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1. Outline  

 

This work proposes a formulation of propositional logic, named Eigenlogic, using quantum observables as 

propositions. The eigenvalues of these operators are the truth-values and the associated eigenvectors the 

interpretations of the propositional system. Fuzzy logic arises naturally when considering vectors outside 

the eigensystem, the fuzzy membership function is obtained by the Born rule of the logical observable. 

This approach is then applied in the context of quantum robots using simple behavioral agents represented 

by Braitenberg vehicles. Processing with non-classical logic such as multivalued logic, fuzzy logic and the 

quantum Eigenlogic permits to enlarge the behavior possibilities and the associated decisions of these 

simple agents. 

  

Key words: quantum agents, multivalued logic, fuzzy logic, robots, Braitenberg vehicles. 

 

 

2. History: Boole: “0” and “1”; von Neumann: quantum projections as propositions 

 

George Boole gave a mathematical symbolism through the two numbers {0,1} representing resp. the "false" 

or "true" character of a proposition (Boole 1847). An idempotent symbol 𝑥 verifies the equation: 𝑥2 = 𝑥, 

which admits  only two possible values : 0 and 1. This equation was considered by Boole as the 

“fundamental law of thought”, the associated formulation for logic is operational as pointed out in (Halperin 

1981) because 𝑥 acts as a selection operator on classes. As will be emphasized here the algebra of 

idempotent symbols can also be interpreted as an algebra of commuting projection operators and used for 

developing propositional logic in a quantum linear-algebraic framework (Toffano 2015). 

John von Neumann (Von Neumann 1932) considered projectors as propositions, he also introduced the 

formalism of the density matrix in quantum mechanics where a pure quantum state |𝜓⟩ is be represented 

by a rank-1 projection operator: 𝜌̂ = |𝜓⟩⟨𝜓| . 
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3. Eigenlogic: quantum observable logic 

 

A projection operator in Hilbert space is associated to a logical proposition, the operator being Hermitian 

it has the properties of a quantum observable and is considered here a logical observable. This view is 

named Eigenlogic (Toffano 2015), (Dubois & Toffano 2017) and can be summarized: 

 

eigenvectors in Hilbert space ⟺  interpretations (atomic propositional cases) 

logical observables ⟺ logical connectives 

eigenvalues ⟺ truth values 

 

One can express the logical observable as a development: 

𝑭 = 𝑓(0)𝜫0 + 𝑓(1)𝜫1 = 𝑑𝑖𝑎𝑔(𝑓(0), 𝑓(1)) 

the terms of the development are the 2-dimensional rank-1 projectors 𝜫0 and 𝜫1, the cofactors 𝑓(0) and 

𝑓(1) are the eigenvalues and correspond to the truth values {0,1} of the logical connective. This allows to 

generate 4 one-argument logical observables: 

𝑭𝑨 = 0𝜫0 + 1𝜫1 = 𝜫  ,  𝑭𝑨̅ = 1𝜫0 + 0𝜫1 = 𝑰2 − 𝜫 , 𝑭∅ = 0𝜫0 + 0𝜫1 = 𝕆2 , 𝑭𝑼 = 1𝜫0 + 1𝜫1 = 𝑰2 

Then the two-argument logical observables can be developed on the corresponding four rank-1 projectors: 

𝑭2 = 𝑑𝑖𝑎𝑔[𝑓(0,0), 𝑓(0,1), 𝑓(1,0), 𝑓(1,1)] 

There are 22𝑛
 logical connectives for a 𝑛-argument (arity) system. For 𝑛 = 2  this gives the 16 binary 

logical connectives e.g.: AND, OR ,XOR,  →, ↔,... 

The complete orthonormal basis for a two input quantum states are: |00⟩, |01⟩, |10⟩ and |11⟩. These state 

vectors are the eigenvectors of the logical obseervables and correspond to interpretations of the logical 

system. What happens when the quantum state is not one of the eigenvectors of the logical system? 

In quantum mechanics one can always express a state vector as a combination on a complete orthonormal 

basis. In particular on the canonical eigenbasis of the logical observable family: 

|𝜓⟩ = 𝑐00|00⟩ + 𝑐01|01⟩+𝑐10|10⟩ + 𝑐11|11⟩ 

When only one of the coefficients is not zero, then one has the case of a determined interpretation for the 

proposition. 

Fuzzy logic (Zadeh 1965) deals with truth values that can take values between 0 and 1, so the truth of a 

proposition can lie between “completely true” and “completely false”. When more than one coefficient in 

the development of |𝜓⟩ is non-zero one can give a “fuzzy” interpretation, and the quantum state |𝜓⟩ can be 

considered as a quantum superposition of interpretations. 

For a projective observable 𝑭 measured in the context of a quantum state, |𝜓⟩ the mean value (Born rule) 

gives directly a probability measure by: 

𝑝|𝜓⟩ = ⟨𝜓|𝑭|𝜓⟩ = 𝑇𝑟(𝝆 ∙ 𝑭)          with       𝝆 = |𝜓⟩⟨𝜓|    the density matrix 

The mean value of the logical projector observable 𝑭 is thus a fuzzy measure of the truth of a logical 

proposition in the form of a fuzzy membership function 𝜇. 

For one-argument an arbitrary 2-dimensional quantum state is: 

         |𝜙⟩ = sin𝛼|0⟩ + 𝑒𝑖𝛽cos𝛼 |1⟩ 

where 𝛼 = 𝜃/2 and 𝛽 = 𝜑/2  are real numbers and these angles can be represented on the Bloch sphere 

(see Fig. 1) . The quantum mean value of the logical projector observable 𝑨 = 𝚷  is then given by: 

 

𝜇(𝑎) = ⟨𝜙|𝚷|𝜙⟩ = cos2𝛼    representing a probability. 
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Figure 1: Bloch sphere with the general qubit quantum state |𝝓⟩ characterized by angles 𝜽 and 𝝋. 

 

The recently observed revival of interest in applying multi-valued logic to the description of quantum 

phenomena is closely connected with fuzzy logic. Multi-valued logic is of interest to engineers involved in 

various aspects of information technology and has a long history in computer aided design. 

The total number of logical connectives for a system of 𝑚 values and 𝑛 arguments is the combinatorial 

number: 𝑚𝑚𝑛
. For a 3-valued 2-argument system: 332

= 19683. Showing that the possibilities of new 

connectives becomes intractable, but some special ones play an important role. 

Multi-valued logic is naturally associated to quantum angular momentum: the eigenvalues of the 𝑧 

component of the angular momentum observable for 𝑙 = 1 is given by: 

𝑳𝑧 = ℏ𝜦 = ℏ 𝑑𝑖𝑎𝑔(+1,0, −1) 

with the associated logical truth values: 

"false" F ≡ +1     ,     "neutral" N ≡ 0     ,     "true" T ≡ −1 

The corresponding logical observables can be expressed as spectral decompositions over the three rank-1 

projectors given by:   𝜫+1 = 1

2
𝜦(𝜦 + 𝟏)               𝜫0 = 𝑰 − 𝜦𝟐                𝜫−1 = 1

2
𝜦(𝜦 − 𝟏) 

 

 

4. Eigenlogic applied to Quantum Robot Braitenberg Vehicles 

 

Valentino Braitenberg was a Cyberneticist and former director at the Max Planck Institute for Biological 

Cybernetics in Tübingen. A Braitenberg vehicle (BV) (Braitenberg 1986) is an agent that can autonomously 

move around based on its light sensor inputs. Depending on the sensor-motor wiring, it appears to achieve 

certain situations and to avoid others, changing course when situation changes. Several elementary vehicles 

can be considered: 

 BV-2a (fear): turns away from the light if one sensor is activated more than the other. 

 BV-2b (aggress): when the light source is placed near either sensor, the vehicle will go toward it. 

 BV-3a (love): will go until it finds a light source, then slows to a stop.  

 BV-3b (explore): goes to the nearby light source, but keeps an eye open to sail to a stronger source. 

 

+ 

0 

1 

– 

+i 

–i 

 𝜙 

𝜑 

𝜃 
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The vehicles can be designed according the law of uphill analysis and downhill invention (Braitenberg 

1986), according to which it is far easier to create machines from simple structures that exhibit complex 

behavior than it is to try to build their structures from behavioral observations.  

Practical realization of BV’s uses generally simple Boolean logic. It is interesting to extend the design to 

multi-valued, fuzzy or probabilistic logic and even quantum logic. 

Paul Benioff (Benioff 1998) introduced the theoretical principle of a quantum robot as a first step towards 

a quantum mechanical description of systems that are aware of their environment and make decisions.  

The research team of Marek Perkowski has designed robots, based on BV’s, using quantum gates and also 

introducing control, fuzziness and higher than binary valued logic (Raghuvanshi and Perkowski 2010). The 

potential applications presented here are inspired from these researches. 

Considering the binary alphabet {+1, −1} leads to analogies with the vehicle’s behaviour, it has a natural 

correspondence with inhibition (negative: −) and excitation (positive : +). In this way the BV’s sensors SL 

and SR ( see Fig. 2) represent the inputs and the actuators ML and MR are represented by the 2-argument 

dictators 𝒁 = diag(1,1, −1, −1) and 𝒀 = diag(1, −1,1, −1). 

The different possible combinations are given on Table 2. 

 

Table 1: quantum logical observables for BV actuators 

Braitenberg Vehicle\ Actuator ML MR 

BV2a (fear) −𝒁 −𝒀 

BV2b (aggress) −𝒀 −𝒁 

BV3a (love) +𝒁 +𝒀 

BV3b (explore) +𝒀 +𝒁 

 

In another configuration the sensors SL and SR can be represented by tri-valued 2-argument dictators 𝑼 and 

𝑽.  For this purpose it is interesting to use the three positive values {0,1,2} with he following interpretation: 

 

"no light" ≡ 0           "weak-level light" ≡ 1         "high-level light" ≡ 2 

 

Involved behaviors can thus be described using the Min and Max connectives. From the formulation given 

above based on the classical interpolation methods (Dubois and Toffano 2016) it is easy to derive, the 

expressions for the alphabet {0,1,2}, giving the following logical observables: 

 

𝑴𝒊𝒏3 {0,1,2} = 𝑼  +  𝑽  +  𝑼𝟐𝑽 + 𝑽𝟐𝑼 −
1

2
 𝑼𝟐𝑽𝟐   −

5

2
 𝑼𝑽 = 𝑑𝑖𝑎𝑔(0,0,0,0,1,1,0,1,2) 

𝑴𝒂𝒙3 {0,1,2} =
5

2
 𝑼𝑽 +

1

2
 𝑼𝟐𝑽𝟐 − 𝑼𝟐𝑽 − 𝑽𝟐𝑼 = 𝑑𝑖𝑎𝑔(0,1,2,1,1,2,2,2,2) 

 

One could also combine the multivalued operators above in a fuzzy logic configuration, i.e. when using 

input states that are not eigenstates. Using fuzzy Eignelogic one can calculate the fuzzy membership 

functions for complement: 𝜇(𝑎̅), conjunction 𝜇(𝑎 ∧ 𝑏) and disjunction 𝜇(𝑎 ∨ 𝑏). These functions could be 

implemented in the processor preceding the actuators ML and MR (see Fuzzy-Demux in Fig. 2). 
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Figure 2:  principle of a multivalued fuzzy quantum Braitenberg vehicle  

 

Fuzzy membership for logical implication (→) corresponding to motion-decision such as “step backwards”, 

“step forwards”, “turn left” and  “turn right” can also be evaluated in this model. An idea presented in 

(Raghuvanshi and Perkowski 2010) consists in mapping emotions onto the Bloch sphere (Fig. 1) , this 

quantum fuzzy model uses conjunction, disjunction and complement operations. The internal emotional 

state could be described now by a quantum circuit built from counterparts of fuzzy operators. For instance, 

all kind of quantum phase gates could be used combined associated with recent techniques of quantum 

tomography. 
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