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Abstract. In signal processing, the detection error probability of a ran-
dom quantity is a fundamental and often difficult problem. In this work,
we assume that we observe under the alternative hypothesis a noisy
tensor admitting a Tucker decomposition parametrized by a set of or-
thonormal factor matrices and a random core tensor of interest with fixed
multilinear ranks. The detection of the random entries of the core tensor
is hard to study since an analytic expression of the error probability is
not tractable. To cope with this difficulty, the Chernoff Upper Bound
(CUB) on the error probability is studied for this tensor-based detection
problem. The tightest CUB is obtained for the minimal error exponent
value, denoted by s?, that requires a costly numerical optimization al-
gorithm. An alternative strategy to upper bound the error probability
is to consider the Bhattacharyya Upper Bound (BUB) by prescribing
s? = 1/2. In this case, the costly numerical optimization step is avoided
but no guarantee exists on the tightness optimality of the BUB. In this
work, a simple analytical expression of s? is provided with respect to the
Signal to Noise Ratio (SNR). Associated to a compact expression of the
CUB, an easily tractable expression of the tightest CUB is provided and
studied. A main conclusion of this work is that the BUB is the tightest
bound at low SNRs but this property is no longer true at higher SNRs.

1 Introduction

The theory of tensor decomposition is an important research topic (see for in-
stance [1, 2]). They are useful to extract relevant information confined into a
small dimensional subspaces from a massive volume of measurements while re-
ducing the computational cost. In the context where the measurements are nat-
urally modeled according to more than two axes of variations, i.e., in the case
of tensors, the problem of obtaining a low rank approximation faces a number of
practical and fundamental difficulties. Indeed, even if some aspects of the tensor
algebra can be considered as mature, several “obvious” algebraic concepts in the
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matrix case such as decomposition uniqueness, rank, or the notions of singular
and eigen-values remain active and challenging research areas [3]. The Tucker
decomposition [4] and the HOSVD (High-Order SVD) [5] are two popular de-
compositions being an alternative to the Canonical Polyadic decomposition [6].
In this case, the notion of tensorial rank is no longer relevant and an alterna-
tive rank definition is used. Specifically, it is standard to use the multilinear
ranks defined as the set of strictly positive integers {R1, R2, R3} where Rp is
the usual rank (in the matrix sense) of the p-th mode or unfolding matrix. Its
practical construction is non-iterative and optimal in the sense of the Eckart-
Young theorem at each mode level. This approach is interesting because it can
be computed in real time [7] or adaptively [8]. Unfortunately, it is shown that the
fixed (multilinear) rank tensor based on this procedure is generally suboptimal
in the Fröbenius norm sense [5]. In other words, there does not exist a gener-
alization of the Eckart-Young theorem for tensor of order strictly greater than
two. Despite of this theoretical singularity, we focus our effort in the detection
performance of a given multilinear rank tensor following the Tucker model with
orthonormal factor matrices, leading to the HOSVD. It is important to note
that the detection theory for tensors is an under-studied research topic. To the
best of our knowledge, only the publication [9] tackles this problem in the con-
text of RADAR multidimensional data detection. A major difference with this
publication is that their analysis is dedicated to the performance of a low rank
detection after matched filtering. More specifically, the goal is to decompose a
3-order tensor X of size N1 ×N2 ×N3 into a core tensor denoted by S of size
R1 ×R2 ×R3 and into three rank-Rp orthonormal factor matrices {Φ1,Φ2,Φ3}
each of size Np × Rp with Rp < Np, ∀p. For zero-mean independent Gaussian
core and noise tensors, a key discriminative parameter is the Signal to Noise Ra-
tio defined by SNR = σ2

s/σ
2 where σ2

s and σ2 are the variances of the vectorized
core and noise tensors, respectively. The binary hypothesis test can be described
under the null hypothesis H0 : SNR = 0 (i.e., only the noise is present) and
the alternative hypothesis H1 : SNR 6= 0 (i.e., there exists a signal of interest).
First note that the exact derivation of the analytical expression of the error
probability is not tractable in an analytical way even in the matrix case [10]. To
tackle this problem, we adopt an information-geometric characterization of the
detection performance [11, 12].

2 Chernoff information framework

2.1 The Bayes’ detection theory

Let Pr(Hi) be the a priori hypothesis probability with Pr(H0) + Pr(H1) = 1.
Let pi(y) = p(y|Hi) and Pr(Hi|y) be the i-th conditional and the posterior
probabilities, respectively. The Bayes’ detection rule chooses the hypothesis Hi
associated with the largest posterior probability Pr(Hi|y). Introduce the indica-
tor hypothesis function according to

φ(y) ∼ Bernou(α),



where Bernou(α) stands for the Bernoulli distribution of success probability
α = Pr(φ(y) = 1) = Pr(H1). Function φ(y) is defined on X → {0, 1} where
X is the data-set enjoying the following decomposition X = X0 ∪ X1 where
X0 = {y : φ(y) = 0} = X \ X1 and

X1 = {y : φ(y) = 1}

=

{
y : Ω(y) = log

Pr(H1|y)

Pr(H0|y)
> 0

}
=

{
y : Λ(y) = log

p1(y)

p0(y)
> log τ

}
in which τ = 1−α

α , Ω(y) is the log posterior-odds ratio and Λ(y) is the log-
likelihood ratio. The average error probability is defined as

P (N)
e = E{Pr(Error|y)}, (1)

with

Pr(Error|y) =

{
Pr(H0|y) if y ∈ X1,
Pr(H1|y) if y ∈ X0.

2.2 Chernoff Upper Bound (CUB)

Using the fact that min {a, b} ≤ asb1−s with s ∈ (0, 1) and a, b > 0 in eq. (1),
the minimal error probability is upper bounded as follows

P (N)
e ≤ α

τs
·
∫
X
p0(y)1−sp1(y)sdy =

α

τs
· exp[−µs], (2)

where the Chernoff s-divergence is defined according to

µs = − logMΛ(y|H0)(s),

with MΛ(y|H0)(s) the M oment Generating Function (mgf) of the log-likelihood
ratio under the null hypothesis.

The Chernoff Upper Bound (CUB) of the error probability is given by

P (N)
e ≤ α

τs
· exp[−µs] = α · exp[−rs] (3)

where

rs = µs + s log τ

is the exponential decay rate of the CUB. Assume that an optimal value of s
denoted by s? ∈ (0, 1) exists then the tightest CUB verifies

P (N)
e ≤ α · exp[−rs? ] < α · exp[−rs].



The above condition is equivalent to maximize the exponential decay rate,
i.e.,

s? = arg max
s∈(0,1)

rs. (4)

Finally using eq. (3) and eq. (4), we obtain the Chernoff Upper Bound. The
Bhattacharyya Upper Bound (BUB) is obtained by eq. (3) by fixing s = 1/2
instead of solving eq. (4). The two bounds verify the following inequality relation:

P (N)
e ≤ α · exp[−rs? ] ≤ α · exp

[
−r 1

2

]
.

Note that in many encountered problems, the two hypothesis are assumed to
be equi-probable, i.e., α = 1/2 and τ = 1. Then the exponential decay rate is in
this scenario given by the Chernoff s-divergence since rs = µs and the tightest
CUB is

P (N)
e ≤ 1

2
exp[−µs? ].

3 Tensor detection with orthonormal factors

3.1 Binary hypothesis test formulation for random tensors

Tucker model with orthonormal factors. Assume that the multidimen-
sional measurements follow a noisy 3-order tensor of size N1 × N2 × N3 given
by

Y = X + N

where N is the N1 × N2 × N3 is the noise tensor where each entry is centered
i.i.d. Gaussian, i.e. [N ]n1,n2,n3

∼ N (0, σ2) and

X = S ×1 Φ1 ×2 Φ2 ×3 Φ3 (5)

is the N1 × N2 × N3 “data” tensor following a Tucker model of (R1, R2, R3)-
multilinear rank. Matrices {Φ1,Φ2,Φ3} are the three orthonormal factors each
of size Np × Rp with Np > Rp. These factors are for instance involved in the

Higher-Order SVD (HOSVD) [5] with ΦTpΦp = IRp
and Πp = ΦpΦ

T
p a Np×Np

orthogonal projector on the range space of Φp. The R1 ×R2 ×R3 core tensor is
given by

S = X ×1 Φ
T
1 ×2 Φ

T
2 ×3 Φ

T
3 .

Formulating the detection test. We assume that each entry of the core
tensor is centered i.i.d. Gaussian, i.e. [S]r1,r2,r3 ∼ N (0, σ2

s ). Let Yn be the n-th



frontal N1×N2 slab of the 3-order tensor Y , the vectorized tensor expression is
defined according to

y =
[
(vecY1)T . . . (vecYN3

)T
]T

= x + n ∈ RN×1

where N = N1 ·N2 ·N3, n is the vectorization of the noise tensor N and

x = Φs

with s the vectorization of the core tensor S and

Φ = Φ3 ⊗Φ2 ⊗Φ1

is a N ×R structured matrix with R = R1 ·R2 ·R3.

In this framework, the associated equi-probable binary hypothesis test for
the detection of the random signal, s, is{

H0 : y
∣∣Φ, σ2 ∼ N

(
0,Σ0 = σ2IN

)
,

H1 : y
∣∣Φ, σ2 ∼ N

(
0,Σ1 = σ2 (SNR ·Π + IN )

)
where SNR = σ2

s/σ
2 is the signal to noise ratio and Π = Π3 ⊗Π2 ⊗Π1 is

an orthogonal projector. The performance of the detector of interest is quite
often difficult to determine analytically [10]. As a consequence, we adopt the
methodology of the CUB to upper bound it.

Geometry of the expected log-likelihood ratio. Consider p(y
∣∣Ĥ) =

N (0,Σ) associated to the estimated hypothesis Ĥ. The expected log-likelihood
ratio over y

∣∣Ĥ is given by

E
y
∣∣ĤΛ(y) =

∫
X
p(y
∣∣Ĥ) log

p1(y)

p0(y)
dy

=

∫
X
p(y
∣∣Ĥ) log

p(y∣∣Ĥ)

p0(y)
·

(
p(y
∣∣Ĥ)

p1(y)

)−1 dy
= KL(Ĥ,H0)−KL(Ĥ,H1)

where the Kullback-Leibler pseudo-distances are

KL(Ĥ,H0) =

∫
X
p(y
∣∣Ĥ) log

p(y
∣∣Ĥ)

p0(y)
dy, KL(Ĥ,H1) =

∫
X
p(y
∣∣Ĥ) log

p(y
∣∣Ĥ)

p1(y)
dy.

The corresponding data-space for hypothesis H1 is

X1 = {y : Λ(y) > τ ′}



with

Λ(y) = yT (Σ−10 −Σ−11 )y =
1

σ2
yTΦ

(
ΦTΦ + SNR · I

)−1
ΦTy

τ ′ = log
det(Σ0)

det(Σ1
) = − log det (SNR ·Π + IN )

where det(·) stands for the determinant. Thus, the alternative hypothesis is
selected, i.e., Ĥ = H1 if

E
y
∣∣ĤΛ(y) =

1

σ2
Tr

{(
ΦTΦ + SNR · I

)−1
ΦTΣΦ

}
> τ ′

or equivalently

KL(Ĥ,H0) > τ ′ +KL(Ĥ,H1).

4 Tightest CUB

4.1 Derivation of the bound

Theorem 1. Let c = R/N < 1. The Chernoff s-divergence for the above test is
given by

µs =
c

2
((1− s) · log(SNR + 1)− log (SNR · (1− s) + 1)) .

Proof. According to [13], the Chernoff s-divergence for the above test is given
by

µs =
1− s
2N

log det (SNR ·Π + I)− 1

2N
log det (SNR · (1− s)Π + I) .

Using λ{Π} = {1, . . . , 1︸ ︷︷ ︸
R

, 0, . . . , 0︸ ︷︷ ︸
N−R

} in the above expression yields Theorem 1.

Theorem 2. 1. The Chernoff s-divergence is a strictly convex function and
admits an unique minimizer given by

s? =
1

SNR

(
1 + SNR− 1

ψ(SNR)

)
(6)

where ψ(SNR) = log(SNR+1)
SNR .

2. The tightest CUB for the (R1, R2, R3)-multilinear rank orthonormal Tucker
decomposition of eq. (5) is given by

µs? =
c

2

(
1− ψ(SNR) + logψ(SNR)

)
.

Proof. The proof is straightforward and thus omitted due to the lack of space.
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Fig. 1. Optimal s-value vs SNR in dB for a (3, 3, 3)-multilinear rank tensor X of
size 4 × 4 × 4: The exact analytical formula is in full agreement with the numerical
approximation scheme.

4.2 Analysis in typical limit regimes

We can identify the two following limit scenarii:

– At low SNR, the tightest divergence, denoted by µs? , coincides with the
divergence µ1/2 associated with the BUB. Indeed, the optimal value in (6)
admits a second-order approximation for SNR� 1 according to

s?≈1 +
1

SNR

(
1−

(
1 +

SNR

2

))
=

1

2
.

– At contrary for SNR� 1, we have s? ≈ 1. So, the BUB is a loose bound in
this regime.

To illustrate our analysis, on Fig. 1, the optimal s value obtained thanks
to a numerical optimization of eq. (4) using the divergence given in Theorem 1
and the analytical solution reported in eq. (6) are plotted. We can check that
the predicted analytical optimal s-value is in agreement with the approximated
numerical one. We also verify the s-value in the the low and high SNR regimes.
In particular, for high SNRs, the optimal value is far from 1/2.

5 Conclusion

Performance detection in terms of the minimal Bayes’ error probability for multi-
dimensional measurements is a fundamental problem at the heart of many chal-
lenging applications. Interestingly, this tensor detection problem has received



little attention so far. In this work, we derived analytically a tightest upper
bound on the minimal Bayes’ error probability for the detection of a random
core tensor denoted by S given a N1 ×N2 ×N3 noisy observation tensor X fol-
lowing an orthonormal Tucker model with a (R1, R2, R3)-multilinear rank with
Rp < Np, ∀p. In particular, we showed that the tightest upper bound in the
high SNR regime is not the Bhattacharyya upper bound.
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