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On the Error Exponent of a Random Tensor with Orthonormal Factor Matrices

In signal processing, the detection error probability of a random quantity is a fundamental and often difficult problem. In this work, we assume that we observe under the alternative hypothesis a noisy tensor admitting a Tucker decomposition parametrized by a set of orthonormal factor matrices and a random core tensor of interest with fixed multilinear ranks. The detection of the random entries of the core tensor is hard to study since an analytic expression of the error probability is not tractable. To cope with this difficulty, the Chernoff Upper Bound (CUB) on the error probability is studied for this tensor-based detection problem. The tightest CUB is obtained for the minimal error exponent value, denoted by s , that requires a costly numerical optimization algorithm. An alternative strategy to upper bound the error probability is to consider the Bhattacharyya Upper Bound (BUB) by prescribing s = 1/2. In this case, the costly numerical optimization step is avoided but no guarantee exists on the tightness optimality of the BUB. In this work, a simple analytical expression of s is provided with respect to the Signal to Noise Ratio (SNR). Associated to a compact expression of the CUB, an easily tractable expression of the tightest CUB is provided and studied. A main conclusion of this work is that the BUB is the tightest bound at low SNRs but this property is no longer true at higher SNRs.

Introduction

The theory of tensor decomposition is an important research topic (see for instance [START_REF] Comon | Tensors: A brief introduction[END_REF][START_REF] Cichocki | Tensor decompositions for signal processing applications: From two-way to multiway component analysis[END_REF]). They are useful to extract relevant information confined into a small dimensional subspaces from a massive volume of measurements while reducing the computational cost. In the context where the measurements are naturally modeled according to more than two axes of variations, i.e., in the case of tensors, the problem of obtaining a low rank approximation faces a number of practical and fundamental difficulties. Indeed, even if some aspects of the tensor algebra can be considered as mature, several "obvious" algebraic concepts in the matrix case such as decomposition uniqueness, rank, or the notions of singular and eigen-values remain active and challenging research areas [START_REF] Chang | A survey on the spectral theory of nonnegative tensors[END_REF]. The Tucker decomposition [START_REF] Tucker | Some mathematical notes on three-mode factor analysis[END_REF] and the HOSVD (High-Order SVD) [START_REF] De Lathauwer | A multilinear singular value decomposition[END_REF] are two popular decompositions being an alternative to the Canonical Polyadic decomposition [START_REF] Bro | Parafac: Tutorial and applications[END_REF]. In this case, the notion of tensorial rank is no longer relevant and an alternative rank definition is used. Specifically, it is standard to use the multilinear ranks defined as the set of strictly positive integers {R 1 , R 2 , R 3 } where R p is the usual rank (in the matrix sense) of the p-th mode or unfolding matrix. Its practical construction is non-iterative and optimal in the sense of the Eckart-Young theorem at each mode level. This approach is interesting because it can be computed in real time [START_REF] Badeau | Fast multilinear singular value decomposition for structured tensors[END_REF] or adaptively [START_REF] Boyer | Adaptive multilinear SVD for structured tensors[END_REF]. Unfortunately, it is shown that the fixed (multilinear) rank tensor based on this procedure is generally suboptimal in the Fröbenius norm sense [START_REF] De Lathauwer | A multilinear singular value decomposition[END_REF]. In other words, there does not exist a generalization of the Eckart-Young theorem for tensor of order strictly greater than two. Despite of this theoretical singularity, we focus our effort in the detection performance of a given multilinear rank tensor following the Tucker model with orthonormal factor matrices, leading to the HOSVD. It is important to note that the detection theory for tensors is an under-studied research topic. To the best of our knowledge, only the publication [START_REF] Boizard | Low-rank filter and detector for multidimensional data based on an alternative unfolding HOSVD: application to polarimetric STAP[END_REF] tackles this problem in the context of RADAR multidimensional data detection. A major difference with this publication is that their analysis is dedicated to the performance of a low rank detection after matched filtering. More specifically, the goal is to decompose a 3-order tensor X of size N 1 × N 2 × N 3 into a core tensor denoted by S of size R 1 × R 2 × R 3 and into three rank-R p orthonormal factor matrices {Φ 1 , Φ 2 , Φ 3 } each of size N p × R p with R p < N p , ∀p. For zero-mean independent Gaussian core and noise tensors, a key discriminative parameter is the Signal to Noise Ratio defined by SNR = σ 2 s /σ 2 where σ 2 s and σ 2 are the variances of the vectorized core and noise tensors, respectively. The binary hypothesis test can be described under the null hypothesis H 0 : SNR = 0 (i.e., only the noise is present) and the alternative hypothesis H 1 : SNR = 0 (i.e., there exists a signal of interest). First note that the exact derivation of the analytical expression of the error probability is not tractable in an analytical way even in the matrix case [START_REF] Kay | Fundamentals of statistical signal processing: Estimation theory[END_REF]. To tackle this problem, we adopt an information-geometric characterization of the detection performance [START_REF] Nielsen | Matrix information geometry[END_REF][START_REF] Cover | Elements of information theory[END_REF].

Chernoff information framework

The Bayes' detection theory

Let Pr(H i ) be the a priori hypothesis probability with Pr(H 0 ) + Pr(H 1 ) = 1. Let p i (y) = p(y|H i ) and Pr(H i |y) be the i-th conditional and the posterior probabilities, respectively. The Bayes' detection rule chooses the hypothesis H i associated with the largest posterior probability Pr(H i |y). Introduce the indicator hypothesis function according to

φ(y) ∼ Bernou(α),
where Bernou(α) stands for the Bernoulli distribution of success probability α = Pr(φ(y) = 1) = Pr(H 1 ). Function φ(y) is defined on X → {0, 1} where X is the data-set enjoying the following decomposition X = X 0 ∪ X 1 where X 0 = {y : φ(y) = 0} = X \ X 1 and

X 1 = {y : φ(y) = 1} = y : Ω(y) = log Pr(H 1 |y) Pr(H 0 |y) > 0 = y : Λ(y) = log p 1 (y) p 0 (y) > log τ in which τ = 1-α α , Ω(y)
is the log posterior-odds ratio and Λ(y) is the loglikelihood ratio. The average error probability is defined as

P (N ) e = E{Pr(Error|y)}, (1) 
with

Pr(Error|y) = Pr(H 0 |y) if y ∈ X 1 , Pr(H 1 |y) if y ∈ X 0 .

Chernoff Upper Bound (CUB)

Using the fact that min {a, b} ≤ a s b 1-s with s ∈ (0, 1) and a, b > 0 in eq. ( 1), the minimal error probability is upper bounded as follows

P (N ) e ≤ α τ s • X p 0 (y) 1-s p 1 (y) s dy = α τ s • exp[-µ s ], (2) 
where the Chernoff s-divergence is defined according to

µ s = -log M Λ(y|H0) (s),
with M Λ(y|H0) (s) the M oment Generating Function (mgf) of the log-likelihood ratio under the null hypothesis. The Chernoff Upper Bound (CUB) of the error probability is given by

P (N ) e ≤ α τ s • exp[-µ s ] = α • exp[-r s ] (3) 
where

r s = µ s + s log τ
is the exponential decay rate of the CUB. Assume that an optimal value of s denoted by s ∈ (0, 1) exists then the tightest CUB verifies

P (N ) e ≤ α • exp[-r s ] < α • exp[-r s ].
The above condition is equivalent to maximize the exponential decay rate, i.e., s = arg max s∈(0,1)

r s . (4) 
Finally using eq. ( 3) and eq. ( 4), we obtain the Chernoff Upper Bound. The Bhattacharyya Upper Bound (BUB) is obtained by eq. (3) by fixing s = 1/2 instead of solving eq. ( 4). The two bounds verify the following inequality relation:

P (N ) e ≤ α • exp[-r s ] ≤ α • exp -r 1 2 .
Note that in many encountered problems, the two hypothesis are assumed to be equi-probable, i.e., α = 1/2 and τ = 1. Then the exponential decay rate is in this scenario given by the Chernoff s-divergence since r s = µ s and the tightest CUB is

P (N ) e ≤ 1 2 exp[-µ s ].
3 Tensor detection with orthonormal factors

Binary hypothesis test formulation for random tensors

Tucker model with orthonormal factors. Assume that the multidimensional measurements follow a noisy 3-order tensor of size N 1 × N 2 × N 3 given by

Y = X + N
where N is the N 1 × N 2 × N 3 is the noise tensor where each entry is centered i.i.d. Gaussian, i.e.

[N ] n1,n2,n3 ∼ N (0, σ 2 ) and

X = S × 1 Φ 1 × 2 Φ 2 × 3 Φ 3 (5) 
is the N 1 × N 2 × N 3 "data" tensor following a Tucker model of (R 1 , R 2 , R 3 )multilinear rank. Matrices {Φ 1 , Φ 2 , Φ 3 } are the three orthonormal factors each of size N p × R p with N p > R p . These factors are for instance involved in the Higher-Order SVD (HOSVD) [START_REF] De Lathauwer | A multilinear singular value decomposition[END_REF] with Φ T p Φ p = I Rp and Π p = Φ p Φ T p a N p × N p orthogonal projector on the range space of Φ p . The R 1 × R 2 × R 3 core tensor is given by

S = X × 1 Φ T 1 × 2 Φ T 2 × 3 Φ T 3 .
Formulating the detection test. We assume that each entry of the core tensor is centered i.i.d. Gaussian, i.e.

[S] r1,r2,r3 ∼ N (0, σ 2 s ). Let Y n be the n-th frontal N 1 × N 2 slab of the 3-order tensor Y, the vectorized tensor expression is defined according to

y = (vecY 1 ) T . . . (vecY N3 ) T T = x + n ∈ R N ×1
where 

N = N 1 • N 2 • N 3 ,
Φ = Φ 3 ⊗ Φ 2 ⊗ Φ 1 is a N × R structured matrix with R = R 1 • R 2 • R 3 .
In this framework, the associated equi-probable binary hypothesis test for the detection of the random signal, s, is

H 0 : y Φ, σ 2 ∼ N 0, Σ 0 = σ 2 I N , H 1 : y Φ, σ 2 ∼ N 0, Σ 1 = σ 2 (SNR • Π + I N )
where SNR = σ 2 s /σ 2 is the signal to noise ratio and Π = Π 3 ⊗ Π 2 ⊗ Π 1 is an orthogonal projector. The performance of the detector of interest is quite often difficult to determine analytically [START_REF] Kay | Fundamentals of statistical signal processing: Estimation theory[END_REF]. As a consequence, we adopt the methodology of the CUB to upper bound it.

Geometry of the expected log-likelihood ratio. Consider p(y Ĥ) = N (0, Σ) associated to the estimated hypothesis Ĥ. The expected log-likelihood ratio over y Ĥ is given by

E y ĤΛ(y) = X p(y Ĥ) log p 1 (y) p 0 (y) dy = X p(y Ĥ) log   p(y Ĥ) p 0 (y) • p(y Ĥ) p 1 (y) -1   dy = KL( Ĥ, H 0 ) -KL( Ĥ, H 1 )
where the Kullback-Leibler pseudo-distances are

KL( Ĥ, H 0 ) = X p(y Ĥ) log p(y Ĥ) p 0 (y) dy, KL( Ĥ, H 1 ) = X p(y Ĥ) log p(y Ĥ) p 1 (y) dy.
The corresponding data-space for hypothesis H 1 is

X 1 = {y : Λ(y) > τ } with Λ(y) = y T (Σ -1 0 -Σ -1 1 )y = 1 σ 2 y T Φ Φ T Φ + SNR • I -1 Φ T y τ = log det(Σ 0 ) det(Σ 1 ) = -log det (SNR • Π + I N )
where det(•) stands for the determinant. Thus, the alternative hypothesis is selected, i.e., Ĥ = H 1 if

E y ĤΛ(y) = 1 σ 2 Tr Φ T Φ + SNR • I -1 Φ T ΣΦ > τ or equivalently KL( Ĥ, H 0 ) > τ + KL( Ĥ, H 1 ).
4 Tightest CUB 

µ s = c 2 ((1 -s) • log(SNR + 1) -log (SNR • (1 -s) + 1)) .
Proof. According to [13], the Chernoff s-divergence for the above test is given by

µ s = 1 -s 2N log det (SNR • Π + I) - 1 2N log det (SNR • (1 -s)Π + I) .
Using λ{Π} = {1, . . . , 1 R , 0, . . . , 0 N -R } in the above expression yields Theorem 1.

Theorem 2. 1. The Chernoff s-divergence is a strictly convex function and admits an unique minimizer given by

s = 1 SNR 1 + SNR - 1 ψ(SNR) (6) 
where ψ(SNR) = log(SNR+1) SNR . 2. The tightest CUB for the (R 1 , R 2 , R 3 )-multilinear rank orthonormal Tucker decomposition of eq. ( 5) is given by

µ s = c 2 1 -ψ(SNR) + log ψ(SNR) .
Proof. The proof is straightforward and thus omitted due to the lack of space. The exact analytical formula is in full agreement with the numerical approximation scheme.

Analysis in typical limit regimes

We can identify the two following limit scenarii:

-At low SNR, the tightest divergence, denoted by µ s , coincides with the divergence µ 1/2 associated with the BUB. Indeed, the optimal value in (6) admits a second-order approximation for SNR 1 according to

s ≈1 + 1 SNR 1 -1 + SNR 2 = 1 2 .
-At contrary for SNR 1, we have s ≈ 1. So, the BUB is a loose bound in this regime.

To illustrate our analysis, on Fig. 1, the optimal s value obtained thanks to a numerical optimization of eq. ( 4) using the divergence given in Theorem 1 and the analytical solution reported in eq. ( 6) are plotted. We can check that the predicted analytical optimal s-value is in agreement with the approximated numerical one. We also verify the s-value in the the low and high SNR regimes. In particular, for high SNRs, the optimal value is far from 1/2.

Conclusion

Performance detection in terms of the minimal Bayes' error probability for multidimensional measurements is a fundamental problem at the heart of many challenging applications. Interestingly, this tensor detection problem has received little attention so far. In this work, we derived analytically a tightest upper bound on the minimal Bayes' error probability for the detection of a random core tensor denoted by S given a N 1 × N 2 × N 3 noisy observation tensor X following an orthonormal Tucker model with a (R 1 , R 2 , R 3 )-multilinear rank with R p < N p , ∀p. In particular, we showed that the tightest upper bound in the high SNR regime is not the Bhattacharyya upper bound.
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 11 Fig.1. Optimal s-value vs SNR in dB for a (3, 3, 3)-multilinear rank tensor X of size 4 × 4 × 4: The exact analytical formula is in full agreement with the numerical approximation scheme.
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