an m×p matrix is at most Kmnmp

operations where Km is some constant. The complexity of the evaluation of the checksum of

a vector in Fnq is Kcn, where Kc is also a constant. Finally determining whether two vectors

of n entries in Fq are equal requires at most n operations.
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The decoding complexity of NeCoRPIA depends on several parameters. First, the g′

received packets of length Lx collected in Y′ have to be put in RREF to get TY, introduced

in (4). The arithmetic complexity of this operation is KR (g′)2 Lx, with KR a constant.

Algorithm 1 is a tree traversal algorithm. Each branch at Level ` of the tree corresponds

to a partial decoding vector (w1, . . . ,w`) satisfying (5)-(8). The complexity depends on

the number of subbranches stemming from this branch and the cost related to the partial

verification of (5)-(9) for each of these subbranches. At Level nv + 1, for each branch

corresponding to a partial decoding vector (w1, . . . ,wnv) satisfying (5)-(10), an exhaustive

search has to be performed for wnv+1 such that (w1, . . . ,wnv+1) satisfies (5)-(11).

Section V-A evaluates an upper bound for the number of branches at each level of the

decoding tree. Section V-B determines the complexity of Algorithm 1 when the satisfying

w`s are obtained by the solution of a system of linear equations. This version of Algorithm 1

is called DeRPIA-SLE in what follows. Section V-C describes the complexity of Algorithm 1

when the satisfying w`s are obtained from look-up tables as described in Algorithms 2a and

2b. This version of Algorithm 1 is called DeRPIA-LUT in what follows. As will be seen, the

complexities depend on the ranks ρ1, . . . , ρnv+1, which distribution is evaluated in Section V-E

in the case nv = 1 and nv = 2.

A. Number of branches in the tree

The following corollary of Theorem 4 provides an evaluation of the number of branches

that needs to be explored in Algorithm 1.

Corollary 8. At Level `, with 1 6 ` 6 nv, the maximum number of vectors (w1, . . . ,w`)

satisfying (8) is

Nb(`) = ρ1 (ρ2 + 1) . . . (ρ` + 1) . (15)

The maximum number of branches that need to be considered by Algorithm 1 at Level ` =

nv + 1 is

Nb (nv + 1) = ρ1 (ρ2 + 1) . . . (ρnv + 1) qρnv+1 (16)

and the total number of branches in the decoding tree is upper bounded by

Nb = ρ1 +ρ1 (ρ2 + 1)+ . . .+ρ1 (ρ2 + 1) . . . (ρnv + 1)+ρ1 (ρ2 + 1) . . . (ρnv + 1) qρnv+1 . (17)
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Proof: From Theorem 4, one deduces that w1, of size ρ1 can take at most ρ1 different

values. For 1 < ` 6 nv, w` of size ρ` can either be the null vector or take ρ` different non-

zero values. For the vector wnv+1, all possible values wnv+1 ∈ Fρnv+1
q have to be considered

to check whether (11) is verified. The number of vectors (w1, . . . ,w`) satisfying (8) at level

` is thus upper bounded by the product of the number of possible values of wk, k = 1, . . . , `

which is (15). Similarly, the number of branches that have to be considered at Level nv + 1

of the search tree of Algorithm 1 is the product of the number of all possible values of the

w`, ` = 1, . . . , nv + 1 and thus upper-bounded by (16). An upper bound of the total number

of branches to consider is then

Nb =
nv+1∑
`=1

Nb(`),

which is given by (17).

B. Arithmetic complexity of DeRPIA-SLE

An upper bound of the arithmetic complexity of the tree traversal algorithm, when the

number of encoding vectors is nv, is provided by Proposition 9

Proposition 9. Assume that NeCoRPIA has been performed with nv random coding subvec-

tors. Then an upper bound of the total arithmetic complexity of DeRPIA-SLE is

KSLE (nv) =
nv+1∑
`=1

Nb (`− 1)K (`) (18)

with

K (1) = L1ρ1L1,

K (`) = KmL` (ρ1 + ...+ ρ`−1) + L` (`+ (ρ` + 1)L`) ,

K (nv + 1) = KmgLp + (nv − 1)Lp + qρnv+1 (Kmρnv+1Lp + Lp +KcLp) . (19)

and Nb (0) = 1. In the case nv = 1, (18) boils down to

KSLE (1) = ρ1L
2
1 + ρ1Lp (Kmg + qρ2 (Kmρ2 + 1 +Kc)) . (20)

The proof of Proposition 9 is given in Appendix A.

One sees that (18) is expressed in terms of ρ1, . . . , ρnv+1, which are the ranks of the

matrices B``. As expected, the complexity is exponential in ρnv+1, which has to be made as

small as possible. The values of ρ1, . . . , ρnv+1 depend on those of L` and g, as will be seen

in Section V-E.
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C. Arithmetic complexity of DeRPIA-LUT

The tree obtained with DeRPIA-LUT is the same as that obtained with DeRPIA-SLE. The

main difference comes from the arithmetic complexity when expanding one branch of the

tree. Algorithm 2a is run only once. Algorithm 2b is run for each branch expansion. An

upper bound of the total arithmetic complexity of DeRPIA-LUT is given by the following

proposition.

Proposition 10. Assume that NeCoRPIA has been performed with nv random coding sub-

vectors. Then an upper bound of the total arithmetic complexity of DeRPIA-LUT is

KLUT (nv) =
nv∑
`=1

(KLU,1 (`) +KLU,2 (`)) +
nv∑
`=1

Nb (`− 1)KLU,3 (`)

+Nb (nv)K (nv + 1) (21)

with

KLU,1 (`) = ρ` + L`
ρ` (ρ` + 1)

2
,

KLU,2 (`) = ρ` (L` + 1 + ρ`L`) ,

KLU,3 (`) = KmL`(ρ1 + ...+ ρ`−1) + L` (`+ ρ`) ,

and K (nv + 1) given by (19).

The proof of Proposition 10 is provided in Appendix A3.

Again, as in (18), the complexity (21) depends on the ranks ρ1, . . . , ρnv+1 of the matrices

B``.

D. Complexity comparison

When comparing KSLE (nv) and KLUT (nv), one observes that there is a (small) price to

be paid for building the look-up tables corresponding to the first sum in (21). Then, the

complexity gain provided by the look-up tables appears in the expression of KLU,3 (`), which

is linear in L`, whereas K (`) is quadratic in L`. Nevertheless, the look-up procedure is less

useful when there are many terminal branches to consider, i.e., when ρnv+1 is large, since

in this case, the term Nb (nv)K (nv + 1) dominates in both expressions of KSLE (nv) and

KLUT (nv).
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E. Distribution of the ranks ρ1, . . . , ρnv+1

Determining the distributions of ρ1, . . . , ρnv+1 in the general case is relatively complex. In

what follows, one focuses on the cases nv = 1 and nv = 2. Experimental results for other

values of nv are provided in Section VI.

1) NC vector with one component, nv = 1: In this case, the random NC vectors are

gathered in the matrix V1. Once Y has been put in RREF, the rows of the matrix B11 of

rank ρ1 are the ρ1 linearly independent vectors of V1. The distribution of ρ1 may be analyzed

considering the classical urn problem described in [23]. This problem may be formulated as:

assume that g indistinguishable balls are randomly dropped in L1 distinguishable boxes. The

distribution of the number XL1
g of boxes that contain at least one ball is described in [23]

citing De Moivre as

P (XL1
g = k) = f (g, L1, k) , (22)

with

f (g, L, k) =
L(L−1). . . (L−k + 1)

Lg
S (g, k) ,

where S(g, k) denotes the Stirling numbers of the second kind [25]. In the context of

NeCorPIA, a collision corresponds to at least two balls dropped in the same box. The

probability mass function (pmf) of the rank ρ1 of B11 is then that of the number of boxes

containing at least one ball and is given by (22). The pmf of ρ2 is deduced from (22) as

P (ρ2 = g − k) = 1− P (ρ1 = k)

= 1− f (g, L1, k) . (23)

Figure 8 shows the distribution of ρ1 (left) and the complementary cumulative distribution

function ρ2 (right) for different values of g when L1 = 100. One sees that Pr (ρ2 > 1) <

0.0025 when g = 5 and Pr (ρ2 > 1) < 0.062 when g = 10. In the decoding complexity, the

exponential term of K (nv + 1) in both (18) and (21) will thus be of limited impact. When

g = 30, Pr (ρ2 > 1) is larger than 94%. The expoential term in the complexity may thus

become overwhelming.

2) NC vector with two components, nv = 2: In this case, the random NC vectors form

the matrix (V1,V2). The pmf of ρ1 is still given by (22). Determining the pmf of the rank

ρ2 of B22 is much more complicated. Hence, we will first evaluate an upper bound on the
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Figure 8. Case nv = 1, theoretical and experimental distributions of ρ1 (left) and theoretical and practical complementary

cumulative distribution function of ρ2 (right) for different values of g for L1 = 100.

probability that ρ3 = 0 and and an approximation of the pmf of ρ3. Using these results, one

will derive an estimate of the pmf of ρ2.

In general, to have (V1, . . . ,Vnv) of full rank, i.e., ρnv+1 = 0, it is necessary that no pair of

nodes has generated packets with the same random coding subvectors. In the corresponding

urn problem, one has now to consider g balls thrown into L1L2 . . . Lnv boxes. In the case

nv = 2, a node selects two random NC subvectors ei ∈ FL1
q and ej ∈ FL2

q . The pair of indices

(i, j) may be interpreted as the row and column index of the box in which a ball has been

dropped, when L1L2 boxes are arranged in a rectangle with L1 rows and L2 columns. The

probability of having g balls thrown in L1L2 . . . Lnv boxes reaching g different boxes, i.e.,

of having coding subvectors different for all g nodes is P (X
L1...Lnv
g = g) and can again be

evaluated with (22).

A rank deficiency happens when the previous necessary condition is not satisfied, but

it may also happen in other cases, see Example 3. As a consequence, one only gets the

following upper bound

P (ρ1 + · · ·+ ρnv = g) 6 f (g, L1L2 . . . Lnv , g) . (24)

If one assumes that the rank deficiency is only due to nodes having selected the same

random coding subvectors, similarly, one may apply (22) as in the case nv = 1 and get the

following approximation

P (ρ1 + · · ·+ ρnv = k) ≈ f (g, L1L2 . . . Lnv , k) (25)
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which leads to

P (ρnv+1 = g − k) ≈ f (g, L1L2 . . . Lnv , k) . (26)

This is an approximation, since even if all nodes have selected different coding subvectors,

we might have a rank deficiency, as illustrated by Example 3.

In the case nv = 2, one will now build an approximation of

P (ρ1 = k1, ρ2 = k2, ρ3 = k3) = P (ρ2 = k2|ρ1 = k1, ρ3 = k3)

P (ρ1 = k1|ρ3 = k3)P (ρ3 = k3) . (27)

Using the fact k1 + k2 + k3 = g, one has

P (ρ2 = k2|ρ1 = k1, ρ3 = k3) =

1 if k2 = g − k1 − k3

0 else.

One will assume that the only dependency between ρ1, ρ2, and ρ3 that has to be taken into

account is that ρ1 + ρ2 + ρ3 = g and that P (ρ3 = k3) is given by (26). Then (27) becomes

P (ρ1 = k1, ρ2 = g − k1 − k3, ρ3 = k3) =P (ρ1 = k1) f (g, L1L2, g − k3) . (28)

Combining (22) and (28), one gets

P (ρ1 = k1, ρ2 = g − k1 − k3, ρ3 = k3) =f (g, L1, k1) f (g, L1L2, g − k3) , (29)

which may also be written as

P (ρ1 = k1, ρ2 = k2, ρ3 = g − k1 − k2) =f (g, L1, k1) f (g, L1L2, k1 + k2) . (30)

Figure 9 (left) shows the joint pmf P (ρ1 = k1, ρ2 = k2) deduced from (27) as a function

of k1 and k2 for different values of g = 30 with L1 = 50 and L2 = 50. Figure 9 (right)

shows the complementary CDF of ρ3 again deduced from (27) for different values of g with

L1 = 50 and L2 = 50. Now, when g = 30, Pr (ρ3 > 1) is about 1.3%. When g = 40,

Pr (ρ3 > 1) is about 3.8%. In both cases, the exponential term of K (nv + 1) in both (18)

and (21) will thus be of limited impact. Considering nv = 2 allows one to consider much

larger generations than with nv = 1.

Finally, Figure 10 shows the complementary CDF of ρ3 for g = 40 and different values of

the pair (L1, L2) such that L1+L2 = 100. Choosing L1 = L2 provides the smallest probability

of rank deficiency, which is consistent with the hypothesis that the rank deficiency is mainly

due to nodes having selected the same random coding subvectors. The maximum of the

product L1 . . . Lnv with a constraint on L1+· · ·+Lnv is obtained taking L1 = L2 = · · · = Lnv .
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Figure 9. Case nv = 2, joint distribution of ρ1 and ρ2 (left) and approximated complementary cumulative distribution

function of ρ3 deduced from (26) (right) for different values of g for L1 = 50 and L2 = 50.
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Figure 10. Case nv = 2, complementary cumulative distribution function of ρ3 deduced from (26) for g = 30 and different

values of L1 and L2 such that L1 + L2 = 100.
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VI. PERFORMANCE EVALUATION

Several simulation scenarios have been considered to evaluate the performance of NeCor-

PIA in terms of complexity and decoding error probability. In each simulation run, a set

of g packets x1, . . . ,xg containing nv random coding subvectors with elements in F2 and

with the same STS information are generated. The payload π = (ξ,d) is replaced by a

unique sufficiently long packet identifier to ensure that the g randomly generated packets are

linearly independent. Hash functions producing hash of different lengths are considered. The

NC operations are simulated by the generation of a full-rank g × g random coding matrix

A with elements in F2. The received packets are stored in a matrix Y = AX of full rank.

Writing Y in RREF, one obtains (4).

In all simulations, the total length
∑nv

`=1 L` of the NC subvectors is fixed at 100.

Upon completion of Algorithm 1, with the final list of candidate unmixing vectors satisfying

(5)-(11), one is always able to get x1, . . . ,xg, since A is of full rank. Neverthless, other

unmixed packets may be obtained, even if they satisfy all the previous constraints when the

rank of the NC header is not sufficient and the hash was inefficient. To evaluate the probability

of such event, one considers first the number nw of different unmixing vectors provided by

Algorithm 1. Among these nw vectors, g of them lead to the generated packets, the nw − g
others to erroneous packets. Considering a hash of Lh elements of Fq, the probability of

getting a given hash for a randomly generated payload is uniform and equal to 1/qLh . The

probability that one of the nw − g erroneous packets has a satisfying hash is thus 1/qLh and

the probability that none of them has a satisfying hash is
(
1− 1/qLh

)nw−g. The probability

of decoding error is then

Pe = 1−
(
1− 1/qLh

)nw−g
. (31)

An upper bound for nw is provided by Nb (nv + 1). In what follows, this upper bound is

used to get an upper bound for Pe evaluated as

P e = E
(

1−
(
1− 1/qLh

)Nb(nv+1)−g
)
, (32)

where the expectation is taken either considering the pmf of (ρ1, . . . , ρnV+1) or an estimated

pmf obtained from experiments.

The other performance metrics used to evaluate the performance of NeCoRPIA are:

• the number of branches explored in the decoding tree before being able to decode all

the packets x1, . . . ,xg,
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Figure 11. Case nv = 1, theoretical and experimental distributions of ρ1 (left) when g = 20 and theoretical and practical

complementary cumulative distribution function of ρ2 (right) when g = 20 for L1 = 100.

• the arithmetic complexity of the decoding process.

In what follows, to evaluate the complexity, one assumes that Lh = 2 bytes or Lh = 4 bytes

and that Lx = 256 bytes. For the various constants in the arithmetic complexity, one chooses

Km = 2, KR = 3, see, e.g., [26], and Kc = 3, see [27].

Averages are taken over 1000 realizations.

A. Case nv = 1

The theoretical and experimental distributions of ρ1, evaluated using (22), for L1 = 100

and g = 20, are represented in Figure 8 (left). A very good match between theoretical and

experimental distributions is observed.

For a fixed value of ρ1, the upper-bound (16) for the number of branches in the decoding

tree boils down to

Nb = ρ1 + ρ1q
g−ρ1 .

One is then able to evaluate the average value of Nb

E (Nb) =

g∑
ρ1=0

f (g, L1, ρ1)
(
ρ1 + ρ1q

g−ρ1
)
. (33)

Figure 12 represents the theoretical and experimental values of E (Nb) (left) and of P e

(right) as a function of g when L = 100. The expression of E (Nb) provided by (33) as well

as that of P e given by (32) match well the experimental results. As expected, for a given

value of g, the decoding error probability is much less with Lh = 32 than with Lh = 16.
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Figure 12. Case nv = 1, theoretical and practical values of E (Nb) (left) of the decoding error probability P e with Lh = 16

and Lh = 32 (right) for different values of g when L1 = 100.

When g = 20 and Lh = 16, one gets P e = 10−3, which may be sufficiently small for some

applications.

The arithmetic complexity of both decoding algorithms is then compared to that of a plain

NC decoding. The latter requires only a single RREF (once the nodes have agreed on the NC

vector they should select). Since both DeRPIA decoding algorithms also require an initial

RREF, the complexity ratio is always larger than one.

In the case nv = 1, the arithmetic complexity of decoding of plain NC-encoded packets is

thus

ANC = 3g2Lx,

where the length Lx is expressed as the number of elements of Fq in which the NC operations

are performed. The arithmetic complexities of DeRPIA-SLE and DeRPIA-LUT depend on

ρ1 and ρ2. Their expected values are

ASLE (nv = 1) ' ANC + E
[
ρ1L

2
1 + ρ1Lp (Kmg + qρ2 (Kmρ2 + 1 +Kc))

]
,

and

ALUT (nv = 1) ' ANC +
2∑
`=1

E

[
ρ1 + L1

ρ1 (ρ1 + 1)

2
+ ρ1 (L1 + 1 + ρ1L1)

+L1 (1 + ρ1) + ρ1Lp (Kmg + qρ2 (Kmρ2 + 1 +Kc))]

where the expectation is evaluated using (22) and (23).
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Figure 13. Case nv = 1, evolution of the ratio of the expected decoding complexity of DeRPIA-SLE and DeRPIA-LUT

with respect to the complexity of a simple RREF transformation for different value of g when L1 = 100.

Figure 13 compares the relative arithmetic complexity of the two variants of DeRPIA with

respect to ANC. One sees that ASLE and ALUT are about twice that of ANC when g 6 25.

When g > 30, the complexity increases exponentially. ALUT is only slightly less than ASLE

for small values of g. Again, for values of g larger than 25, the exponential term dominates.

B. Case nv = 2

In this case, an expression is only available for the pmf of ρ1 as a function of g and L1,

see Section V-E2. Figure 14 represents the histograms of ρ1, ρ2, and ρ3 for different values

of g, as well as the theoretical pmf of ρ1.

Figure 15 shows that the approximation of P (ρ3 = k) provided by (26) matches well the

histogram of ρ3 when g 6 40. When g = 80, the approximation is no more valid: the effect

of cycles, illustrated in Example 3, becomes significant.

For the complexity evaluation, in the case Nv = 2, for a given value of ρ1 and ρ2, the

upper bound (16) becomes

Nb = ρ1 + ρ1 (ρ2 + 1) + ρ1 (ρ2 + 1) qg−ρ1−ρ2 . (34)
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Figure 14. Case nv = 2, theoretical pmf of ρ1 and histograms of ρ1, ρ2, and ρ3 for different values of g when

L1 = L2 = 50.

Figure 15. Case nv = 2, distribution of ρ1 and histograms of ρ1, ρ2, and ρ3 for different values of g for L1 = L2 = 50

(zoom of Fig 14).

The average value of Nb is then evaluated using the approximation (30) of the joint pmf of

(ρ1, ρ2, ρ3) as

E (Nb) =
∑

ρ1+ρ26g

f (g, L1, ρ1) f (g, L1L2, ρ1 + ρ2)
(
ρ1 + ρ1 (ρ2 + 1) + ρ1 (ρ2 + 1) qg−ρ1−ρ2

)
.

(35)

Figure 16 (left) represents the theoretical and experimental values of E (Nb (3)) and E (Nb)

as a function of g when L1 = 50 and L2 = 50. The theoretical values of E (Nb (3)) and

E (Nb) are evaluated in two ways: First, with the estimated pmf of (ρ1, ρ2, ρ3) given by (30)

and second with the estimate of this pmf obtained from experiments. The average number Ñb

of branches in the tree and in the last level of the tree Ñb (3) obtained from experiments are

also provided. The value of E (Nb (3)) and E (Nb) evaluated from the experimental pmf are

good upper-bounds for Ñb (3) and Ñb. The values of E (Nb (3)) and E (Nb) obtained from

(30) match well those obtained from the estimated pmf of (ρ1, ρ2, ρ3) only for g 6 50. When

g > 60, the lack of accuracy of the theoretical pmf of ρ3 becomes significant: Ñb (3) and
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Figure 16. Case nv = 2, theoretical and experimental values of E (Nb (3)) and E (Nb) (left) and of the decoding error

probability P e with Lh = 16 and Lh = 32 (right) for different values of g when L1 = 50 and L2 = 50.

Ñb are underestimated. One observes that considering two encoding subvectors significantly

reduces the number of branches that have to be explored in the decoding tree. For example,

when g = 70, E (Nb) ' 1.6× 104 with nv = 2, whereas E (Nb) ' 1.8× 108 with nv = 1.

Figure 16 (right) represents P e obtained from the approximate pmf of (ρ1, ρ2, ρ3) given by

(30) and from the estimate of this pmf obtained from experiments. Again, both evaluations

match well when g 6 50. Compared to the case nv = 1, the probability of decoding error

reduces significantly thanks to the reduction of the number of branches in the decoding tree

at level nv + 1.

In the case nv = 2, the arithmetic complexity of decoding of plain NC-encoded packets

is still ANC. The arithmetic complexities of DeRPIA-SLE and DeRPIA-LUT depend now on

ρ1, ρ2, and ρ3. Their expected values are

ASLE (nv = 2) ' ANC + E
[
ρ1L

2
1 + ρ1L2 (Kmρ1 + 2 + (ρ2 + 1)L2)

]
+ E [ρ1 (ρ2 + 1)Lp (Kmg + 1 + qρ3 (Kmρ3 + 1 +Kc))]

and

ALUT (nv = 2) ' ANC +
2∑
`=1

E

[
ρ` + L`

ρ` (ρ` + 1)

2
+ ρ` (L` + 1 + ρ`L`)

]
+ E [L1 (1 + ρ1) + ρ1L2 (Kmρ1 + 2 + ρ2)]

+ E [ρ1 (ρ2 + 1)Lp (Kmg + 1 + qρ3 (Kmρ3 + 1 +Kc))]
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Figure 17. Case nv = 2, evolution of the theoretical and experimental values of the ratio of the expected decoding

complexity of DeRPIA-SLE and DeRPIA-LUT with respect to the complexity of a simple RREF transformation as a

function of g when L1 = L2 = 50.

where the expectations are evaluated using (30).

Figure 17 compares the relative arithmetic complexity of the two variants of DeRPIA with

respect to ANC. One sees that ASLE and ALUT are almost equal and less than ten times ANC

when g 6 50. When g > 60, the complexity increases exponentially. This is again not well

predicted by the theoretical approximation, due to the degraded accuracy of the theoretical

expression of ρ3 when g > 60. ALUT is again only slightly less than ASLE for small values

of g. Now, the exponential term dominates in the complexity for values of g larger than 70.

C. Case nv > 2

In this case, since even an approximate expression of the joint pmf of (ρ1, . . . , ρnv+1) is

difficult to obtain, only the pmf of ρ1 and the histograms for ρ2, . . . , ρnv+1 are provided, see

Figure (18) for nv = 3 and Figure (18) for nv = 4.

One observes that when nv = 4, even for g = 80, P (ρ5 > 1) 6 0.012. The contribution

of the exponential term in the decoding complexity will thus remain negligible. This can

be observed in Figure 20, which shows the evolution of the ratio of the decoding complex-

ity of DeRPIA-SLE and DeRPIA-LUT with respect to the complexity of a simple RREF

transformation as a function of g for different values of nv. For values of g for which ρnv+1

remains small, the complexity increases with nv, due to the increasing number of branches

that have to be considered at intermediate levels of the decoding tree. When ρnv+1 increases,

the complexity is dominated by the exponential term in the complexity due to the number
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Figure 18. Case nv = 3, distribution of ρ1 and histograms of ρ1, ρ2, ρ3, and ρ4 for different values of g for L1 = 33,

L2 = 33, L3 = 34.

Figure 19. Case nv = 4, distribution of ρ1 and histograms of ρ1 . . . ρ5 for different values of g for L1 = · · · = L4 = 25.

of branches to consider at level nv + 1 in the decoding tree. Considering a larger value of nv

becomes then interesting from a complexity point of view. This phenomenon appears when

g > 30 for nv = 1, when g > 80 for nv = 2 and does not appear for larger values of nv.

The proposed NeCoRPIA scheme is thus able to perform NC without coordination be-

tween agents. With nv = 2, compared to classical NC, generations of 60 packets may be

considered with a header overhead of 66 %, a vanishing decoding error probability, and a

decoding complexity about 10 times that of Gaussian elimination. With nv = 3, generations

of 80 packets may be considered, leading to a header overhead of 25 %, but a decoding

complexity about 100 times that of Gaussian elimination.

VII. CONCLUSIONS

This paper presents NeCoRPIA, a NC algorithm with random packet index assignment.

This technique is well-suited to data collection using MCS, as it does not require any prior

agreement on the NC vectors, which are chosen randomly. As a consequence, different packets
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Figure 20. Evolution of the experimental values of the ratio of the decoding complexity of DeRPIA-SLE and DeRPIA-LUT

with respect to the complexity of a simple RREF transformation as a function of g for different values of nv.

may share the same coding vector, leading to a collision, and to the impossibility to perform

decoding with standard Gaussian elimination. Collisions are more frequent when the size of

the generation increases. A branch-and-prune approach is adapted to decode in presence of

collisions. This approach is efficient in presence of a low number of collisions. To reduce

the number of collisions, the NC vector is split into subvectors. Each packet is then assigned

a set of NC subvectors.

A detailed analysis of the decoding complexity and of the probability of decoding error

shows the potential of this approach: when a NC of L = 100 elements in F2 is split into 2 NC

subvectors, generations of about 60 packets may be considered with a decoding complexity

that is about 10 times that of plain network decoding. When the NC vector is split into 4

subvectors, generations of about 80 packets may be considered.

This approach may also be interesting in the context of COPE, where a relatively long hash

is used in the NC header to identify the packets in the mixtures and prevent any collision.

Since collisions may be solved using the proposed approach, shorter hash may be considered,

reducing the NC overhead.
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APPENDIX

A. Arithmetic complexity of DeRPIA-SLE

1) Arithmetic complexity for intermediate branches: Consider Level ` = 1. For each of

the L1 canonical vectors ej1 ∈ FL1
q , finding w1 ∈ Fρ1q satisfying (13) takes at most ρ1L1

operations, since, according to Theorem 4, one searches for a row of B11 ∈ Fρ1×L1
q equal to

ej1 . The arithmetic complexity to get all branches at Level 1 is thus upper-bounded by

K (1) = L1ρ1L1. (36)

Consider Level ` with 1 < ` 6 nv. For each branch associated to a candidate decod-

ing vector (w1, . . . ,w`−1) , one first evaluates − (w1B1,` + · · ·+ w`−1B`−1,`) which takes

Km(ρ1L` + ... + ρ`−1L`) + (`− 1)L` operations, the last term (`− 1)L` accouting for the

additions of the vector-matrix products and the final sign change.

Then, for each of the L` canonical vectors ej` ∈ FL`
q , evaluating ej`−(w1B1,` + · · ·+ w`−1B`−1,`)

needs a single addition, and finding w` satisfying (13) takes at most ρ`L` operations, since

one searches for a row of B`` equal to ej` − (w1B1,` + · · ·+ w`−1B`−1,`). Additionally, one

has to verify whether w` = 0 is satisfying, which requires L` operations.

At Level `, the arithmetic complexity, for a given candidate (w1, . . . ,w`−1), to find all

candidates (w1, . . . ,w`) satisfying (8) is thus upper-bounded by

K (`) = Km (ρ1L` + ...+ ρ`−1L`) + (`− 1)L` + L` (1 + ρ`L` + L`) (37)

= KmL` (ρ1 + ...+ ρ`−1) + L` (`+ (ρ` + 1)L`) (38)

2) Arithmetic complexity for terminal branches: Consider now Level nv + 1. For each

candidate (w1, . . . ,wnv), one has first to compute w1C1 + ... + wnvCnv , which requires

Km (ρ1Lp + ρ2Lp + . . .+ ρnvLp) + (nv − 1)Lp 6 KmgLp + (nv − 1)Lp operations. Then for

each candidate wnv+1 ∈ Fρnv+1
q , the evaluation of w1C1 + ...+wnvCnv +wnv+1Cnv+1 and the
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checksum verification cost Kmρnv+1Lp+Lp+KcLp operations. The arithmetic complexity, for

a given candidate (w1, . . . ,wnv), to find all solutions (w1, . . . ,wnv+1) is thus upper-bounded

by

K (nv + 1) = KmgLp + (nv − 1)Lp + qρnv+1 (Kmρnv+1Lp + Lp +KcLp) . (39)

3) Total arithmetic complexity of DeRPIA-SLE: To upper bound the arithmetic complexity

of the tree traversal algorithm when the number of encoding vectors is nv, one combines

(15), (37), and (39) to get (18) with Nb (0) = 1. In the case nv = 1, (20) follows directly

from (18).

One first evaluates the complexity of the look-up table construction with Algorithm 2a.

The look-up table is built once, after the RREF evaluation. The worst-case complexity is

evaluated, assuming that for each row vector u of B``, the resulting vector u is added to Π`.

For each of the ρ` lines u of B``, the identification of the index of its pivot column takes

at most L` operations. The evaluation of u takes one operation. Then determining whether

u ∈ Π` takes no operation for the first vector (Π` is empty), at most L` operations for the

second vector, at most 2L` operations for the third vector, and at most (ρ` − 1)L` operations

for the last vector. The number of operations required in this step is upper bounded by

KLU,1 (`) = ρ` (L` + 1) + 0 + L` + 2L` + · · ·+ (ρ` − 1)L`

= ρ` + L`
ρ` (ρ` + 1)

2
. (40)

Then the canonical vectors ei ∈ Fρ`q , i = 1, . . . , ρ` have to be partitionned into the various

S` (v), v ∈ Π`. This is done by considering again each of the ρ` lines u of B``, evaluating

u− eγ(u), which needs up to L` + 1 operations. Then determining the vectors v ∈ Π` such

that u− eγ(u) = v requires at most ρ`L` operations, since Π` contains at most ρ` vectors of

L` elements. The number of operations required in this partitionning is upper bounded by

KLU,2 (`) = ρ` (L` + 1 + ρ`L`) . (41)

Considering a satisfying (w1, . . . ,w`−1) at Level `−1, the search complexity to find some

satisfying (w1, . . . ,w`−1,w`) at Level ` in Algorithm 2b is now evaluated. The evaluation of

v = − (w1B1,` + · · ·+ w`−1B`−1,`) takes Km(ρ1L` + ... + ρ`−1L`) + (`− 1)L` operations.

Then, determining whether w` = 0 satisfies (8), i.e., whether v+ej` = 0 for some canonical

vector ej` ∈ FL`
q , can be made checking whether v contains a single non-zero entry in L`

operations. Finally, the look-up of v ∈ Π` takes at most ρ`L` operations. In summary, the
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number of operations required for this part of the algorithm is

KLU,3 (`) = Km(ρ1L` + ...+ ρ`−1L`) + (`− 1)L` + L` + ρ`L`

= KmL`(ρ1 + ...+ ρ`−1) + L` (`+ ρ`) . (42)

Compared to the expression of K (`) given by (37), which is quadratic in L`, KLU,3 (`) is

linear in L`.

The complexity of DeRPIA-LUT, given by (21), when the number of encoding vectors

is nv, is then obtained combining the results of Corollary 8 with (40), (42), (42), and (39),

since Algorithm 2b is not used at Level nv + 1.
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