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Abstract—This paper considers a multipair amplify-and-
forward massive MIMO relaying system with low-resolution
ADCs at both the relay and destinations. The channel state
information (CSI) at the relay is obtained via pilot train-
ing, which is then utilized to perform simple maximum-ratio
combining/maximum-ratio transmission processing by the relay.
Also, it is assumed that the destinations use statistical CSI to
decode the transmitted signals. Exact and approximated closed-
form expressions for the achievable sum rate are presented,
which enable the efficient evaluation of the impact of key system
parameters on the system performance. In addition, optimal
relay power allocation scheme is studied, and power scaling
law is characterized. It is found that, with only low-resolution
ADCs at the relay, increasing the number of relay antennas is
an effective method to compensate for the rate loss caused by
coarse quantization. However, it becomes ineffective to handle
the detrimental effect of low-resolution ADCs at the destination.
Moreover, it is shown that deploying massive relay antenna arrays
can still bring significant power savings, i.e., the transmit power
of each source can be cut down proportional to 1/M to maintain
a constant rate, where M is the number of relay antennas.

Index terms— Amplify-and-forward, full-duplex, low-

resolution ADC, massive MIMO, relaying.

I. INTRODUCTION

Full-duplex relaying has recently attracted considerable at-

tention due to its substantial spectral efficiency gain over the

conventional half-duplex relaying systems [1]. However, to

realize the benefit, how to mitigate the loopback interference

caused by the signal leakage from the relay output to its input,

is one of the major issues to be tackled. Thus far, various

techniques have been proposed to address this important

issue, from separate transmit and receiver architecture to joint

analog/digital filtering [2]. In parallel, the massive multiple-

input multiple-output (MIMO) technique is able to signifi-

cantly boost the spectral efficiency and effectively suppress

interference, hence has also received great interests recently

[3]–[6]. Therefore, it becomes a natural choice to combine

these two promising technologies. The potential applications
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of such a massive antenna full-duplex relay include millimeter

wave communications, device-to-device communications and

machine-to-machine systems.

A. Related Works and Motivation

The performance of one-way and two-way multipair full-

duplex relaying systems has been respectively studied in [7],

[8] and [9], where it was demonstrated that deploying a

large antenna array at the relay helps eliminate both the

inter-pair and loop interference, thereby substantially boosting

the achievable sum rate. However, such performance gain

comes at the price of increased hardware cost and power

consumption due to the extra required high-resolution analog-

to-digital converters (ADCs), which may be undesirable in

practical system deployment. The reasons are three-fold: 1)

The power consumption of ADCs scales exponentially with the

resolution and linearly with the sampling rate. For instance,

a typical flash ADC with b-bit and the sampling frequency

fs operates fs2
b conversion steps per second [10]. 2) The

fabrication cost of ADCs depends on the resolution. Thus,

if high-resolution ADCs are adopted, the total financial cost

will be a heavy burden for massive MIMO systems since

each antenna requires a pair of ADCs to separately quantize

the real and imaginary parts of signals. 3) The chip area of

ADC increases exponentially with the resolution, which makes

it difficult to put large number of collocated antenna arrays

together. To resolve the above issues, a promising way is to

use low-cost and power-efficient low-resolution or even one-

bit ADCs unit to build radio frequency (RF) chains.

Low-resolution ADCs not only cause rate degradation, but

also change some concluding remarks that have been made for

unquantized systems. For example, the quality of the channel

estimates depends on the set of orthogonal pilot sequences

used, which is contrary to unquantized systems where any set

of orthogonal pilot sequences gives the same result [11]. More-

over, compared to unquantized MIMO systems, the optimal

length of training sequence is approximately 10 times more

[12], [13]; while to achieve the same performance as that in

a full channel state information (CSI) case, the length of pilot

sequence increases to approximately 50 times the number of

users [14], which is extremely long. Such a pilot overhead

cannot be sustained and hence new channel estimation meth-

ods are proposed. For instance, [15] adopts a joint channel and

data estimation approach to aid channel estimation and reduce

pilot overhead. And other techniques such as expectation-

maximization [11], [16], generalized approximate message

http://arxiv.org/abs/1705.04909v1
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passing [17], and maximum likelihood algorithms [18] have

been proposed in the literature. Furthermore, the capacity

achieving signals for single-input single-output system are no

longer Gaussian distributions, and instead become discrete

[19], [20]. In addition, the detectors might need to be modified

by taking the quantization effects into account.

Recently, there has been a surge of research interests to un-

derstand the impact of coarse quantization effects on massive

MIMO systems. The works [12], [21]–[26] have demonstrated

that the massive antenna array has robustness against coarse

quantization and capable of compensating for the performance

loss caused by low-resolution ADCs. In particular, the work

[12] studied the optimal training pilot length to maximize

the spectral efficiency, while the work [24] revealed that the

optimal number of quantization bits is 4 or 5 bits in terms of

energy efficiency. For one-bit quantization systems, the power

efficiency laws and energy-spectral efficiency tradeoff are

characterized in [25] and [26], respectively. Moreover, various

precoding methods such as spatio-temporal processing [27],

minimum BER precoding [28], and hybrid beamforming [29]

are studied. In addition, a mixed-ADC architecture is proposed

to balance the spectral efficiency loss and power consumption

[30]–[32]. Despite the spectral efficiency enhancement, adopt-

ing mixed-ADCs increases the hardware complexity since

an ADC switch is required. Furthermore, the optimal input

symbol distribution and codebook for limited feedback have

been designed [33], [34]. However, all the aforementioned

works consider a single-hop system with low-resolution ADCs

being implemented at either the BS or the destination users.

Only very recently, [35] introduces mixed-ADCs into the relay

network, but it only considers the quantization at the BS.

Therefore, the impact of low-resolution ADCs in a dual-hop

system remains unknown.

B. Our Work and Contributions

Motivated by this, in this paper, we investigate the per-

formance of full-duplex massive MIMO relaying systems

with low-resolution ADCs at both the relay and the des-

tinations. Specifically, we consider a multipair full-duplex

relaying system using the amplify-and-forward (AF) protocol

with simple maximum-ratio combining/maximum-ratio trans-

mission (MRC/MRT) processing at the relay. First, CSI at the

relay is acquired via pilot training, and the effect of low-

resolution ADCs on the accuracy of CSI is characterized.

Then, exact and approximated closed-form expressions for

the sum rate are derived which enable efficient evaluation

of the system’s achievable sum rate. Moreover, based on the

simple approximated sum rate expression, optimal relay power

allocation strategy is characterized, and the power scaling

law is studied. The findings of the paper suggest that, with

only low-resolution ADCs at the relay, increasing the number

of relay antennas is a promising method to compensate for

the rate loss caused by the coarse quantization. However,

compared to the infinite resolution ADC case, the required

number of relay antennas doubles with one-bit ADCs. In

addition, we show that the use of low-resolution ADCs at

the destination is a major performance limiting factor, and

it is preferable to deploy the low-resolution ADCs at the relay

and use high-resolution ADCs at the destination. Finally, it

is revealed that, even with low-resolution ADCs, deploying

massive relay antenna arrays can still bring significant power

savings, i.e., the transmit power of each source can be cut

down proportional to 1/M to maintain a constant rate, where

M is the number of relay antennas.

C. Organization and Notations

The remainder of the paper is organized as follows: Section

II introduces the multipair full-duplex relaying system model

under consideration. Section III presents an exact closed-

form expression for the sum rate. Section IV provides an

accurate approximation for the sum rate, and gives a detailed

evaluation of the impact of low-resolution ADCs on the system

performance. Numerical results are provided in Section V.

Finally, Section VI summarizes the key findings.

Notation: We use bold upper case letters to denote matrices,

bold lower case letters to denote vectors and lower case

letters to denote scalars. Moreover, (·)H , (·)∗, (·)T , and

(·)−1 represent the conjugate transpose operator, the conju-

gate operator, the transpose operator, and the matrix inverse,

respectively. Also, || · || is the Euclidian norm, | · | is the

absolute value, and [A]mn gives the (m,n)-th entry of A.

In addition, x ∼ CN (0,Σ) denotes a circularly symmetric

complex Gaussian random vector x with zero mean and

variance matrix Σ, while Ik is the identity matrix of size k.

Finally, the statistical expectation operator is represented by

E{·}, the variance operator is Var (·), and the trace is denoted

by tr (·).

II. SYSTEM MODEL

We consider a multipair AF relaying system shown in Fig.

1, where K single-antenna user pairs, denoted as Sk and Dk,

k = 1, . . . ,K , aim to exchange information with each other

with the assistance of a shared multi-antenna full-duplex relay.

To reduce the implementation cost, it is assumed that low-

resolution ADCs are used at both the relay and destinations Dk
1, k = 1, . . . ,K [33], [34]. In addition, we assume that direct

links between Sk and Dk do not exist due to large obstacles

or severe shadowing [36].

During the i-th time slot, the sources Sk (k = 1, . . . ,K),
transmit the signals

√
pSxS,k[i] satisfying E

{
|xS,k[i]|2

}
= 1 to

the relay, while the relay broadcasts the signal xR[i] satisfying

E

{
xR[i]x

H
R [i]

}
= pR

M
IM simultaneously to all K destinations

Dk, (k = 1, . . . ,K). Hence, the received signals at the relay

and the K destinations can be respectively expressed as

yR[i] =
√
pSGSRxS[i] + ḠRRxR[i] + nR[i], (1)

yD[i] = GT
RDxR[i] + nD[i], (2)

where xS[i] , [xS,1[i], xS,2[i], . . . , xS,K [i]]. GSR ∈ CM×K

and GRD ∈ CM×K denote the channels from the K sources

1Note that the considered model is very generic, and the single antenna
destination node is not constrained to be the mobile phone, it could be certain
low-cost device such as sensor, where using low-resolution ADC is desirable.
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Fig. 1: Illustration of the multipair full-duplex relaying

system

to the relay and from the relay to the K destinations, re-

spectively, which account for both small-scale and large-

scale fading effects. More specifically, the k-th columns of

GSR and GRD are given by gSR,k ∼ CN (0, βSR,kIM ) and

gRD,k ∼ CN (0, βRD,kIM ), where βSR,k and βRD,k model

the large-scale path-loss effect, which are assumed to remain

constant over many coherence intervals and known a priori.

Also, ḠRR ∈ CM×M represents the loop interference channel

at the full-duplex relay. In addition, nR[i] and nD[i] denote the

additive white Gaussian noise (AWGN) at the relay and the K
destinations, respectively. The elements of nR[i] and nD[i] are

assumed to be independent and identically distributed (i.i.d.)

CN (0, 1).
To model the receivers with low-resolution ADCs, we

focus on the non-uniform quantizer, and adopt the additive

quantization noise model (AQNM) as in [21], [22], [29], [37]

for tractable analysis, shown in Fig. 2. As such, the outputs of

the ADCs corresponding to input yR[i] at the relay and yD,k[i]
(yD,k[i] is the k-th element of yD,k[i]) at Dk are denoted as

ỹR[i] = αyR[i] + ñR[i], (3)

ỹD,k[i] = θyD,k[i] + ñD,k[i], (4)

respectively, where parameters α and θ are determined by the

number of quantization bits b of ADCs, which indicate the

resolution of ADC. For instance, α = θ = 1 implies perfect

ADCs. For b ≤ 5, the typical values of α and θ are listed

in Table I, while for b > 5, they can be approximated by

α (or θ) = 1− π
√
3

2 2−2b [38]. Also, ñR[i] and ñD,k[i] represent

the additive Gaussian quantization noise at the relay and Dk,

respectively. For a fixed channel realization GSR, GRD, and

ḠRR, the covariance of ñR[i] and ñD,k[i] are respectively given

by

RñR[i] = α (1− α) diag
(
E

{
yR[i]yR[i]

H
})

, (5)

RñD,k[i] = θ (1− θ) E
{
|yD,k[i]|2

}
. (6)

Note that this AQNM model is realistic enough since the

quantization noise variance not only depends on the number

of quantization bit but also scales up with the received power.

Also, [29] has proved that this AQNM model is accurate at

the low signal-to-noise-ratio regime in which our considered

system is most likely to operate.

D,
[ ]ky i D, D, D,

[ ] [ ] [ ]k k ky i y i n iq !
D, D, D,kD, D,D,D,
[ ] [ ] [] [ ] [k k kD, D,D,
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Fig. 2: Outputs of receivers with AQNM.

TABLE I: α and θ for different ADC quantization bits b.

b 1 2 3 4 5

α(or θ) 0.6366 0.8825 0.96546 0.990503 0.997501

A. Channel Estimation

We utilize pilots to estimate the channel matrices GSR and

GRD, which is a technique widely used in the literature [39],

[40]. Therefore, during each coherence interval of length τc
(in symbols), the channel training occupies 2τp symbols (the

minimum length of τp equals to the number of users K).

First, the destinations remain silent and all sources trans-

mit simultaneously their mutually orthogonal pilot sequences

ΦS ∈ CK×τp to the relay. After that, all destinations transmit

their mutually orthogonal pilot sequences ΦD ∈ CK×τp to

the relay whilst the destinations remain silent2. For analytical

tractability, we adopt the same pilot sequences as in [11]. Thus,

the received signals at the relay’s receive and transmit antenna

arrays are [7]

Yrp =
√
τpppGSRΦS +Nrp, (7)

Ytp =
√
τpppGRDΦD +Ntp, (8)

respectively, where pp is the transmit power of each pilot

symbol; Nrp and Ntp denote the noise at the receive and

transmit antenna arrays of the relay, respectively, with i.i.d.

CN (0, 1) elements.

With low-resolution ADC receivers, the resulting quantized

signals at the relay’s receive and transmit antenna arrays

respectively read as

Ỹrp = αYrp +Nrq, (9)

Ỹtp = αYtp +Ntq, (10)

where Nrq and Ntq represent the quantization noise, whose

covariance matrices are respectively given by

RNrq
= E

{
NrqN

H
rq

}
= α (1− α) diag

(
E

{
YrpY

H
rp

})
, (11)

RNtq
= E

{
NtqN

H
tq

}
= α (1− α) diag

(
E

{
YtpY

H
tp

})
. (12)

Assuming that the relay employs the minimum mean-

square-error (MMSE) estimator, the channel matrices GSR and

2Note that the channel training scheme where all sources and destinations
transmit their pilots simultaneously can obtain the same channel estimation
accuracy as that in our proposed training approach, but with increased
computational complexity.
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GRD can be decomposed as

GSR = ĜSR +ESR, (13)

GRD = ĜRD +ERD, (14)

where ESR and ERD are the estimation error matrices of

GSR and GRD. Due to the orthogonality property of MMSE

estimators and the fact that ĜSR, ESR, ĜRD, and ERD are

complex Gaussian distributed, these matrices are independent

of each other. By rewriting (13) and (14) in vector form, we

have

gSR,k = ĝSR,k + eSR,k, (15)

gRD,k = ĝRD,k + eRD,k, (16)

where ĝSR,k, eSR,k, ĝRD,k, and eRD,k are the k-th columns of

ĜSR, ESR, ĜRD, and ERD, respectively, which are mutually

independent.

The distributions of these vectors are given in the following

lemma that is essential to the ensuing analysis.

Lemma 1: The elements of ĝSR,k, eSR,k, ĝRD,k, and eRD,k

are independent Gaussian random variables with zero mean,

variance σ2
SR,k =

ατpppβ
2

SR,k

1+τpppβSR,k
, σ̃2

SR,k =
βSR,k+(1−α)τpppβ

2

SR,k

1+τpppβSR,k
,

σ2
RD,k =

ατpppβ
2

RD,k

1+τpppβRD,k
, and σ̃2

RD,k =
βRD,k+(1−α)τpppβ

2

RD,k

1+τpppβRD,k
, re-

spectively.

Proof: See Appendix A. �

B. Data Transmission

During the i-th time slot, the relay amplifies the previously

received symbol and broadcasts it to the K destinations. Thus,

we have

xR[i] = γFỹR[i− d], (17)

where F ∈ CM×M is the linear processing matrix to be

specified shortly, γ is an amplification constant factor which is

chosen to satisfy the power constraint at the relay, and d ≥ 1
denotes the processing delay.

1) Loop Interference: Since the relay operates in the full-

duplex mode, it suffers from loop interference. However, since

the relay is aware of its transmitted signal, some form of self-

interference mitigation method can be applied, such that the

remaining self-interference is sufficiently weak and can be

treated as additional noise x̂R[i] [9], [41] with the same power

constraint as xR[i], i.e., E
{
x̂R[i]x̂

H
R [i]

}
= pR

M
IM . Therefore,

(1) can be re-expressed as

yR[i] =
√
pSGSRxS[i] +GRRx̂R[i] + nR[i], (18)

where GRR models the residual loopback interference channel

due to imperfect cancellation [42]. As in [7], [9], we assume

that the entries of GRR are i.i.d. CN
(
0, σ2

LI

)
with σ2

LI denoting

the level of loop interference.

2) Linear Processing: The relay treats the channel esti-

mates as the true channels for subsequent linear processing.

With MRC/MRT processing, F is given by

F = Ĝ∗
RDĜ

H
SR. (19)

Recall that γ is chosen to meet the power constraint at the

relay, after some simple algebraic manipulations, γ can be

obtained as (20), shown on the top of the next page.

III. SYSTEM DESIGN GUIDELINES

This section investigates the achievable rate with low-

resolution ADCs both at the relay and destinations. In par-

ticular, an exact closed-form expression is derived for the

system’s achievable rate. Furthermore, we provide an answer

to the important question of where to deploy the low-resolution

ADCs to attain best performance.

Substituting (18), (17), (2), and (3) into (4), we have

ỹD,k[i] = αθγ
√
pSg

T
RD,kFgSR,kxS,k[i− d] (21)

+ αθγ
√
pS

∑

j 6=k

gT
RD,kFgSR,jxS,j [i− d]

+ αθγgT
RD,kFGRRx̂R[i− d]

+ αθγgT
RD,kFnR[i− d]

+ θγgT
RD,kFñR[i− d] + θnD,k[i] + ñD,k[i].

We consider the realistic case where the K destinations

do not have access to the instantaneous CSI, which is a

typical assumption in the massive MIMO literature since the

dissemination of instantaneous CSI is extremely costly for very

large antenna array3. Hence, Dk uses only statistical CSI to

decode the desired signal [7], [43]. Thus, we have

ỹD,k[i] = αθγ
√
pSE

{
gT

RD,kFgSR,k

}
xS,k[i− d]

︸ ︷︷ ︸

desired signal

+ neff
k [i]
︸ ︷︷ ︸

effective noise

,

(22)

where neff
k [i] is the effective noise given by

neff
k [i] = (23)

αθγ
√
pS

(
gT

RD,kFgSR,k − E

{
gT

RD,kFgSR,k

})
xS,k[i− d]

︸ ︷︷ ︸

estimation error

+ αθγ
√
pS

∑

j 6=k

gT
RD,kFgSR,jxS,j [i− d]

︸ ︷︷ ︸

interpair interference

+ αθγgT
RD,kFGRRx̂R[i− d]

︸ ︷︷ ︸

loop interference

+ αθγgT
RD,kFnR[i− d]

︸ ︷︷ ︸

noise at the relay

+ θγgT
RD,kFñR[i− d]

︸ ︷︷ ︸

quantization noise at the relay

+ θnD,k[i]
︸ ︷︷ ︸

noise at Dk

+ ñD,k[i]
︸ ︷︷ ︸

quantization noise at Dk

.

Noticing that the “desired signal” and the “effective noise”

in (22) are uncorrelated, and capitalizing on the fact that the

worst-case uncorrelated additive noise is independent Gaussian

noise, we obtain the following achievable rate of k-th user.

3Note that there are two typical ways to obtain the instantaneous CSI, i.e.,
downlink training and feedback. However, both methods incur huge overheads,
hence is highly undesirable.
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γ =

√
pR

α2
(
pSE {||FGSR||2}+ pR

M
E {||FGRR||2}+ E {||F||2}

)
+ E {||FñR||2}

. (20)

Theorem 1: With low-resolution ADCs at the relay and Dk,

the achievable rate of k-th user is given by

Rk =
τc − 2τp

τc

log2 (1 + SINRk) , (24)

where

SINRk =
Ak

Bk + Ck +Dk + Ek + Fk +Gk +Hk

, (25)

with

Ak = pSM
4σ4

SR,kσ
4
RD,k, (26)

Bk = pSM
3σ2

SR,kσ
2
RD,k

(
βSR,kσ

2
RD,k + βRD,kσ

2
SR,k

)
(27)

+ pSM
2βSR,kβRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n,

Ck = pSM
3
∑

j 6=k

(
σ2

SR,kσ
4
RD,kβSR,j + βRD,kσ

4
SR,jσ

2
RD,j

)
(28)

+ pSM
2
∑

j 6=k

βSR,jβRD,k

K∑

n6=k,j

σ2
SR,nσ

2
RD,n

+ pSM
2
∑

j 6=k

βSR,jβRD,kσ
2
SR,kσ

2
RD,k

+ pSM
2
∑

j 6=k

βSR,jβRD,kσ
2
SR,jσ

2
RD,j ,

Dk = M2σ2
LIpR

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

,

Ek = M2

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

, (29)

Fk =
1− α

α
M3pSσ

2
SR,kσ

4
RD,k

(

σ2
SR,k +

K∑

i=1

βSR,i

)

(30)

+
1− α

α
M3

(
pRσ

2
LI + 1

)
σ2

SR,kσ
4
RD,k

+
1− α

α
M2

(
pRσ

2
LI + 1

)
βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

+
1− α

α
M2pSβRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

(

σ2
SR,n +

K∑

i=1

βSR,i

)

,

Gk =
1

α2γ2
, (31)

Hk =
1− θ

θ
pSM

3σ2
SR,kσ

4
RD,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

(32)

+
1− θ

θ
pSM

2σ2
SR,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

βRD,k

K∑

i=1

σ2
RD,i

+
1− θ

αθ
M3

(
pRσ

2
LI + 1

)
σ2

SR,kσ
4
RD,k

+
1− θ

αθ
M2

(
pRσ

2
LI + 1

)
βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

+
(1− α) (1− θ)

αθ
M3pSσ

2
SR,kσ

4
RD,k

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+
(1− α) (1− θ)

αθ
pSM

2βRD,k

K∑

n=1

σ4
SR,nσ

2
RD,n

+
(1− α) (1− θ)

αθ
pSM

2βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

K∑

i=1

βSR,i

+
1− θ

α2θγ2
,

where γ is given by (III) (shown on the top of the next page).

Proof: See Appendix B �

Theorem 1 presents an exact closed-form expression for the

achievable rate of Dk, which is valid for arbitrary configuration

of relay antenna number and user pairs, which enables efficient

evaluation of the achievable rate. In addition, it also reveals the

impact of key system parameters on the achievable rate. For

instance, It can be observed that Rk is an increasing function

with respect to M , suggesting the benefits of deploying large

antenna array at the relay. Furthermore, Rk decreases with

K , which is also intuitive since a larger number of user pairs

results in more severe inter-pair interference. Moreover, Rk

reduces if α and/or θ become small, indicating that using low-

resolution ADCs at the relay and/or the destinations always

degrades the achievable rate.

IV. SUM RATE APPROXIMATION

In the previous section, an exact expression has been derived

for the achievable rate of k-th user. However, the expression is

rather involved, and is not amenable for further manipulations.

Motivated by this, we now present a relatively simple large-

scale approximation for sufficiently large M . Based on which,

the optimal relay power allocation scheme is studied and the

asymptotic power scaling law is characterized.

Proposition 1: With low-resolution ADCs at the relay and

Dk, for sufficiently large M , Rk can be accurately approxi-

mated by R̃k, which is given by

R̃k =
τc − 2τp

τc

log2

(

1 + S̃INR
)

, (34)



6

γ =
1

M

√
√
√
√
√

pR

pS

K∑

i=1

σ4
SR,iσ

2
RD,i (Mα2 + α (1− α)) + α

K∑

i=1

σ2
SR,iσ

2
RD,i

(

pS

K∑

j=1

βSR,j + pRσ2
LI + 1

) . (33)

where

S̃INR =
Ãk

B̃k + C̃k + D̃k + Ẽk + F̃k + G̃k + H̃k

(35)

with

Ãk = pSMσ2
SR,kσ

2
RD,k, (36)

B̃k = pS

(
βSR,kσ

2
RD,k + βRD,kσ

2
SR,k

)
, (37)

C̃k = pS

∑

j 6=k

(

σ2
RD,kβSR,j +

βRD,kσ
4
SR,jσ

2
RD,j

σ2
SR,kσ

2
RD,k

)

, (38)

D̃k = pRσ
2
LIσ

2
RD,k, (39)

Ẽk = σ2
RD,k, (40)

F̃k =
1− α

α
σ2

RD,k

(

pS

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+ pRσ
2
LI + 1

)

,

(41)

G̃k =
pS

pRσ2
SR,kσ

2
RD,k

K∑

i=1

σ4
SR,iσ

2
RD,i, (42)

H̃k =
1− θ

θ
pS

(

Mσ2
SR,kσ

2
RD,k +

σ2
SR,kβRD,k

σ2
RD,k

K∑

i=1

σ2
RD,i

)

(43)

+
1− θ

θ
pSσ

2
RD,k

(
K∑

i=1

βSR,i +
pRσ

2
LI + 1

αpS

)

+
(1− α) (1− θ)

αθ
σ2

RD,kpS

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+

(1− θ) pS

K∑

i=1

σ4
SR,iσ

2
RD,i

θpRσ2
SR,kσ

2
RD,k

.

Proof: By ignoring the insignificant terms in the large M
regime in Equations from (26) to (33), the desired result can

be obtained after some simple algebraic manipulations. �

Despite being obtained under the assumption of large M ,

the above approximation turns out to be rather accurate even

for moderate number of antennas, i.e., M = 64, as will

be shown in Section V. In addition, we observe that the

quantization noise at the relay (corresponding to the term F̃k)

is a function with respect to α whereas the quantization noise

at the destination (corresponding to the term H̃k) depends on

both α and θ. This is expected since the quantization noise

scales with the power of input signals and the quantization

level of ADCs. For the quantization noise at the relay, the

input signals are only quantized once by the low-resolution

ADCs at the relay; while for the quantization noise at the

destinations, the input signals are double-quantized by the

low-resolution ADCs at the relay and destinations. Finally, we

see that the quantization noise at the destination is the most

significant term which has the same order as the desired signal

(corresponding to the term Ãk). Unlike the quantization noise

at the relay which can be mitigated by exploiting the large

antenna array, the quantization noise at the destination can

not be effectively suppressed, hence, is the major performance

limiting factor as shown in the following corollary.

Corollary 1: As M → ∞, the rate of k-th user with low-

resolution ADCs at both the relay and destinations converges

to

R̃k → τc − 2τp

τc

log2

(

1 +
θ

1− θ

)

. (44)

Proof: Starting from Proposition 1, by keeping only

the most significant terms in (34), the desired result can be

obtained after some simple algebraic manipulations. �

Corollary 1 indicates that, in the asymptotic large antenna

array regime, the rate of k-th user converges to a finite limit.

In addition, the limit is independent of the resolution level of

relay ADCs, and is only determined by the resolution level

of destination ADCs, which indicates that using large antenna

array at the relay cannot compensate for the rate loss caused

by low-resolution ADCs at the destinations.

A. Power scaling law

In this subsection, we investigate the potential for power

saving in the data transmission phase due to the deployment

of very large antenna array at the relay, when the channel

estimation accuracy is fixed. Specifically, we assume that pp

is fixed, while pS = ES/M and pR = ER/M , where ES and

ER are constants that do not scale with M . Then, as M → ∞,

the rate of k-th user is provided by the following corollary.

Corollary 2: For fixed pp, ES and ER, if pS = ES/M and

pR = ER/M , as M → ∞, we have

R̃k → τc − 2τp

τc

log2









1 +
θ

1− θ + 1
αESσ

2

SR,k

+

K∑

i=1

σ4

SR,i
σ2

RD,i

ERσ
4

SR,k
σ4

RD,k









.

(45)

Corollary 2 reveals a rather remarkable result, that despite

the low-resolution ADCs at both the relay and destinations,

the transmit power of each source and the relay can still be

cut down proportionally to 1/M while maintaining a desired

constant rate, which is the same as the case with ideal infinite-

resolution ADCs.

B. Power allocation

From Proposition 1, it is not difficult to observe that R̃k

improves when the transmit power of sources pS increases.
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As such, each user should transmit at the maximum power.

However, due to the existence of loopback interference, the

relationship between R̃k and pR is more complicated. As can

be readily shown that R̃k → 0 when pR → 0 or pR → ∞.

Hence, using the maximum relay power does not necessarily

yield the best performance. Therefore, we now optimize the

relay transmit power with the objective of maximizing the

achievable sum rate of the system. Specifically, the optimiza-

tion problem can be formulated as

P1 : maximize
pR

K∑

k=1

R̃k (46)

subject to pR ≥ 0. (47)

Due to the involved sum rate expression, analytical charac-

terization of the optimal p∗R is intractable. However, the op-

timal solution can be efficiently obtained by one-dimensional

search such as bisection method. To gain further insights, we

consider the special homogeneous case where all links have

the same large-scale fading, e.g., βSR,k = βRD,k = 1. And we

have the following important corollary:

Corollary 3: In a homogeneous communication setting, i.e.,

βSR,k = βRD,k = 1, the optimal relay transmit power is given

by

p∗R =

√

αpSK

σ2
LI

. (48)

Proof: When βSR,k = βRD,k = 1, the

problem P1 is equivalent to minimizing the

function f (pR) = b+ cpR + d
pR

, where b =

σ2
(
2KpS +

1−α
αθ

pS

(
σ2 +K

)
+ 1−αθ

αθ
+ 1−θ

θ
pS

(
2K +Mσ2

))
,

c =
σ2σ2

LI

αθ
, and d = pSKσ2

θ
with σ2 =

ατppp

1+τppp
. Since

f ′′(pR) = 2dx−3 > 0, f(pR) is a convex function. Thus, the

optimal transmit power of the relay p∗R is obtained by solving

f ′(pR) = 0. �

Corollary 3 shows that the optimal transmit relay power is

a function of the resolution level of ADCs at the relay, the

transmit power of users, the number of user pairs, and the

residual loop interference power, but is independent of the

channel estimation accuracy, resolution level of ADCs at the

destination, and the relay antenna number. First of all, we see

that less power should be used when the residual loopback

interference is high. This is reasonable since increasing the

relay power would result in higher residual loopback interfer-

ence. In contrast, if K becomes large, we should increase pR

to serve the additional users. Now, we turn our attention to the

impact of the resolution of ADCs at the relay. It is observed

that the optimal relay power increases as the resolution of relay

ADCs improves. This is also intuitive, since higher-resolution

ADCs result in less quantization errors, hence, the benefit

of using large transmit power becomes more significant. For

instance, considering the special cases with perfect ADCs and

one-bit ADCs, i.e., α = 1 and α = 0.6366, the difference

between the optimal p∗R of the two cases can be computed

as ∆p∗R =
(
1−

√
0.0366

)√
pSK

σ2

LI

= 0.2
√

pSK

σ2

LI

, which implies

20% less power for the case with one-bit ADCs.

C. Deploying low-resolution ADCs at the relay or the desti-

nations?

At this point, it is also worth noting that there exists tradeoff

between α and θ, i.e., the rate R̃k may remain unchanged

by jointly adjusting α and θ, indicating that it is possible

to increase the ADC resolution at the relay to compensate

for the performance loss due to low resolution ADCs at the

destination or vice versa.

Now, let us consider two extreme cases: 1) α = α1 6= 1, θ =
1, namely, low-resolution ADCs at the relay and infinite reso-

lution ADCs at the destination. 2) α = 1, θ = θ2 6= 1, namely,

infinite resolution ADCs at the relay and low-resolution ADCs

at the destination, where α1 and θ2 respectively denote the

quantization level of the two cases.

If α = α1 6= 1, θ = 1, R̃k reduces to

R̃R
k =

τc − 2τp

τc

log2

(

1 +
Ãk

B̃k + C̃k + D̃k + Ẽk + F̃k + G̃k

)

,

(49)

which can be written in the following form

R̃R
k =

τc − 2τp

τc

log2 (1 + aM) , (50)

where a is a constant determined by other system parameters

such as α but independent of M . This result suggests that

deploying large antenna array at the relay is an effective

method to compensate for the rate degradation caused by low-

resolution ADCs at the relay.

If α = 1, θ = θ2 6= 1, R̃k reduces to

R̃D
k =

τc − 2τp

τc

log2

(

1 +
Ãk

B̃k + C̃k + D̃k + Ẽk + G̃k + H̄k

)

,

(51)

where

H̄k =
1− θ

θ
pS

(

Mσ2
SR,kσ

2
RD,k +

σ2
SR,kβRD,k

σ2
RD,k

K∑

i=1

σ2
RD,i

)

(52)

+
1− θ

θ
pSσ

2
RD,k

(
K∑

i=1

βSR,i +
pRσ

2
LI + 1

pS

)

.

In contrast to the previous case, both the denominator

and numerator scales with M , indicating that increasing the

number of relay antennas is ineffective if the performance

bottleneck is due to low-resolution ADCs at the destination.

The above observations reveal the asymmetric impact of low-

resolution ADCs at the relay and destination, and also shed key

design insights on how to allocate the ADCs to achieve optimal

performance. Specifically, we have the following important

result:

Corollary 4: If α1 = θ2, the achievable rate of case 1 is

larger than that of case 2, i.e., R̃R
k ≥ R̃D

k .

Proof: Noticing that F̃k < H̄k as α1 = θ2 6= 1 and

F̃k = H̄k = 0 when α1 = θ2 = 1, the desired result can be

easily obtained. �
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Corollary 4 suggests that, in terms of maximizing the

achievable rate, it is preferable to deploy the low-resolution

ADCs at the relay and infinite resolution ADCs at the desti-

nation.

D. Comparison between full-duplex and half-duplex modes

We now compare the performance of the full- and half-

duplex modes. For the half-duplex mode, the sources and the

relay separately occupy
τc−2τp

2τc
time to transmit signals. For

fair comparison, the transmit powers of each source and the

relay in half-duplex mode should be twice of the powers in

full-duplex mode, to ensure that the total energy spent in a

coherence interval for both modes are the same. Therefore,

the achievable rate of k-th user in half-duplex mode is given

by

R̃H
k =

τc − 2τp

2τc

log2

(

1 +
2Ãk

2B̃k + 2C̃k + Ẽk + F̂k + G̃k + Ĥk

)

,

(53)

where

F̂k =
1− α

α
σ2

RD,k

(

2pS

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+ 1

)

, (54)

Ĥk =
1− θ

θ
2pS

(

Mσ2
SR,kσ

2
RD,k +

σ2
SR,kβRD,k

σ2
RD,k

K∑

i=1

σ2
RD,i

)

(55)

+
1− θ

θ
2pSσ

2
RD,k

(
K∑

i=1

βSR,i +
1

2αpS

)

+
(1− α) (1− θ)

αθ
σ2

RD,k2pS

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+

(1− θ) pS

K∑

i=1

σ4
SR,iσ

2
RD,i

θpRσ2
SR,kσ

2
RD,k

.

It is difficult to tell which mode is better, since the achievable

system performance depends on various parameters such as the

transmit powers, channel gains, the number of relay antennas,

and the loop interference level. In particular, the loop inter-

ference level and the number of relay antennas play critical

roles. If all the other parameters are fixed and only the loop

interference level changes, the full-duplex mode outperforms

the half-duplex mode when σ2
LI ≤ σ2

LI,0, where σ2
LI,0 is the

root of
∑K

k=1 R̃k =
∑K

k=1 R̃
H
k . Similarly, if only the number

of relay antennas changes, the full-duplex mode outperforms

the half-duplex mode when M ≥ M0, where M0 is the root

of
∑K

k=1 R̃k =
∑K

k=1 R̃
H
k .

V. NUMERICAL RESULTS

In this section, we present numerical results to validate the

previous theoretical analysis. For all illustrative examples, the

length of the coherence interval is τc = 196 (symbols), chosen

according to the LTE standard. The length of pilot sequence

is τp = K . Also, we set the large-scale fading coefficient

βSR,k = βRD,k = 1 for simplicity.

A. Validation of analytical results

Fig. 3 illustrates the impact of relay antenna number on

the sum rate of the K destinations. Note that the curves

associated with “Numerical results” are generated by Monte-

Carlo simulations according to (24) by averaging over 104

independent channel realizations, the “Exact results” curves

are plotted according to Theorem 1, and the “Approximations”

curves are obtained based on Proposition 1. As can be readily

observed, the “Exact results” and “Numerical results” curves

overlap, which validates our exact analysis. Also, the gap

between “Approximations” and “Numerical results” curves is

sufficiently small, especially when the number of relay antenna

is large. In addition, we observe the sum rate saturates in the

high signal-to-noise ratio (SNR) regime. Intuitively, the system

becomes interference-limited at high SNR.

−20 −15 −10 −5 0 5 10 15 20
0

2

4

6

8

10

12

14

p
S
 (dB)

S
um

 R
at

e 
(b

it/
s/

H
z)

 

 

Numerical results
Exact results
Approximations

M = 128
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M = 256

Fig. 3: Sum rate versus pS for K = 5, α = θ = 0.8825
(two-bit ADC), pp = 10 dB, pR = 10 dB, and σ2

LI = 0 dB.

B. Where to deploy the low-resolution ADCs?

Fig. 4 demonstrates the asymmetric effect of low-resolution

ADCs at the relay and destinations on the sum rate of the K
destinations. Recall that α 6= 1, θ = 1 represents employing

low-resolution ADCs at the relay only, while α = 1, θ 6= 1
refers to using low-resolution ADCs at the destinations only.

We observe a substantial performance gap between the case

with α 6= 1, θ = 1 and the case with α = 1, θ 6= 1 when

the number of quantization bits b is small, as predicted by

Corollary 4. However, when the number of quantization bits

b increases, the two curves converge to the same rate. This

is because both α and θ approach to 1 as b is large enough

(b ≥ 6 bits in this example), as such the system behaves as

that with perfect ADCs.

C. Can we use more antennas to compensate for the coarse

quantization?

Fig. 5 plots the sum rate of the K destinations versus the

number of relay antennas for different number of quantization

bits at the destinations. Note that the “Sum rate” and “Sum

rate limit” curves are generated by (24) and (44), respectively.

As expected, higher number of quantization bits of ADCs

at the destinations results in better sum rate. Also, the sum
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M = 128: α ≠ 1, θ = 1

M = 128: α = 1, θ ≠ 1

M = 64: α ≠ 1, θ = 1

M = 64: α = 1, θ ≠ 1

Fig. 4: Sum rate versus b with full-resolution ADCs at the

relay or the destinations (α = 1 or θ = 1) for K = 5, pS = 0
dB, pp = 0 dB, pR = 0 dB, and σ2

LI = −10 dB.

rate is an increasing function with respect to the number of

relay antennas, and converges to a finite limit determined by

b as M becomes large as predicated by Corollary 1, which

indicates that using more relay antennas is not an effective

approach to compensate for the rate loss due to low resolution

ADCs at the destinations. However, the claim would be quite

different in the case of low-resolution ADCs at the relay

only. As illustrated in Fig. 6, increasing the number of relay

antennas can effectively compensate for the rate degradation

due to coarse quantization. Nevertheless, the required number

of antennas is closely related to the resolution level of ADCs.

For instance, compared to the perfect ADCs case, the one-

bit system requires approximately twice (305/158 = 1.93)

antennas to achieve a sum rate of 15 bit/s/Hz (marked by a

solid black line), while the 3-bit ADCs system merely needs

an additional 9/158 = 5.7% more antennas.
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Fig. 5: Sum rate versus M for K = 5, α = 0.8825, pS = 0
dB, pp = 0 dB, pR = 0 dB, and σ2

LI = −10 dB.

D. How does coarse quantization affect the relay transmit

power?

Fig. 7 illustrates the impact of relay transmit power on

the achievable sum rate of the K destinations with differ-

ent loopback interference level. As can be readily observed,
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Fig. 6: Sum rate versus M for K = 5, θ = 1, pS = 0 dB,

pp = 0 dB, pR = 0 dB, and σ2
LI = −10 dB.

there exists an optimal relay transmit power maximizing the

sum rate. Also, with one-bit ADCs at the relay, the optimal

relay transmit power decreases if the loop interference level

increases (p∗R = 7.51 dB for σ2
LI = −20 dB, and p∗R = 2.51 dB

for σ2
LI = −10 dB), which aligns with Corollary 3. In addition,

we can see that, regardless of the loop interference level, the

relay with one-bit ADCs should transmit approximately 20%
less power than the perfect ADC case.
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Fig. 7: Sum rate versus pR for K = 5, M = 64, θ = 0.8825,

pS = −10 dB, and pp = −10 dB.

E. Power scaling law

Fig. 8 plots the required transmit power of each source to

maintain a given sum rate of the K destinations 5 bits/s/Hz.

Note that the curves associated with “One-bit ADC”, “2-bit

ADC” and “Perfect ADC” are obtained by setting α = θ =
0.6366, α = θ = 0.8825, and α = θ = 1, respectively. We

can see that, when the number of relay antennas increases,

the required transmit powers are significantly reduced. Also,

lower-resolution ADC costs more power to achieve the target

sum rate. For instance, compared to the perfect ADC case,

the one-bit and two-bit ADCs require approximately 10 dB

and 2.5 dB more power, respectively. In addition, when σ2
LI

becomes large, we need more transmit power. For instance,
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with one-bit ADC and M = 200, the required transmit power

of each source increases from −6.25 dB for σ2
LI = −20 dB to

−1.25 dB for σ2
LI = 0 dB.
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Fig. 8: Required pS versus the number of relay antennas for

K = 5, pp = 0 dB, and pR = KpS.

F. Full-duplex vs. half-duplex modes

Fig. 9 shows the sum rate versus the loop interference

levels when the relay and destinations employ 2-bit ADCs. As

expected, full-duplex outperforms half-duplex relaying at low

σ2
LI. However, when σ2

LI is high, loop interference dominates

and hence the full-duplex mode is inferior. In such case,

we can deploy more antennas to mitigate the effect of loop

interference. For instance, by increasing the number of relay

antennas from M = 100 to M = 200, the operating region

where the full-duplex relaying works better enlarges, i.e., from

σ2
LI,0 = 13.5 dB to σ2

LI,0 = 15.5 dB. This fact is further

emphasized in Fig. 10. By focusing on the point M = 185
in Fig. 10, we observe that the half-duplex is superior with

perfect ADCs while is inferior with 2-bit ADCs compared to

the full-duplex mode, which indicates that the half-duplex is

more sensitive to the low-resolution ADCs. The reason is that

the quantization noise scales with the power of input signals,

which becomes large since the transmit powers are doubled in

the half-duplex mode.

VI. CONCLUSION

We analyzed the achievable sum rate of a multipair full-

duplex massive antenna relaying system assuming that both

the relay and the destinations use low-resolution ADCs. Exact

and approximated closed-form expressions for the achievable

sum rate were derived, based on which, the impact of key

system parameters was characterized. The findings suggested

that, deploying massive relay antenna arrays is an effective

approach to compensate for the rate loss due to low-resolution

ADCs at the relay, yet becomes ineffective to deal with

the rate degradation due to the low-resolution ADCs at the

destinations, which indicates that it is important to use higher

resolution ADCs at the destination. In addition, it was revealed

that, despite the use of low-resolution ADCs, employing

massive antenna array at the relay enables significant power

savings, i.e., the transmit power of each source can be scaled

down proportional to 1/M , to maintain a constant rate.
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LI for K = 5, α = θ = 0.8825,

pp = −10 dB, pS = −10 dB, and pR = −10 dB.
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APPENDIX A

PROOF OF THEOREM 1

We focus on the derivation of ĜSR only since ĜRD can be

deduced in the same fashion.

To start with, we substitute (7) into (9), and obtain

ỸH
rp = α

√
τpppΦ

H
S GH

SR + αNH
rp +NH

rq . (56)

Then, following the standard MMSE channel estimation

technique, ĜH
SR is given by

ĜH
SR = E

{

GH
SRỸrp

}(

E

{

ỸH
rp Ỹrp

})−1

ỸH
rp . (57)

We first calculate

E

{

GH
SRỸrp

}

= E

{
α
√
τpppG

H
SRGSRΦS

}
(58)

= Mα
√
τpppDSRΦS.
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and

E

{

ỸH
rp Ỹrp

}

(59)

= E

{
α2τpppΦ

H
S GH

SRGSRΦS

}
+ α2Iτp

+ E

{
NH

rq Nrq

}

= Mα2τpppΦ
H
S DSRΦS +Mα2Iτp

+ α (1− α) diag
(
E

{
YH

rp Yrp

})

= Mα2τpppΦ
H
S DSRΦS +Mα2Iτp

+Mα (1− α) diag
(
τpppΦ

H
S DSRΦS + Iτp

)
.

Here, we choose τp = K , and assume that ΦS and ΦD are

identity matrices, i.e., ΦS = ΦD = IK , for trackable analysis

as in [11]. As a result, we have

diag
(
ΦH

S DSRΦS

)
= DSR, (60)

thus,

E

{

ỸH
rp Ỹrp

}

= Mα
(
τpppDSR + Iτp

)
. (61)

Using the property of
(
AHA+ aIn

)−1
AH =

AH
(
AAH + aIm

)−1
(A ∈ Cm×n), and then substituting

(58) and (61) into (57), we have

ĜH
SR = α

(

IK +
D−1

SR

τppp

)−1(

GSR +
Nrp√
τppp

+
Nrq

α
√
τppp

)

.

(62)

As a result, we arrive the desired results after some simple

mathematical derivations.

APPENDIX B

PROOF OF THEOREM 1

Capitalizing on the results of [7], the achievable rate of k-

th user is given by (24), where Ak = pS|E
{

gT
RD,kFgSR,k

}

|2

is the desired signal power, Bk = pSVar
(

gT
RD,kFgSR,k

)

is

the estimation error, Ck = pS

∑

j 6=k

E

{

|gT
RD,kFgSR,j |2

}

is the

interpair interference, Dk = pR

M
E

{

||gT
RD,kFGRR||2

}

, is the

loop interference, Ek = E

{

||gT
RD,kF||2

}

is the noise at the

relay, Fk = 1
α2 E

{

|gT
RD,kFñR[i − d]|2

}

is the quantization

noise at the relay, Gk = 1
α2γ2 is the noise at the k-th

destination, Hk = 1
α2θ2γ2 E

{
|ñD,k[i]|2

}
is the quantization

noise at the k-th destination. Besides these terms, we also

need to calculate the normalization factor γ in (20). In the

following, we compute them one by one.

1) Compute γ:

(a) E
{
||FGSR||2

}
= E

{

tr
(

GH
SRĜSRĜ

T
RDĜ

∗
RDĜ

H
SRGSR

)}

= tr
(

E

{

ĜH
SRGSRG

H
SRĜSR

}

E

{

ĜT
RDĜ

∗
RD

})

=

M3
K∑

i=1

σ4
SR,iσ

2
RD,i +M2

K∑

i=1

σ2
SR,iσ

2
RD,i

K∑

j=1

βSR,j .

(b) E

{
||FGRR||2

}
= tr

(
E

{
GRRG

H
RR

}
E

{
FHF

})
=

tr
(
Mσ2

LIE

{
FHF

})
= M3σ2

LI

K∑

i=1

σ2
SR,iσ

2
RD,i.

(c) E

{
||F||2

}
= tr

(

E

{

ĜH
SRĜSR

}

E

{

ĜT
RDĜ

∗
RD

})

=

M2
K∑

i=1

σ2
SR,iσ

2
RD,i

(d) E
{
||FñR[i− d]||2

}
= α (1− α)

tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(

pSGSRG
H
SR +

pRGRRG
H
RR

M
+ IM

)

ĜSRĜ
T
RD

})

.

Firstly, we compute

tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(
GSRG

H
SR

)
ĜSRĜ

T
RD

})

(63)

= tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(

ĜSRĜ
H
SR

)

ĜSRĜ
T
RD

})

+ tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(
ESRE

H
SR

)
ĜSRĜ

T
RD

})

.

By utilizing the fact that the channel matrices

ĜSR, ESR, and ĜRD are independent of each other,

E

{

ĜH
SRdiag

(

ĜSRĜ
H
SR

)

ĜSR

}

= MA (where A is a K ×K

diagonal matrix with [A]kk = σ4
SR,k + σ2

SR,k

K∑

i=1

σ2
SR,i), and

E

{
diag

(
ESRE

H
SR

)}
=

K∑

i=1

σ̃2
SR,iIM , we have

tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(
GSRG

H
SR

)
ĜSRĜ

T
RD

})

(64)

= tr
(

E

{

Ĝ∗
RDE

{

ĜH
SRdiag

(

ĜSRĜ
H
SR

)

ĜSR

}

ĜT
RD

})

+ tr
(

E

{

Ĝ∗
RDE

{

ĜH
SRE

{
diag

(
ESRE

H
SR

)}
ĜSR

}

ĜT
RD

})

= M2





K∑

j=1

σ4
SR,jσ

2
RD,j +

K∑

i=1

σ2
SR,i

K∑

j=1

σ2
SR,jσ

2
RD,j





+M2
K∑

i=1

σ̃2
SR,i

K∑

j=1

σ2
SR,jσ

2
RD,j

= M2





K∑

j=1

σ4
SR,jσ

2
RD,j +

K∑

i=1

βSR,i

K∑

j=1

σ2
SR,jσ

2
RD,j



 .

Then, following the same way for calculating

tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(
GSRG

H
SR

)
ĜSRĜ

T
RD

})

, we obtain

tr
(

E

{

Ĝ∗
RDĜ

H
SRdiag

(
GRRG

H
RR

)
ĜSRĜ

T
RD

})

(65)

= M3σ2
LI

K∑

j=1

σ2
SR,jσ

2
RD,j ,

tr
(

E

{

Ĝ∗
RDĜ

H
SRĜSRĜ

T
RD

})

= M2
K∑

j=1

σ2
SR,jσ

2
RD,j . (66)

Substituting (64), (65), and (66) into (d), we have

E

{
||FñR[i− d]||2

}
(67)

= α (1− α)M2pS





K∑

j=1

σ4
SR,jσ

2
RD,j +

K∑

i=1

βSR,i

K∑

j=1

σ2
SR,jσ

2
RD,j





+ α (1− α)M2
K∑

j=1

σ2
SR,jσ

2
RD,j

(
pRσ

2
LI + 1

)
. (68)

To this end, combining the results (a), (b), (c), and (d), we

obtain (69), shown on the top of the next page.
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γ =
1

M

√
√
√
√
√

pR

pS

K∑

i=1

σ4
SR,iσ

2
RD,i (Mα2 + α (1− α)) + α

K∑

i=1

σ2
SR,iσ

2
RD,i

(

pS

K∑

j=1

βSR,j + pRσ2
LI + 1

) . (69)

2) Calculate Ak:

E

{
gT

RD,kFgSR,k

}
(70)

= E

{
ĝT

RD,kĝ
∗
RD,k

}
E

{
ĝH

SR,kĝSR,k

}

= M2σ2
SR,kσ

2
RD,k.

Consequently, we have

Ak = α2θ2γ2pSM
4σ4

SR,kσ
4
RD,k. (71)

3) Calculate Bk:

E

{
|gT

RD,kFgSR,k|2
}

(72)

= E

{
K∑

n=1

K∑

l=1

gT
RD,kĝ

∗
RD,nĝ

H
SR,ngSR,kg

H
SR,kĝSR,lĝ

T
RD,lg

∗
RD,k

}

,

which can be decomposed into three different cases:

a) for n 6= l 6= k, we have E

{

|gT
RD,kFgSR,k|2

}

= 0.

b) for n = l 6= k, we have

E

{
|gT

RD,kFgSR,k|2
}

(73)

= E

{
K∑

n=1

gT
RD,kĝ

∗
RD,nĝ

H
SR,ngSR,kg

H
SR,kĝSR,nĝ

T
RD,ng

∗
RD,k

}

= M2βSR,kβRD,k

∑

n6=k

σ2
SR,nσ

2
RD,n.

c) for n = l = k, we have

E

{
|gT

RD,kFgSR,k|2
}

(74)

= E

{
gT

RD,kĝ
∗
RD,kĝ

H
SR,kgSR,kg

H
SR,kĝSR,kĝ

T
RD,kg

∗
RD,k

}

= E

{
ĝT

RD,kĝ
∗
RD,kĝ

H
SR,kĝSR,kĝ

H
SR,kĝSR,kĝ

T
RD,kĝ

∗
RD,k

}

+ E

{
ĝT

RD,kĝ
∗
RD,kĝ

H
SR,keSR,ke

H
SR,kĝSR,kĝ

T
RD,kĝ

∗
RD,k

}
(75)

+ E

{
eTRD,kĝ

∗
RD,kĝ

H
SR,kĝSR,kĝ

H
SR,kĝSR,kĝ

T
RD,ke

∗
RD,k

}

+ E

{
eTRD,kĝ

∗
RD,kĝ

H
SR,keSR,ke

H
SR,kĝSR,kĝ

T
RD,ke

∗
RD,k

}
(76)

= M2 (M + 1)2 σ4
SR,kσ

4
RD,k +M2 (M + 1)σ2

SR,kσ̃
2
SR,kσ

4
RD,k

+M2 (M + 1)σ4
SR,kσ

2
RD,kσ̃

2
RD,k +M2σ2

SR,kσ̃
2
SR,kσ

2
RD,kσ̃

2
RD,k.

Finally, combining a), b), and c), we obtain

Bk = α2θ2γ2pS

(
E

{
|gT

RD,kFgSR,k|2
}
− |E

{
gT

RD,kFgSR,k

}
|2
)

(77)

= α2θ2γ2pSM
3σ2

SR,kσ
2
RD,k

(
βSR,kσ

2
RD,k + βRD,kσ

2
SR,k

)

α2θ2γ2pSM
2βSR,kβRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n.

4) Calculate Ck:

We first rewrite E

{

|gT
RD,kFgSR,j|2

}

for j 6= k as

E

{
|gT

RD,kFgSR,j |2
}

(78)

= E

{
K∑

n=1

K∑

l=1

gT
RD,kĝ

∗
RD,nĝ

H
SR,ngSR,jg

H
SR,j ĝSR,lĝ

T
RD,lg

∗
RD,k

}

.

Next, (78) can be split into six different cases:

a) for n 6= l 6= k, we have E

{

|gT
RD,kFgSR,j |2

}

= 0.

b) for n = l 6= k, we have E

{

|gT
RD,kFgSR,j |2

}

=

M2βSR,jβRD,k

K∑

n6=k,j

σ2
SR,nσ

2
RD,n.

c) for n = l = k, we have E

{

|gT
RD,kFgSR,j|2

}

=

M2βSR,jσ
2
SR,kσ

2
RD,k

(

Mσ2
RD,k + βRD,k

)

.

d) for n = l = j, we have E

{

|gT
RD,kFgSR,j |2

}

=

M2βRD,kσ
2
SR,jσ

2
RD,j

(
Mσ2

SR,j + βSR,j

)
.

e) for n = k, l = j, we have E

{

|gT
RD,kFgSR,j |2

}

= 0.

f) for n = j, l = k, we have E

{

|gT
RD,kFgSR,j |2

}

= 0.

Altogether, Ck is given by

Ck = α2θ2γ2pSM
3
∑

j 6=k

(
σ2

SR,kσ
4
RD,kβSR,j + βRD,kσ

4
SR,jσ

2
RD,j

)

(79)

+ α2θ2γ2pSM
2
∑

j 6=k

βSR,jβRD,k

K∑

n6=k,j

σ2
SR,nσ

2
RD,n

+ α2θ2γ2pSM
2
∑

j 6=k

βSR,jβRD,kσ
2
SR,kσ

2
RD,k

+ α2θ2γ2pSM
2
∑

j 6=k

+βSR,jβRD,kσ
2
SR,jσ

2
RD,j .

5) Calculate Dk and Ek:

Following the same technique for deriving Bk, we can

obtain

E

{
||gT

RD,kFGRR||2
}

(80)

= M3σ2
LI

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

,

E

{
||gT

RD,kF||2
}

= M2

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

. (81)
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Thus, Dk and Ek are given by

Dk = α2θ2γ2M3σ2
LIpRσ

2
SR,kσ

4
RD,k (82)

+ α2θ2γ2M2σ2
LIpRβRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n,

Ek =

α2θ2γ2M2

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

. (83)

6) Calculate Fk:

By using the fact that the channel matrices GRD and ĜRD

are independent of GSR, ĜSR, and GRR, we have

E

{
|gT

RD,kFñR[i− d]|2
}

(84)

= α (1− α) E
{

gT
RD,kĜ

∗
RDE {B} ĜT

RDg
∗
RD,k

}

,

where

E {B} = (85)

E

{

ĜH
SRdiag

(

pSGSRG
H
SR +

pRGRRG
H
RR

M
+ IM

)

ĜSR

}

.

Then, following the same fashion as for deducing

E

{
||FñR[i− d]||2

}
, we can easily obtain

E

{

gT
RD,kĜ

∗
RDĜ

H
SRdiag

(
GSRG

H
SR

)
ĜSRĜ

T
RDg

∗
RD,k

}

(86)

= M2βRD,k

∑

n6=k

σ2
SR,nσ

2
RD,n

(

σ2
SR,n +

K∑

i=1

βSR,i

)

+M2σ2
SR,kσ

2
RD,k

(
Mσ2

RD,k + βRD,k

)

(

σ2
SR,k +

K∑

i=1

βSR,i

)

,

E

{

gT
RD,kĜ

∗
RDĜ

H
SRdiag

(
GRRG

H
RR

)
ĜSRĜ

T
RDg

∗
RD,k

}

(87)

= M3σ2
LI

(

Mσ2
SR,kσ

4
RD,k + βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

)

,

E

{

gT
RD,kĜ

∗
RDĜ

H
SRĜSRĜ

T
RDg

∗
RD,k

}

(88)

= M3σ2
SR,kσ

4
RD,k +M2βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n.

Substituting (86), (87), and (88) into (84), we have

Fk =
1− α

α
M3pSσ

2
SR,kσ

4
RD,k

(

σ2
SR,k +

K∑

i=1

βSR,i

)

(89)

+
1− α

α
M3

(
pRσ

2
LI + 1

)
σ2

SR,kσ
4
RD,k

+
1− α

α
M2

(
pRσ

2
LI + 1

)
βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

+
1− α

α
M2pSβRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

(

σ2
SR,n +

K∑

i=1

βSR,i

)

.

7) Calculate Hk:

E

{
|ñD,k[i]|2

}
= θ (1− θ) E

{
|yD,k[i]|2

}
(90)

= α2θ (1− θ) γ2pSE

{
||gT

RD,kFGSR||2
}

+ α2θ (1− θ) γ2 pR

M
E

{
||gT

RD,kFGRR||2
}

+ α2θ (1− θ) γ2
E

{
||gT

RD,kF||2
}

+ θ (1− θ) γ2
E

{
|gT

RD,kFñR[i− d]|2
}
+ θ (1− θ) .

We first calculate

E

{
||gT

RD,kFGSR||2
}

(91)

= M3σ2
SR,kσ

4
RD,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

M2σ2
SR,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

βRD,k

K∑

i=1

σ2
RD,i.

Then, by substituting (91), (80), (81), and (84) into (90),

we arrive the following result:

Hk =
1− θ

θ
pSM

3σ2
SR,kσ

4
RD,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

(92)

+
1− θ

θ
pSM

2σ2
SR,k

(

Mσ2
SR,k +

K∑

i=1

βSR,i

)

βRD,k

K∑

i=1

σ2
RD,i

+
1− θ

αθ
M3

(
pRσ

2
LI + 1

)
σ2

SR,kσ
4
RD,k

+
1− θ

αθ
M2

(
pRσ

2
LI + 1

)
βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

+
(1− α) (1− θ)

αθ
M3pSσ

2
SR,kσ

4
RD,k

(

σ2
SR,k +

K∑

i=1

βSR,i

)

+
(1− α) (1− θ)

αθ
pSM

2βRD,k

K∑

n=1

σ4
SR,nσ

2
RD,n

+
(1− α) (1− θ)

αθ
pSM

2βRD,k

K∑

n=1

σ2
SR,nσ

2
RD,n

K∑

i=1

βSR,i

+
1− θ

α2θγ2
.

Finally, combining (69), (71), (77), (79), (82), (83), (89), (92),
and (24), and after some simple algebraic manipulation, we
complete the proof.
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