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Abstract

We contribute to the perturbation theory of nonlinear eigenvalue
problems in three ways. First, we extend the formula for the sen-
sitivity of a simple eigenvalue with respect to a variation of a pa-
rameter to the case of multiple non-semisimple eigenvalues, thereby
providing an explicit expression for the leading coefficients of the
Puiseux series of the emanating branches of eigenvalues. Secondly,
for a broad class of delay eigenvalue problems, the connection be-
tween the finite-dimensional nonlinear eigenvalue problem and an
associated infinite-dimensional linear eigenvalue problem is empha-
sized in the developed perturbation theory. Finally, in contrast to
existing work on analyzing multiple eigenvalues of delay systems, we
develop all theory in a matrix framework, i.e., without reduction of
problem to the analysis of a scalar characteristic quasi-polynomial.
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AN EXPLICIT FORMULA FOR THE SPLITTING OF MULTIPLE
EIGENVALUES FOR NONLINEAR EIGENVALUE PROBLEMS, AND
CONNECTIONS WITH THE LINEARIZATION FOR THE DELAY

EIGENVALUE PROBLEM

WIM MICHIELS∗, ISLAM BOUSSAADA , AND SILVIU-IULIAN NICULESCU

Abstract. We contribute to the perturbation theory of nonlinear eigenvalue problems in three
ways. First, we extend the formula for the sensitivity of a simple eigenvalue with respect to a
variation of a parameter to the case of multiple non-semisimple eigenvalues, thereby providing an
explicit expression for the leading coefficients of the Puiseux series of the emanating branches of
eigenvalues. Secondly, for a broad class of delay eigenvalue problems, the connection between the
finite-dimensional nonlinear eigenvalue problem and an associated infinite-dimensional linear eigen-
value problem is emphasized in the developed perturbation theory. Finally, in contrast to existing
work on analyzing multiple eigenvalues of delay systems, we develop all theory in a matrix framework,
i.e., without reduction of problem to the analysis of a scalar characteristic quasi-polynomial.

Keywords. nonlinear eigenvalue problems, systems of functional equations and
inequalities, perturbations of nonlinear operators, asymptotic distribution of eigen-
values and eigenfunctions, matrix and operator equations.

AMS Subject Classification: 35P30, 39B72 , 47H14, 35P20 , 39B42.

1. Introduction. Eigenvalue analysis and computations are important in many
fields of science and engineering, and they also play an important role in the perfor-
mance of many numerical algorithms. The context of the present paper is a generaliza-
tion of the standard eigenvalue problem, known as the nonlinear eigenvalue problem,
characterized by a nonlinear dependence of the characteristic matrix on the eigenvalue
parameter. This type of eigenvalue problem includes quadratic eigenvalue problems
[21], polynomial and rational eigenvalue problems, as well as eigenvalue problems
inferred from the analysis of delay differential equations [18]. A short overview of
properties of generic nonlinear eigenvalue problems can be found in [23] and the ref-
erences therein.

In this paper we consider the nonlinear eigenvalue problem

M(λ; ǫ)v = 0, λ ∈ C, v ∈ C
n, v 6= 0, (1.1)

parameterized by a real parameter ǫ, and focus on the behavior of an eigenvalue λ0
for ǫ = 0 (i.e., detM(λ0; 0) = 0), as a function of ǫ We assume there exist an open
set Ω ⊂ C, containing λ0, and an open interval I ⊂ R, containing zero, such that
the following properties are satisfied: for all ǫ ∈ I the entries of M are analytic
functions of λ on Ω, and for all λ ∈ Ω the entries of M are smooth functions of ǫ
on I. Furthermore, for all ǫ ∈ I, we assume that M is not singular (in the sense
of singularity of a pencil [14]), i.e., det(M(λ; ǫ)) 6≡ 0. We aim to contribute to the
perturbation theory of nonlinear eigenvalue problems in three ways.

First, we extend the formula for the sensitivity of a simple eigenvalue with respect
to a variation of the parameter to the case of multiple non-semisimple eigenvalues,
satisfying a complete regular splitting property. Here, we contribute to the key ref-
erence [12, 15] by providing an explicit expression for the leading coefficients of the
Puiseux series of the eigenvalue, in terms of eigenvectors and generalized eigenvectors.
Second, for a broad class of delay eigenvalue problems, the connection between the
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finite-dimensional nonlinear eigenvalue problem and an associated infinite-dimensional
linear eigenvalue problem, which has been instrumental in the design of algorithms for
eigenvalue computations [25, 13], is further developed for the case of multiple eigen-
values, with inclusion of the perturbation theory developed in the first part of the
paper. Finally, we point out that the existing studies of multiple eigenvalues of de-
lay equations almost exclusively rely on the analysis of roots of a scalar characteristic
quasi-polynomial. We quote the functional structured matrix approach characterizing
multiple roots of [2], the conceptually appealing approach for eigenvalue perturbation
analysis for time-delay systems with commensurate delays established in [4], and the
geometric/sectorial approach established in [7] for time-delay systems where the de-
lays are not necessarily commensurate, but under a non-degeneracy assumption. The
approach we develop in the present work relies on a matrix framework, avoiding the
reduction to a scalar characteristic quasi-polynomials.

Even though multiple eigenvalues are non-generic, in the sense that they occur
with probability zero if elements of the matrices are chosen randomly, there are special
situations, which favor their presence. The first situation corresponds to optimized
spectra using stability optimization techniques, which are important in the context
of control design. The minimization of the spectral abscissa or spectral radius typi-
cally gives rises to multiple non-semisimple active eigenvalues [22, 3], resulting in a
non-locally Lipschitz objective function. Secondly, multiple eigenvalues may appear
in problems characterized by symmetries in dynamical systems or networks. For in-
stance, in [6] a network composed from four identical Brusselator chemical reactors
is considered, where the existence of multi-dimensional irreducible representations
of the symmetry group may force an eigenvalue to be multiple. Such an intriguing
phenomenon were subject of a huge bibliography in quest of characterizing special
properties for behavior of eigenvalues with symmetry like gyroscopic or conservative
systems, see for instance [20]. Finally, double roots on the imaginary axis play a
major role in distance problems for eigenvalue problems with Hamiltonian symmetry,
which occur in the context of optimal control and H∞ computations [8]

We conclude by briefly rehearsing some basic concepts, introducing notation and
presenting some motivating examples, one of which will be used throughout the paper.
The algebraic multiplicity of an eigenvalue (1.1) is equal to the multiplicity of this
eigenvalue as a root of the characteristic equation

detM(λ; ǫ) = 0, (1.2)

while the geometric multiplicity equals the dimension of the null space ofM(λ0; ǫ). In
this paper we study perturbations of an eigenvalue λ0 of (1.1) for ǫ = 0 with algebraic
multiplicity m and geometric multiplicity one. Vectors H0, . . . Hm−1 that satisfy

H0 6= 0,
l
∑

k=0

1

k!

dkM

dλk
(λ0; 0) Hl−k = 0, l = 0, . . . ,m− 1. (1.3)

form the corresponding Jordan chain. In what follows we use subscripts for partial
derivatives (Mλ := ∂M

∂λ , Mǫ =: ∂M
∂ǫ ), and to simplify the notation, we omit the
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argument (λ0; 0) when it is clear from the context. In this way (1.3) is spelled out as

MH0 = 0, H0 6= 0,
MH1 +

1
1!MλH0 = 0,

MH2 +
1
1!MλH1 ++ 1

2!MλλH0+ = 0,
...

...
...

MHm−1 +
1
1!MλHm−2 + . . .+ 1

(m−1)!Mλm−1H0 = 0.

For more information about spectral properties of analytic matrix functions, excellent
references are [23, 12]. See also [24] and the references therein for the computation of
Jordan chains. To illustrate the importance of taking the nonlinearity of the eigenvalue
problem into account, consider

M1(λ) =

[

λ 1
e−λ − 1 λ

]

,

having zero as a simple eigenvalue, even though M(0) has the form of a two-by-two
Jordan block. In the same spirit,

M2(λ; ǫ) =

[

λ− 1 + e−λ + ǫ 0
0 λ+ 1 + ǫ

]

(1.4)

has for ǫ = 0 zero as a double, non-semisimple eigenvalue, with Jordan chain

H0 =

[

1
0

]

, H1 =

[

α
0

]

, (1.5)

for any α ∈ R, even though M(0) is a diagonal matrix. This example also illus-
trate that generalized eigenvectors do not need to be linear independent [23]. In the
nonlinear case, even the null vector is allowed as generalized eigenvector.

The structure of the paper is as follows. In Section 2 we derive as main result
an explicit expression for the leading coefficients in the Puiseux expansion of a mul-
tiple non-semisimple eigenvalue satisfying the completely regular splitting property,
in terms of left and right eigenvectors and generalized eigenvectors. This formula
generalizes the well know expression for the sensitivity of a simple eigenvalue. In
Section 3 we apply the results to a broad class of time-delay systems. In addition we
rephrase Jordan chains and the sensitivity formula in terms of an equivalent linear
operator eigenvalue problem, which can be seen as a linearization of the nonlinear
delay eigenvalue problem. In Section 4 we provide some illustrations of the presented
results, and in Section 5 we present the main conclusions.

2. Sensitivity formula for multiple eigenvalues. We start with a technical
lemma about the parameterization of a Jordan chain.

Lemma 2.1. Let λ0 be an eigenvalue of (1.1) for ǫ = 0, with algebraic multiplicity
equal to m and geometric multiplicity one, and let (Ĥ0, . . . , Ĥm−1) be a particular
Jordan chain. Then all possible Jordan chains can be parameterized as

(H0, . . . , Hm−1) = α0(Ĥ0, . . . , Ĥm−1) + α1(0, Ĥ0, . . . , Ĥm−2)

+α2(0, 0, Ĥ0, . . . , Ĥm−3) + . . .+ αm−1(0, . . . , 0, Ĥ0),
(2.1)

with αk ∈ C, k = 0, . . . ,m and α0 6= 0.
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Proof. It is clear that the eigenvector can be parameterized by H0 = α0Ĥ0. We
now solve

MH1 = −Mλ

(

α0Ĥ0

)

.

for H1. Clearly α0Ĥ1 is a solution since (Ĥ0, Ĥ1) is part of a Jordan chain. Moreover,
since the null space of M is one-dimensional, with null vector Ĥ0, the set of all
solutions is parameterized by

H1 = α0Ĥ1 + α1Ĥ0,

with α1 an arbitrary complex scalar. Let us now solve the equation

MH2 = −Mλ

(

α0Ĥ1 + α1Ĥ0

)

− 1

2
Mλλ

(

α0Ĥ0

)

.

A particular solution is given by α0Ĥ2 + α1Ĥ1. This follows from substituting the
expression, grouping terms by α0 and α1, and using the fact that (Ĥ0, Ĥ1, Ĥ2) is
part of a Jordan chain. Once again, since Ĥ0 is the sole null vector ofM , all solutions
are given by

H2 = α0Ĥ2 + α1Ĥ1 + α2Ĥ0,

with α2 an arbitrary complex scalar. Repeating this argument leads to the assertion
to be proven. �

The main result is contained in the following theorem.
Theorem 2.2. Let λ0 be an eigenvalue of (1.1) for ǫ = 0, with algebraic multi-

plicity equal to m and geometric multiplicity one, with Jordan chain (H0, . . . , Hm−1).
Let U0 be the corresponding left eigenvector. Assume that condition

U∗
0MǫH0 6= 0 (2.2)

holds. Then around ǫ = 0, the eigenvalues in the vicinity of λ0 can be expanded as
the branches of the Puieseux series

λ(ǫ) = λ0 +

∞
∑

i=1

ǫ
i
m λi, (2.3)

where

λm1 = − U∗
0MǫH0

U∗
0

(

1
1!MλHm−1 +

1
2!MλλHm−2 + · · ·+ 1

m!MλmH0

) (2.4)

Proof. Because of the assumed multiplicities and (2.2), we have a completely regular
splitting property [12]. It follows that the eigenvalue functions can be expanded as
(2.3), with λ1 6= 0. Furthermore, the corresponding eigenvectors can be expanded as

v(ǫ) = V0 +
∑∞

i=1 ǫ
i
m Vi, (2.5)

see [15, Lemma 2]. By definition we have

M(λ(ǫ); ǫ) v(ǫ) = 0.
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Substituting (2.3), (2.5), and working out this expression in increasing powers of ǫ/m
gives:

(0) MV0 = 0
(1) MV1 +

1
1!

∂M
∂λ λ1V0 = 0

(2) MV2 +
1
1!

∂M
∂λ (λ1V1 + λ2V0) +

1
2!

∂2M
∂λ2 λ

2
1V0 = 0

(3) MV3 +
1
1!

∂M
∂λ (λ1V2 + λ2V1 + λ3V0) +

1
2!

∂2M
∂λ2 (λ21V1 + 2λ1λ2V0)

+ 1
3!

∂3M
∂λ3 λ

3
1V0 = 0

(4) MV4 ++ 1
1!

∂M
∂λ (λ1V3 + λ2V2 + λ3V1 + λ4V0)

+ 1
2!

∂2M
∂λ2 (λ21V2 + 2λ1λ2V1 + (λ22 + 2λ1λ3)V0)

+ 1
3!

∂3M
∂λ3 (λ31V1 + 3λ21λ2V0) + + 1

4!
∂4M
∂λ4 λ

4
1V0 = 0

...

(i) MVi +
1
1!

∂M
∂λ Ci,1 + · · ·+ 1

i!
∂iM
∂λi Ci,i = 0

...

(m− 1) MVm−1 +
1
1!

∂M
∂λ Cm−1,1 + · · ·+ 1

(m−1)!
∂m−1M
∂λm−1 Cm−1,m−1 = 0

(m) MVm + 1
1!

∂M
∂λ Cm,1 + · · ·+ 1

m!
∂mM
∂λm Cm,m + ∂M

∂ǫ V0 = 0,

(2.6)

where the vectors Ci,j are linear combinations of (V0, . . . , Vi−j), explicitly expressed
as

Ci,j =

i−j
∑

k=0















(i,...,i)
∑

(i1, . . . , ij) = (1, . . . , 1)
i1 + . . .+ ij = i− k

λi1λi2 · · ·λij















Vk. (2.7)

Multiplying the last equation of (2.6) from the left with U∗
0 and taken into account

that

U∗
0M = 0, V0 =

Cm,m

λm1
,

we arrive at

λm1 = − U∗
0
∂M
∂ǫ Cm,m

U∗
0

(

∂M
∂λ Cm,1 + · · ·+ 1

m!
∂mM
∂λm Cm,m

) . (2.8)

Subsequently, we show that (Cm,m, . . . , Cm,1) forms a Jordan chain. The condi-
tion

MCm,m = 0

is obtained by multiplying expression (0) in (2.6) with λm1 . Similarly, condition

MCm,m−1 +
1

1!

∂M

∂λ
Cm,m = 0

is obtained by taking a linear combination of expression (0) and (1) with coefficients
(m− 1)λ2λ

m−2
1 and λm−1

1 . More generally, for ℓ ∈ {0, . . . ,m− 1} condition

MCm,m−ℓ +
1

1!

∂M

∂λ
Cm,m−ℓ+1 + . . .+

1

ℓ!

∂ℓM

∂λℓ
Cm,m
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is obtained by a liner combination of expression (0), (1), . . ., (ℓ), with coefficients
given by









































(m,...,m)
∑

(i1, . . . , im−ℓ) = (1, . . . , 1)
i1 + . . . im−ℓ = m− k

λi1λi2 · · ·λim−ℓ















, k = 0, . . . , ℓ



























.

So far we have established that the coefficient vectors (Cm,m, . . . , Cm,1), appearing
in (2.8), form a particular Jordan chain. Because a Jordan chain is not unique we can
complete the proof by showing that formula (2.8) is independent of the choice of the
Jordan chain. Following Lemma 2.1, all Jordan chains can be parameterized as

(Jm, . . . , J1) = α0(Cm,m, . . . , Cm,1) + α1(0, Cm,m, . . . , Cm,2) + α2(0, 0, Cm,m, . . . , Cm,3)
+ · · ·+ αm−1(0, . . . 0, Cm,m),

where αi ∈ C, i = 0, . . . ,m− 1 and α0 6= 0. By the definition of a Jordan chain, we
get from this equation

U∗
0

(

∂M
∂λ J1 + · · ·+ 1

m!
∂mM
∂λm Jm

)

= α0U
∗
0

(

∂M
∂λ Cm,1 + · · ·+ 1

m!
∂mM
∂λm Cm,m

)

+U∗
0 (−α1MCm,1 − α2MCm,2 − · · ·

−αm−1MCm,m−1)

= α0U
∗
0

(

∂M
∂λ Cm,1 + · · ·+ 1

m!
∂mM
∂λm Cm,m

)

.

Since, in addition, we have Jm = α0Cm,m, we arrive at

U∗
0
∂M
∂ǫ Cm,m

U∗
0

(

∂M
∂λ Cm,1 + · · ·+ 1

m!
∂mM
∂λm Cm,m

) =
U∗
0
∂M
∂ǫ Jm

U∗
0

(

∂M
∂λ J1 + · · ·+ 1

m!
∂mM
∂λm Jm

) . (2.9)

Choosing (J1, . . . , Jm) = (Hm−1, . . . , H0), and substituting (2.9) in (2.8) we arrive at
(2.4). �

Remark 2.3. When switching the role of λ and ǫ, condition (2.2) can be inter-
preted as if the eigenvalue were simple.

Remark 2.4. For the special case where m = 1, Lemma 2.7 of [19] is recovered.

Example 1. Consider example (1.4). In addition to (1.5), we have at λ = 0 and
ǫ = 0,

U0 =

[

1
0

]

, Mǫ = I, Mλ =

[

0 0
0 1

]

, Mλλ =

[

1 0
0 0

]

.

Substituting these values in (2.8), we obtain

λ1 =
√
−2. (2.10)

We conclude this section with an interesting observation about the coefficients Cij

in (2.6): they satisfy a recursion relation, as expressed in the following proposition.
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Proposition 2.5. The vectors Ci,j in the proof of Theorem 2.2 satisfy the fol-
lowing 2D-recurrence:



































Ci,1 =

i
∑

l=1

λl Vi−l for 1 ≤ i ≤ m,

C1,j =0 for 2 ≤ j ≤ m,

Ci,j =
i−1
∑

l=1

λl Ci−l,j−1 for 2 ≤ i, j ≤ m.

(2.11)

Proof. The formulae given in (2.11) represent symbolically vectors Ci,j as the
components of a block triangular matrix C. The proof of the third equality from
(2.11) is by induction, initialized by the first two equalities from (2.11).

Example 2. For m = 4, matrices Ci,j take the following form:

C =


















λ1V0 0 0 0

λ1V1 + λ2V0 λ1
2
V0 0 0

λ1V2 + λ2V1 + λ3V0 λ1
2
V1 + 2λ2λ1V0 λ1

3
V0 0

λ1V3 + λ2V2 + λ3V1 + λ4V0

λ1
2
V2 + 2λ1λ2V1

+
(

2λ3λ1 + λ2
2
)

V0

λ1
3
V1 + 3λ2λ1

2
V0 λ1

4
V0



















.

(2.12)

3. Reformulation in terms of linearization for delay eigenvalue prob-
lem. We apply the results of Section 2 to general linear functional differential equation
of the form

ẋ(t) =

∫ 0

−τmax

dµ(θ)x(t + θ), x(t) ∈ C
n, (3.1)

where µ has bounded variation in [−τmax, 0] and satisfies µ(0) = 0. We note that a
very broad class of time-delay systems can be brought in this form [10]. For instance,
if we let

0 = τ0 < τ1 < · · · < τk ≤ τmax

and define






µ(0) = 0,

µ(θ) = −
∑k

i=0,−τi>θ Ai, θ ∈ (−τmax, 0),

µ(−τmax) = −∑k
i=0 Ai,

where Ai is a n-by-n matrix for, 0 ≤ i ≤ k, then (3.1) becomes

ẋ(t) = A0x(t) +

k
∑

i=1

Aix(t− τi),

an equation featuring pointwise (discrete) delay. Similarly, if we let










µ(0) = 0,

µ(θ) = −
∫ 0

θ
A(s)ds, θ ∈ (−τmax, 0),

µ(−τmax) = −
∫ 0

−τmax

A(s)ds,
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with A a continuous function from [−τmax, 0] to Cn×n, we end up with an equation
with distributed (continuous delay),

ẋ(t) =

∫ 0

−τmax

A(θ)x(t + θ) dθ.

As we shall see in Section 3.1, the nonlinear eigenvalue problem related to (3.1),
i.e., (1.1) with

M(λ) := λI −
∫ 0

−τmax

dµ(θ)eλθ , (3.2)

can be rephrased as an linear, infinite-dimensional operator eigenvalue problem. Our
goal is to express all results of the previous section in terms of this operator eigenvalue
problem. This will lead us to equivalent expressions for Jordan chains (Section 3.2)
and for the sensitivity of eigenvalues (Section 3.3), which are completely similar to
the expressions for the matrix eigenvalue problem. The generalization lies in the fact
that matrices are replaced by operators, and vector-vector products by an appropriate
bilinear form over two function spaces. Finally, in Section 3.4 we briefly comment on
the allowable algebraic multiplicity for the case of discrete delays.

3.1. Reformulation as an infinite-dimensional linear system. The initial
condition for time-delay system (3.1) is a function segment

φ ∈ C([−τmax, 0],C
n),

where C([−τmax, 0], Cn) is the space of continuous functions mapping the interval
[−τmax, 0] into Cn. For every φ ∈ C([−τmax, 0], Cn) the forward system of (3.1) is
uniquely defined [10, 11]. We denote by

x(φ) : t ∈ [−τmax, ∞) → x(φ)(t) ∈ C
n

the solution with initial conditions φ, i.e.,

x(φ)(θ) = φ(θ), ∀θ ∈ [−τmax, 0].

The state at time t, in the sense of information needed to uniquely continue the
solution beyond time t, is given by the function segment xt(φ) ∈ C([−τmax, 0], C

n),

xt(φ)(θ) = x(φ)(t + θ), θ ∈ [−τmax, 0].

In order to reformulate (3.1) as a linear system in standard form, we follow the
approach of [5]. When we define the infinite-dimensional space

X := C
n × L2([−τmax, 0],C

n)

and the linear operator A as

D(A) = {(x; φ) ∈ X : φ′ ∈ L2([−τmax, 0],C
n), x = φ(0)} ,

A (x; φ) =
(

∫ 0

−τmax

dµ(θ) φ(θ);φ′
)

,

we can rewrite (3.1) as an ordinary differential equation on X ,

d

dt
z(t) = Az(t). (3.3)
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Note that A is the infinitesimal operator of the semi-group of solution operators
associated with (3.1). The connections between solutions of (3.1) and (3.3) are as
follows. The decomposing z = (z1; z2) can be interpreted as an arrow, where the
“head” z1(t) corresponds to the current value x(t), while the “tail” z2(t) corresponds
to the history xt(t) over an interval of length τmax.

The substitution of a sample solution of the form eλtv in (3.1), with v ∈ Cn \ {0}
leads us to the nonlinear eigenvalue problem

M(λ) v = 0, (3.4)

where M is given by (3.2). The equation

detM(λ) = 0

is called the characteristic equation of (3.1) and its roots the characteristic roots.
These are related to the spectrum of the linear operator A in the following way. The
characteristic roots are the eigenvalues of the operator A, which only features a point
spectrum, that is,

σ(A) = Pσ(A).

Furthermore, the algebraic multiplicity of a complex number λ as an eigenvalue of A
is equal to its multiplicity as a root of the characteristic equation, while its geometric
multiplicity is equal to the dimension of the null space of M(λ), see [18]. These prop-
erties are important because they are compatible with the definition of multiplicities
of solutions of the nonlinear eigenvalue problem (3.4). For more details about the
connection between the eigenvalue problems we refer to [18].

In summary, equation (3.1) can brought into a first order form (3.3). In accor-
dance, the nonlinear eigenvalue problem (3.4) and (3.2) can be reformulated as the
operator eigenvalue problem

(λI −A) V = 0, V ∈ X, V 6= 0. (3.5)

Note that (3.5) can be seen as a linearization of (3.4) and (3.2), in the same way as a
quadratic eigenvalue problem (second order system) can be reformulated as a linear
eigenvalue problem (first order system) of doubled dimension. The difference is that
the step to be taken is not from dimension n to 2n but from dimension n to ∞.

3.2. Corresponding Jordan chain for operator A. In the following result,
we connect a Jordan chain of the nonlinear eigenvalue problem (3.4) with the Jordan
chain of the linear (infinite-dimensional) eigenvalue problem for operator A.

Theorem 3.1. If λ0 is an eigenvalue of (3.4) with Jordan chain (H0, . . . , Hm−1),
then the functions (H0, . . . ,Hm−1) defined as

H0 = (H0; H0e
λ0θ, θ ∈ [−τmax, 0]),

H1 =
(

H1; (H1 + θH0)e
λ0θ, θ ∈ [−τmax, 0]

)

, ,
...

Hm−1 =
(

Hm−1;
(

Hm−1 + θHm−2 +
θ2

2!Hm−3 + · · ·+ θm−1

(m−1)!H0

)

eλ0θ, θ ∈ [−τmax, 0]
)

,

(3.6)
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form a Jordan chain of the operator A corresponding to the eigenvalue λ0, i.e. they
satisfy

(A− λ0I) H0 = 0,
(A− λ0I) Hk = Hk−1, 1 . . . ,m− 1.

(3.7)

Furthermore, (3.1) has solutions of the form

x(t) =

m−1
∑

i=0

ci

(

Hi +
t

1!
Hi−1 + · · ·+ ti

i!
H0

)

eλ0t, (3.8)

where c0, . . . , cm−1 are arbitrary complex numbers.

Conversely, let the functions (H0, . . . ,Hm−1) form a Jordan chain of opera-
tor A, corresponding eigenvalue λ0. Then these functions take form (3.6), where
(H0, . . . , Hm−1) is a Jordan chain of the nonlinear eigenvalue problem M(λ)v = 0,
corresponding λ0.
Proof. We start with the first assertion. Decompose (3.6) as Hk = (Hk; Hk,2), k =
0, . . . ,m− 1. By construction Hk ∈ D(A). From

λ0Hk +Hk−1 −
∫ 0

−τmax

dµ(θ)Hk,2(θ)

= λ0Hk +Hk−1 −
∫ 0

−τmax

dµ(θ)
(

Hk + θHk−1 + · · ·+ θk

(k)!H0

)

eλ0θ

=M(λ0)Hk + M ′(λ0)
1! Hk−1 + · · ·+ 1

k!
dkM(λ0)

dλk H0 = 0,

it follows that (3.7) holds what concerns the first component. For the second compo-
nent we have, by construction,

H′
k,2 − λ0Hk,2 =

{

Hk−1, k = 1, . . . ,m− 1,
0 k = 0.

,

and the proof of (3.7) is complete.
Substituting (3.8) into (3.1) yields

eλ0t
m−1
∑

i=0

ci

i
∑

k=0

ti−k

(i− k)!

(

M(λ0)Hk +
M ′(λ0)

1!
Hk−1 + · · ·+ 1

k!

dkM(λ0)

dλk
H0

)

= 0.

This equation is satisfied for all t ≥ 0 because (H0, . . . , Hm−1) is a Jordan chain for
(3.4). The second assertion follows.

Finally, we prove the converse result step-by-step. Consider equation

(A− λ0I)H0 = 0.

With H0 := (H0,1; H0,2) we get

H′
0,2 = λ0H0,2 ⇒ H0,2 = eλ0θH0,

for some vector H0, as well as

λ0H0 = λ0H0,1 =

∫ 0

−τmax

dµ(θ) H0,2(θ) =

∫ 0

−τmax

dµ(θ) eλ0θH0,
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which corresponds to

M(λ0)H0 = 0. (3.9)

Next we analyze equation

(A− λ0I)H1 = H0.

Considering the second component leads us to the differential equation

H′
1,2(θ) = λ0H1,2(θ) + eλ0θH0,

with explicit solution of the form

H1,2(θ) = (H1 + θH0)e
λ0θ.

Considering the first component leads us to

H0 + λ0H1 =

∫ 0

−τmax

dµ(θ)H1e
λ0θ +

∫ 0

−τmax

dµ(θ)θH0e
λ0θ,

which can be rephrased as

M(λ0)H1 +
1

1!
M ′(λ0)H0 = 0 (3.10)

Expressions (3.9) and (3.10) correspond to a Jordan chain of M of length at least
two. Repeating this argument leads to the assertion of the proposition. �

Example 3. Let us come back to the nonlinear eigenvalue problem described by
(1.4). For ǫ = 0, this eigenvalue problem corresponds to delay system

ẋ(t) =

[

1 0
0 −1

]

x(t) +

[

−1 0
0 0

]

x(t− 1),

which is of the form (3.1), with τmax = 1 and

µ(θ) =























0 θ = 0,
[

−1 0
0 1

]

θ ∈ (−τ, 0),
[

0 0
0 1

]

θ = −τ.
(3.11)

For this problem operator A reads as

D(A) =
{

(x; φ) ∈ X : φ′ ∈ L2([−τmax, 0],C2), x = φ(0)
}

,

A (x; φ) =

([

1 0
0 −1

]

φ(0) +

[

−1 0
0 0

]

φ(−1); φ′
)

,

and the Jordan chain for eigenvalue zero, corresponding to (1.5) is given by

H0 =

([

1
0

]

;

[

1
0

])

,

H1 =

([

α
0

]

;

[

α+ θ
0

]

, θ ∈ [−1, 0]

)

.
(3.12)

We check, for λ0 = 0,

(A− λ0I) H1 =

([

α− (α− 1)
0

]

;

[

1
0

])

= H0,

(A− λ0I) H0 =

([

1− 1
0

]

;

[

0
0

])

= 0.
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3.3. Corresponding formula for the sensitivity. In this section we rephrase
the result of Theorem 2.2 in terms of linear operator A and its eigenfunctions. Con-
sider the space

X∗ := C
1×n × L2([0, τ ], C

1×n)

and the following bilinear form on X∗ ×X ,

〈Ψ,Φ〉 := µν +

∫ 0

−τmax

∫ 0

θ

ψ(ξ − θ)dη(θ)φ(ξ)dξ, (3.13)

with Ψ = (µ; ψ) ∈ X∗ and Φ = (ν; φ) ∈ X . In [10, Section 7] the formal adjoint of
A with respect to this bilinear form was derived, and properties of this operator were
investigated. It follows from the analysis in [10] that the left eigenfunction U0 ∈ X∗

of A corresponding to λ0 is given by

U0 :=
(

U∗
0 ; U

∗
0 e

−λ0θ, θ ∈ [0, τmax]
)

, (3.14)

and that left and right eigenfunctions corresponding to different eigenvalues are or-
thogonal with respect to the bilinear form (3.13).

Let us now make the dependence on parameter ǫ explicit, that is, we study

ẋ(t) =

∫ 0

−τm

dµ(θ, ǫ) x(t+ θ),

and its characteristic equation

M(λ; ǫ) = λI −
∫ 0

−τmax

dµ(θ, ǫ)eλθ, (3.15)

where we assume that the function

I ∋ ǫ 7→
∫ 0

−τmax

dµ(θ, ǫ)φ(θ)

is defined for every φ ∈ C([−τmax, 0],Cn) and smooth whenever φ is smooth. The
“derivative” of operator A with respect to ǫ can then be expressed by

D(Aǫ) = {(x; φ) ∈ X : φ′ ∈ L2([−τmax, 0],C
n), x = φ(0)} ,

Aǫ (x; φ) =
(

d
dǫ

(

∫ 0

−τmax

dµ(θ, ǫ)φ(θ)
)

; 0
)

.

The counter result of Theorem 2.2 can now be expressed in the following way.
Theorem 3.2. Let M be given by (3.15). Assume that the conditions of Theo-

rem 2.2 hold, and let U0 be defined by (3.14). Using the bilinear form (3.13), we can
express

λm1 =
〈U0, AǫH0〉
〈U0, Hm−1〉

. (3.16)

Proof. Let us start with the nominator. Defining

N(λ, ǫ) =

∫ 0

−τmax

dµ(θ, ǫ)eλθ ,
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and suppressing the dependence on ǫ in the notation, we get

〈U0, Hm−1〉 = U∗
0Hm−1 +

∫ 0

−τmax

∫ 0

θ U
∗
0 e

λ0θdη(θ)
(

Hm−1 +
ξ
1!Hm−2

+ ξ2

2!Hm−3 · · ·+ ξm−1

(m−1)!H0

)

dξ

= U∗
0Hm−1 − U∗

0

∫ 0

−τmax

eλθdη(θ)
(

θ
1!Hm−1 +

θ2

2!Hm−2

+ θ3

3!Hm−3 + · · ·+ θm

m!H0

)

= U∗
0

(

(I −Nλ)Hm−1 − 1
2!NλλHm−2 − 1

3!Nλ3Hm−3 − . . .
− 1

m!NλmH0

)

= U∗
0

(

1
1!MλHm−1 +

1
2!MλλHm−2 +

1
3!Mλ3Hm−3 + . . . 1

m!MλmH0

)

.

Regarding the denominator, notice first that

d

dǫ

∫ 0

−τmax

dµ(θ, ǫ)eλ0θH0 = Nǫ(λ0; ǫ)H0 = −Mǫ(λ0; ǫ)H0.

It readily follows, at ǫ = 0,

Aǫ H0 = (−MǫH0; 0)

and

〈U0, AǫH0〉 = −U∗
0MǫH0.

The assertion follows from a direct comparison with the expression in Theorem 2.2.
�

Example 4. Let us, for the last time, come back to (1.4) and analyze the behavior
of the zero eigenvalue as a function of ǫ, around zero. The right eigenfunctions have
been determined as (3.12). The left eigenfunction is

U0 = ([1 0]; [1 0])

and µ(θ; ǫ) satisfies

µ(θ; ǫ) =























0 θ = 0,
[

−1 + ǫ 0
0 1 + ǫ

]

θ ∈ (−τ, 0),
[

ǫ 0
0 1 + ǫ

]

θ = −τ.

We have

Aǫ (x; φ) = (−φ(0); 0) .

By direct substitution we get 〈U0, AǫH0〉 = −1. Moreover, we get

〈U0, H1〉 = α+
∫ 0

−1

∫ 0

θ
[1 0]dµ(θ)

[

α+ ξ
0

]

dξ

= α+
∫ 0

−1[1 0]dµ(θ)

[

−αθ − θ2

2
0

]

= α+ [1 0]

([

1 0
0 −1

] [

0
0

]

+

[

−1 0
0 0

] [

α− 1
2
0

])

= 1
2 .

13



Hence, an application of formula (3.16) gives λ21 = −2, which is consistent with
(2.10).

Remark 3.3. In the above framework delay sensitivity can be addressed as well.
For this, note τmax can be chosen strictly larger than the actual largest delay. Even
though this renders the state space non-minimal, it has no influence on the location
of the eigenvalues of corresponding operator A.

3.4. Note on the admissible multiplicities for systems with discrete
delay. Since we are dealing with infinite-dimensional systems, we provide a charac-
terization of admissible multiplicities for eigenvalues of time-delay systems. Consider
the particular class of (3.1) with discrete delays only:

ẋ(t) = A0x(t) +
N
∑

i=1

Aix(t− τi), x(t) ∈ R
n, (3.17)

for which the corresponding characteristic function is given by

∆(λ) := det

(

λI −A0 −
N
∑

i=1

Aie
−λτi

)

. (3.18)

Making the dependence on the delays explicit, this quasi-polynomial function can be
written in the form

∆(z, τ) = P0(z) +

Ñ
∑

k=1

Pk(z) e
σkz , (3.19)

where σk are admissible combinations of the components of the delay vector τ :=
(τ1, . . . , τN ); σk := −∑N

l=1 αk,lτl such that 0 ≤ αk,l ≤ n, and Ñ is the cardinality of

all admissible σk, which is a positive integer satisfying Ñ ≥ N .
Let the degree of the quasi-polynomial function (3.19) be defined as the number of

the corresponding polynomials plus the sum of their respective degrees minus one. The
following theorem provides a bound on the maximum multiplicity of an eigenvalue.
Its proof is analogous to the ones of Proposition 5.1 in [1] and Lemma 1 in [2], where
the special case of eigenvalues on the imaginary axis is addressed.

Theorem 3.4. Consider system (3.17).
• The multiplicity of a real characteristic root is bounded by the degree of the
corresponding quasi-polynomial function, the so-called Polya-Szegö bound.

• The multiplicity of a non-real characteristic root is bounded by the number
of non-vanishing coefficients of the delayed part of the corresponding quasi-
polynomial function.

Proof. Without any loss of generality, all the σk in (3.19) are assumed to be distinct,
and σ := (σ1, . . . , σN ) is considered as an auxiliary delay vector for the quasi polyno-
mial, see for instance [1, 2]. It is also assumed that ai,j stands for the coefficient of the

monomial zj in Pi, a0 := (a0,0, . . . , a0,n)
⊤ is the vector composed from the coefficients

of the polynomial P0 and p :=
(

a1,0, . . . , a1,n1−1, . . . , aÑ,0, . . . , aÑ,nÑ−1

)⊤

∈ Rη. It

follows from (3.18) that P0 is a monic polynomial of degree n in z and the polynomials

Pk are such that deg(Pk) := dk − 1 = n−∑N
l=1 αk,l ≤ (n− 1).

A given complex number z0 is an eigenvalue of (3.17) for some delay vector τ∗ if
∆(z0, τ

∗) = 0 We denote by ∂kz∆(z, τ) the k-th derivative of ∆(z, τ) given by (3.19)
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with respect to the variable z. A spectral value z0 is of algebraic multiplicity m ≥ 1 if
∆(z0, τ

∗) = ∂z∆(z0, τ
∗) = . . . = ∂m−1

z ∆(z0, τ
∗) = 0 and ∂mz ∆(z0, τ

∗) 6= 0. The main
ingredient of the remaining proof is to write the set of ∆(z0, τ

∗) = ∂z∆(z0, τ
∗) =

. . . = ∂m−1
z ∆(z0, τ

∗) = 0 into a matrix representation considering p as the variable
vector and σ as a vector parameter. Namely, an appropriate construction allows to
functional structured matrices (see Appendix A). As a matter of fact, in the case
of a multiple real root one obtains a functional Vandermonde matrix (A.1) with the
corresponding function given by g(x) := eλ0x. The first n−1 equations of the obtained
linear system (in p) gives a0 as a function in p and σ. The subsystem of equations
from equation n + 1 to equation n + η gives the unique solution p ≡ 0, which is not
consistent with the n−th equation. Thus, the maximal multiplicity of a given real
root is nothing but n+ η which is the degree of the quasi-polynomial.

The proof of the second assertion is also based on the construction of a linear sys-
tem from ∆(z0, τ

∗) = ∂z∆(z0, τ
∗) = . . . = ∂m−1

z ∆(z0, τ
∗) = 0 involving trigonometric

Vandermonde matrices as the ones established in [2]. The remaining proof is in the
same lines as the ones of Lemma 1 in [2]. �

4. Numerical examples.

4.1. Multiple eigenvalues on the imaginary axis. Consider the planar time-
delay system with an uncertain delay τ̃2 = τ2 + ǫ:

{

ẋ1 = x2,

ẋ2 = −x1(t)− ax1(t− τ1)− bx1(t− (τ2 + ǫ)),
(4.1)

The characteristic matrix corresponding to (4.1) is given by

M(λ; ǫ) =

[

λ −1

1 + ae−τ1 λ + be−λ (τ2+ǫ) λ

]

(4.2)

for which, the corresponding quasi-polynomial function reads as:

∆(λ; ǫ) = λ2 + 1 + ae−λ τ1 + be−λ (τ2+ǫ) (4.3)

For ǫ = 0, a double imaginary axis eigenvalue λ = jω occurs if the following equalities
are simultaneously satisfied:



















































cos (ω τ1) = −τ2
(

ω2 − 1
)

(τ1 − τ2) a
,

cos (ω τ2) =
τ1 (ω − 1) (ω + 1)

b (τ1 − τ2)
,

sin (ω τ1) = −2
ω

(τ1 − τ2) a
,

sin (ω τ2) = 2
ω

b (τ1 − τ2)
.

(4.4)

Consider a, b, τ1, τ2 and ω as variables, we have 4 equality constraints in 5 variables,
and inequality constraints τ1 ≥ 0, τ2 ≥ 0. In what follows, we fix the parameter
values according to the following solution.

Parameter ω τ1 τ2 a b
Value 4.5077329 0.096858286 1 23.606102 10.195100
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Next, we study the behavior of the double root as a function of ǫ around ǫ = 0.
The eigenvalue is non-semisimple and the Jordan chain is given by:

H0 =

[

1

4.5077 j

]

, H1 =

[

0.0966 j

0.5644

]

. (4.5)

The left eigenvector satisfies U∗
0 =

[

0.5 0.1109 j
]T

. Using Theorem 2.2 and ma-
trices

Mλ(λ0, 0) =

[

1 0

−9.0154 j 1

]

,

Mλλ(λ0, 0) =

[

0 0

−1.8712 + 9.8886 j 0

]

,

Mǫ(λ0, 0) =

[

0 0

44.9977 + 9.3398 j 0

]

,

(4.6)

we obtain λ1 = 1.9087+ 2.3770 j. The solid lines in Figure 4.1 correspond to the first
two terms in the expansion of the eigenvalues, following from Theorem 2.2, i.e.,

λ(k)(ǫ) = jω ± λ1ǫ
1

2 , k ∈ {1, 2}. (4.7)

for ǫ ∈ [−0.1, 0.1] (positive blue, negative red). The circles are the eigenvalues
computed with method [25] for ǫ values on an equidistant grid with gridsize 0.01.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
3.5

4

4.5

5

5.5

ℜ (λ)

ℑ
(λ

)

Fig. 4.1. Migration of a double non-semisimple eigenvalue on the imaginary axis
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4.2. Spectral abscissa optimization. We analyze the model problem for spec-
tral abscissa optimization used in, among others, [17, 22]. Consider the unstable
system

ẋ(t) = Ax(t) +Bu(t− τ), (4.8)

with

A =





−0.08 −0.03 0.2
0.2 −0.04 −0.005

−0.06 −0.2 −0.07



 , B =





−0.1
−0.2
0.1



 , τ = 5, (4.9)

which we wish to stabilize by static state feedback,

u(t) = KTx(t) = [k1 k2 k3] x(t).

The closed-loop system is of the form (3.1) with

τmax ≤ τ, µ(θ) =







0 θ = 0,
−A θ ∈ (−τ, 0),

−A−BKT θ ≤ −τ,
,

and the corresponding eigenvalue problem is described by

M(λ) = λI −A−BKT e−λτ .

Minimizing the spectral abscissa, i.e., the real part of the rightmost eigenvalue,
leads us to the optimal gain values

k1 = 0.4.7121273, k2 = 0.50372106, k3 = 0.6.0231834.

Minimizing the spectral abscissa favor multiple roots. In this case, the optimum is
characterized by a multiple root λopt = −0.14949804 with algebraic multiplicity four
and geometric multiplicity one. A Jordan chain for the closed loop system corre-
sponding λopt, and the left eigenvector are given by

[ H0 H1 H2 H3 ] =

[

0.9815 −0.5932 1.9150 9.0174

−0.1765 −1.3604 13.2818 49.6470

0.0740 4.6241 6.2759 −1.2048

]

, U0 =

[

0.6595

0.5729

0.4866

]

.

Let us now investigate the sensitivity of the closed loop system with respect to the
delay, τ = 5+ ǫ, for ǫ ∈ [−0.5, 0.5]. The formula for the sensitivity from Theorem 2.2
gives

λ1 = (−0.00077380)
1

6 .

The solid lines in Figure 4.2, once again, correspond to the first two terms in the
expansion of the eigenvalues, following from Theorem 2.2,

λ(k)(ǫ) = λopt + λ
1

4

1 ǫ
1

m ejkπ/4, k ∈ {0, 1, 2, 3},

for ǫ ∈ [−1/1200, 1/1200] (positive blue, negative red). The circles are the eigenvalues
for ǫ values on an equidistant grid with gridsize 1/1200.
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−0.4 −0.35 −0.3 −0.25 −0.2 −0.15 −0.1 −0.05 0

−0.1

−0.05

0

0.05

0.1

0.15

ℜ (λ)

ℑ
(λ

)

Fig. 4.2. Behavior of a real eigenvalue with multiplicity four, corresponding to a minimum of
the spectral abscissa function, as a function of a delay parameter.

5. Conclusions. The main contribution of the paper lies in the sensitivity for-
mula of Theorem 2.2, and in the “dual” treatment of the delay eigenvalue problem,
where the Jordan chains and the sensitivity formula are addressed both at the level
of the finite-dimensional nonlinear eigenvalue problem, and at the level of a standard
operator eigenvalue problem.

Recall that the class of delay systems (3.1) is very broad, including both sys-
tems with discrete and distributed delay. The sensitivity formula in Theorem 3.2 is
extremely simple, and it has the same form as for the standard (matrix) eigenvalue
problem. It should be said, however, that, besides the eigenvectors, information about
the system is present in the bilinear form (3.13) as well.

An interesting question is whether a result like Theorem 2.2 also applies to the
most general case, where the geometric multiplicity of the eigenvalue can be larger
than one, starting from a canonical system of Jordan chains. Probably the answer is
yes, but the analysis is far from trivial. The first issue is the condition for a regular
splitting property. The condition in Theorem 4.2 of [12] is expressed in terms of gener-
ating eigenvectors (limits of eigenvectors when the parameter approaches the critical
value), which depend on the splitting behavior if the nullspace of M has dimension
larger than one. Secondly, even if a formula like (2.4) in Theorem 2.2 would remain
valid, it is not clear which left eigenvector to select. The use of generating eigenvec-
tors could lead to a circle reasoning: in order to characterize the splitting behavior we
need the generating eigenvectors, but to obtain the generating eigenvectors, we need
to know the splitting behavior.
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Appendix A. Functional Birkhoff/confluent Vandermonde matrices.
Initially, Birkhoff and Vandermonde matrices were derived from the problem of poly-
nomial interpolation of some unknown function g. This can be presented in a general
way by describing the interpolation conditions in terms of incidence matrices, see for
instance [16]. For given integers n ≥ 1 and r ≥ 0, matrix

E =







e1,0 . . . e1,r
...

...
en,0 . . . en,r







is called an incidence matrix if ei,j ∈ {0, 1} for every i and j. Such a matrix con-
tains the data providing the known information about the function g. Let x =
(x1, . . . , xn) ∈ Rn such that x1 < . . . < xn, the problem of determining a poly-
nomial P̂ ∈ R[x] with degree less or equal to ι (ι + 1 =

∑

1≤i≤n, 1≤j≤r ei,j) that
interpolates g at (x, E), i.e., which satisfies the conditions

P̂ (j)(xi) = g(j)(xi),

is known as the Birkhoff interpolation problem. Recall that ei,j = 1 when g(j)(xi) is
known, otherwise ei,j = 0. Furthermore, an incidence matrix E is said to be poised if

such a polynomial P̂ is uniquely defined.
A functional confluent Vandermonde matrix Φ is a matrix with the following

structure:











Φ =[Φ1 Φ2 . . . ΦM ],

Φi =[f(σi) f
(1)(σi) . . . f

(di−1)(σi)],

f(σi) =g(σi).[1 . . . σ
l−1
i ]T , for 1 ≤ i ≤M,

(A.1)

for a sufficiently regular function g ∈ Ck(R), see [9]. If, g(x) = 1 then we are dealing
with the so-called confluent Vandermonde matrix, see [9]. If, additionally, di = 1 for
i = 1 . . . N , then we recover the classical Vandermonde matrix.
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