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Abstract—Several recent research efforts are oriented towards
the dynamic inductive power transfer for the charge of electric
vehicles during their motion. This possibility presents several
open issues that need a solution. The present paper focuses on the
analysis of the effects related to the variation of the ratio between
the transmitter and the receiver pad lengths with respect to a
basic case in which the two pads have the same dimensions. Three
cases are analyzed by means of an accurate electromagnetic
modeling investigating the power transfer characteristics and the
induced losses in the vehicle chassis.

Index Terms—Electric vehicles - Inductive power transmission
- Electromagnetic modeling - Finite element method

I. INTRODUCTION

THE inductive power transfer (IPT) for electric vehicles
is becoming an industrial-ready technology. The IPT

is essentially based on the resonance of two magnetically
coupled inductors, one placed on or under the ground, usually
named transmitter, and a second one, named receiver, placed
under the vehicle floor. This system allows the transfer of
electrical energy to the vehicle in absence of physical contacts
introducing a series of advantages as the start of the charge
operations without any human action, the consequent improve-
ment of the safety and the absence of external installations
that means a strong reduction of possible damages or acts of
vandalism.

Several works [1]–[8] in the last decade, demonstrated the
feasibility and the good efficiency of static IPT systems that
operates with the vehicles stopped over a charging station with
fixed alignment and coupling between the two coils. Recently,
the interest of researchers is focused on the dynamic IPT or
rather, the extension of the IPT technology towards its use
during the vehicle motion. The success of these studies could
lead toward a strong reduction of the battery capacity installed
on board together with the elimination of the necessity of stops
for the charge, contributing to the acceptance and diffusion of
electric mobility.

However, while the static IPT has been deeply investigated
and a related standardization process is already ongoing [9]–
[11], only few works demonstrated the effectiveness of dy-

TABLE I: Physical dimensions of the basic pad.

Parameter Value

Coil 
Ferrite  
plate 

coilinn

coilext

wfe

Ferrite pad 0.6 mwidth (wfe)
Ferrite pad 5 mmthickness (thfe)
Coil external 0.58 mwidth (coilext)
Coil inner 0.38 mwidth (coilinn)
Wire diameter 5 mm(dwire)
Number of 20turns (N)

namic IPT systems [12]–[15]. This points out as dynamic
IPT presents several open issues that need to be deeply
investigated.

An important example is represented by the shape of
transmitter and receiver magnetic structures. Like for the static
solutions, there is not a clear and univocal direction with
respect to this issue. The Korea Advanced Institute of Science
& Technology (KAIST) is continuing to move in the direction
of long transmitter tracks in the order of hundred meters [16]
while the Oak Ridge National Laboratory (ORNL) and the
team of the Auckland University propose the use of small pads
of the same dimension on both sides [13], [17]. Recently, the
researchers of CIRCE laboratory in Spain proposed to adopt a
receiver longer than the transmitter [18]. Each solution differs
in terms of basic shape, circular or squared, wires disposition
and materials. This paper focuses on the issue of the pad
shape, investigating the influence of the variation of the ratio
between the receiver and the transmitter length with respect
to the behavior of the coupling and the related effect on the
induced losses in the vehicle chassis.
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TABLE II: Analyzed pads configurations

Name Pads aspect
Transmitter
to receiver
length ratio

EQUAL 1:1

TRx3 3:1

REx3 1:3

II. SYSTEM DESCRIPTION

The basic pads adopted for the evaluation are a couple
of identical unipolar squared pads as those proposed in [8]
and whose dimensions are reported in Table I. The pads are
made of a copper coil and a plate of ferrite with relative
permeability µr = 2000. The distance between the coils is
fixed at 20 cm. A metallic plate of dimension 1.8 × 4 m is
placed at 30 cm above the transmitter. This plate models the
floor of the vehicle chassis of a typical compact or family car
[19]. It is made of a steel with conductivity σ = 10 MS/m
and relative permeability µr = 200. The layout of the system
is depicted in Fig. 1.

Starting form the basic pad, other two configurations are
derived by modifying only the dimension along the y axis
considered as the length of the coil. Each derived configuration
is obtained by multiplying three times the length of only
one basic pad leaving unchanged the other one. The resulting
couples are illustrated in Table II.

III. ELECTROMAGNETIC MODELING

The simulation of the system is conducted using the finite
element method. In order to provide an accurate evaluation of
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Fig. 1: 3D representation of the system of the basic pads and the
plate representing the vehicle floor.

the parameters of interest, particular attention is posed on the
modeling of the coils and the vehicle chassis.

The coils are treated as ideal massive coils [20] having
height equal to dwire and width equal N × dwire. The mutual
inductance M is calculated through the integral (1) over the
volume of the receiver Ωre as:

M =

∫
Ωre

~Are · ~Jre
ItrIre

dΩre (1)

~Are is the component of the vector potential produced by
the transmitter, ~Jre is the current density in the receiver and
Itr and Ire are the current in the transmitter and receiver
respectively.
Differently from previous works [21], [22] where the chassis
was modeled as lossless, in this work, the chassis is treated
applying the surface impedance boundary conditions (SIBC)
[23]. This formulation approximates the penetration of the
magnetic field in the inner part of the material avoiding to
include its domain in the model reducing the calculation
efforts. As for the perfect conductor condition, the application
of the SIBC means to assume that the induced currents flow
entirely on the surface of the material but, differently from
the first condition, it takes into account the finite value of
conductivity and permeability of the material. This offers the
possibility to evaluate the induced losses Ploss through an
integral over the chassis surface Sch as:

Ploss =
1

2
δ

∫
Sch

~J · ~E∗ dS (2)

δ is the penetration depth defined as

δ =

√
2

ωµσ
(3)

while ~J and ~E are the current density and the electric field
evaluated on the chassis boundaries.

Lastly, the ferrite is considered linear according to the
dimension of the plate and the typical low level of magnetic
flux density of these applications [22]. The ferrite losses are
neglected according to the negligible conductivity of the ferrite
(typically in the order of 10−12 S/m) with respect to the others
materials of the model.

IV. PERFORMANCE EVALUATION

The goal of the evaluation is to compare the typical behavior
during the movement of each pad configuration and compute
the different effects in terms of induced losses in the chassis.

The analysis is performed in two steps. The first one is
aimed to evaluate the behavior of the mutual inductance
with respect to the variation of the position of the receiver
pad during the vehicle movement. This information is used
to evaluate the quantity of energy delivered by each pads
configuration. In the second step the power losses in the
chassis are evaluated considering an entire charging process.
The evaluation is conducted assuming a constant speed of the
vehicle in order to obtain a linear relationship between space
and time.
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A. Transferred energy
Considering the condition of perfect alignment of the two

pads as zero reference for the position, the receiver is trans-
lated evaluating the value of the mutual inductance in each
position. The resulting behaviors are depicted in Fig. 2. The
position is indicated as relative misalignment with respect to
the dimension of the pad which length remains equal to the
basic pad (Table I). The TRx3 and REx3 configurations present
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Fig. 2: Variation of the mutual inductance respect to the relative
displacement of the receiver.

a stable coupling for a larger relative displacement than the
EQUAL and, as a consequence, more energy delivered to the
receiver. To compensate for this difference, two transmitters
are added to equalize the total coil areas with respect to the
configurations having longer pads. The additional pads are
placed in order to obtain a unique point of null coupling
that happens for a displacement of 0.75 times the pad length
(Fig. 2). The resulting layout is shown in Fig. 3 while the
effect on the mutual inductance is shown in Fig. 4.

1.5wFe

Fig. 3: EQUAL configuration with the introduction of two additional
transmitter pads.

In the proposed analysis, the systems are supposed as work-
ing with a fixed sinusoidal current itr(t) on the transmitter
side and with a fixed frequency f0 = 85 kHz adopting a
series-series topology for the capacitive compensation of the
self-inductances of the coils as done in previously proposed
solutions for dynamic IPT [12]–[15], [24]. The system can be
represented through the circuit model depicted in Fig. 5 where
Ltr and Lre are the self-inductances of transmitter and receiver
coils whose impedances at the resonance frequency are totally
compensated by the capacitances Ctr and Cre respectively.

The series-series compensation topology allows to consider
the condition of resonance of the system as independent of the
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Fig. 4: Variation of the mutual inductance with respect to the relative
displacement of the receiver in presence of two additional transmitters
in the EQUAL configuration.

RL

M(t)
itr(t) ire(t)CreCtr

Ltr Lre

Fig. 5: Circuit representation of the analyzed configurations.

variation of the coupling and the value of the current on the
receiver as uniquely dependent on the mutual inductance [25],
[26]. The load connected to the receiver is a resistor RL whose
value is assumed constant through the charging process.

Being the mutual inductance dependent on the time, it is
indicated as M(t). Therefore, the induced voltage voc(t) at
the receiver terminals can be expressed as:

voc(t) = M(t)
ditr(t)

dt
+ itr(t)

dM(t)

dt
(4)

According to the series-series compensation topology, the
induced current in the receiver is expressed as:

ire(t) =
voc(t)

RL
=

1

RL

(
M(t)

ditr(t)

dt
+ itr(t)

dM(t)

dt

)
(5)

By integrating the power delivered to the battery over the
time interval required for the charging process, it is possible
evaluate the amount of transferred active energy as:

Etr =

∫ tf

ti

1

RL

(
M(t)

ditr(t)

dt
+ itr(t)

dM(t)

dt

)2

dt (6)
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The resulted values are reported in Table III. The comparison
of the transferred energies indicates that the TRx3 and REx3
configurations are able to deliver a slightly bigger amount of
energy than the EQUAL configuration (about 10 and 5% more
respectively). The ratios between the energy transmitted by
the EQUAL configuration respect to the one transferred in the
other two cases define the energy correction coefficients kREx3

and kTRx3:

kTRx3 =
Etr EQUAL conf.
Etr TRx3 conf.

= 0.91 (7)

kREx3 =
Etr EQUAL conf.
Etr REx3 conf.

= 0.95 (8)

B. Induced losses

To calculate the power losses, a 40 A rms current is imposed
on the transmitter while the value of the current in the receiver
is calculated for each step according to (5). For each position
the power losses over the chassis are evaluated through the (2).
The resulting behavior of the losses during the charge process
are shown in Fig. 6.
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Fig. 6: Behavior of the power losses in the vehicle chassis during the
motion of the charging vehicle.

The power losses are integrated with respect to time to
obtain the energy dissipated during the charging processes.
For the TRx3 and REx3 configurations, the value of the
dissipated energy is multiplied by the corresponding energy
coefficient (7) and (8). This operation means to compensate the
different amounts of energy effectively transferred by the three
configurations allowing to compare the different solutions
considering them as delivering the same amount of energy.
The results are shown in Fig. 7 while Table III summarizes
the results in terms of transferred energy and efficiency of the
process.

V. CONCLUSIONS

This work has illustrated an effective way to model the
different elements of the magnetic structure of an IPT system
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Fig. 7: Energy dissipated in the chassis during the motion of the
charging vehicle for a constant speed of 40 km/h.

TABLE III: Transferred energy and efficiency of the charging process.

EQUAL REx3 TRx3
Etr 4.33 kJ 4.76 kJ 4.58 kJ
η 97.6% 93.8% 94.4%

and has suggested the application of the SIBC formulation
to the vehicle chassis. This method has allowed to study the
induced losses on the model of the vehicle chassis, differently
from previously proposed works which treated this component
as lossless. As this method does not require any increase in
the mesh elements number, it does not require any increase in
the computational efforts. This technique has been adopted in
the investigation of the effects of the length ratio of the pads
in a dynamic IPT application.

The results derived in Section IV-A point out a difference in
the way the power is delivered in the three configurations. The
REx3 and TRx3 present a long interval at high level coupling
meaning a stable and more constant power transfer. On the
other side the EQUAL configuration is able to deliver the full
power only for a very short period and the power transfer
results not continuous.

The configuration TRx3 presents a small decrease of the
coupling (about 1 µH) in the aligned condition caused by the
chassis. The eddy currents, in fact, create a reaction magnetic
field that decreases the magnetic flux linked to the receiver.
In the case of the configuration REx3, this effect is largely
compensated by the larger ferrite plate on the receiver side
that drives the magnetic field through the receiver.

According to the results Section IV-B, both REx3 and TRx3
configurations appear less efficient than the EQUAL one. This
happens according to the increased length of the coils that
illuminate the chassis increasing the surface affected by the
circulation of induced currents. In the TRx3 solution, the
power losses are lower in accordance to the increased distance
of the longer coil from the chassis that implies a lower value
of the incident magnetic field.
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TABLE IV: Qualitative performances of the evaluated pad configu-
rations for equal pads area.

EQUAL REx3 TRx3
Efficiency for
equal transferred
energy
Transferred
power stability
Cost on
vehicle side
(receiver)
Cost on
ground side
(transmitter)

These results suggest that the adoption of REx3 or TRx3
configuration requires an improvement of the design with the
insertion of a proper good conductive material, e.g. aluminum,
in order to decrease the quantity of leakage flux directed
towards the chassis.

Naturally, the analysis carried out in this paper does not
include all the aspects useful for a global comparison of
the three analyzed configuration as the presence of an active
regulation of the received power or the distribution of costs
among the road infrastructure and the vehicle. Nevertheless it
provides some useful indications about the general behavior
of a dynamic IPT system with respect to different pad-to-
pad length ratio indicating the aspects that have to be taken
into account for the design. Table IV proposes a qualitative
synthesis of these different aspects that will be the object of
future more exhaustive works.
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