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Abstract—This paper investigates the two-user Erasure Broad-
cast Channel (EBC), where the channel state information (CSI) is
fully known at the destination, while the transmitter is only aware
of the strictly causal CSI by state feedback and an estimate of
the instantaneous CSI. We propose a novel transmission scheme
that exploits both the delayed and the instantaneous CSI. Our
scheme includes both the case with full CSI and the case with
delayed CSI as special cases. We also derive a new outer bound
region for this channel. For the symmetric EBC, we show that
our scheme is capacity achieving in some nontrivial cases. Since
both the inner and outer bound regions are characterized with
linear constraints, numerical evaluation can be done easily.

I. INTRODUCTION

It has been well known that the capacity of a multi-
user communication channel depends on the channel state
information at the transmitters’ side (CSIT). To see this, let
us consider a symmetric two-user binary erasure broadcast
channel (EBC) in which the signal is erased independently
with probability δ at each receiver. The CSI in this case is in
fact the knowledge of the erasure event. Without CSIT, this
is a degraded broadcast channel [1] for which we know the
capacity region [2]. For the current case, we can show that
time division multiple access (TDMA) is indeed optimal with
the corresponding rate region containing rate pairs satisfying

R1 +R2 ≤ 1− δ. (1)

If, however, perfect instantaneous CSI can be obtained at the
transmitter, then the capacity region becomes R1 ≤ 1− δ,

R2 ≤ 1− δ,
R1 +R2 ≤ 1− δ2.

(2)

Intuitively, as long as one of the users is not in erasure
(with probability 1− δ2), the transmitter can still send useful
information to this user reliably thanks to the instantaneous
CSIT. The above comparison shows that instantaneous CSIT
can enhance the sum capacity by a factor of 1−δ2

1−δ = 1 + δ. In
recent studies [3], [4], it turned out that even delayed CSIT
can be very useful. Indeed, an EBC with delayed CSIT can
be modeled as an EBC with feedback for which the capacity
region has been shown to be{ R1

1−δ + R2

1−δ2 ≤ 1,
R1

1−δ2 + R2

1−δ ≤ 1.
(3)

It follows that the capacity gain brought by delayed CSIT is
1 + δ

2+δ . To achieve the capacity region (3), the authors in [3],
[4] proposed a two-phase scheme that exploits the multicast
opportunities by sending linear combinations of packets that
are useful for both users based on the delayed CSIT. Note
that the delayed CSIT setting is interesting in practice since
feedback is often available for systems with Automatic Repeat
reQuest (ARQ).

In this paper, we are interested in a more general CSIT
setting for the EBC in which an estimate of the instantaneous
CSI is somehow known at the transmitter in addition to the
delayed CSI. Such a setting includes both the perfect CSIT
and delayed CSIT as special cases by changing the quality
of the estimation. The assumption is motivated by the fact
that the knowledge of the current state is sometimes available
through some unreliable sources. Our goal is to find out how
to exploit both the reliable feedback and the unreliable state
information simultaneously. It is worth mentioning that our
setup is closely related to the one in [5], where a two-user EBC
with memory and causal feedback has been studied. In that case,
the imperfect instantaneous CSIT is inferred from the past states
based on the temporal correlation that is modeled by a stationary
Markov process. In our work, we assume that the channel is
memoryless (i.e. temporally independent), but the correlation
between the estimated and actual instantaneous CSIT can be
arbitrary. Therefore, neither setting subsumes the other. The
contribution of our work is two-fold. First, we propose a new
transmission scheme integrating the block-Markov scheme and
the joint source-channel coding (JSC) used in [6]. While the
block-Markov structure is not necessary as it has been shown
in [6] for the case with only state feedback, it turns out to
be important here with instantaneous state information. We
then derive an achievable rate region by carefully choosing
the input distribution. Second, we derive a new capacity outer
bound region that depends on the joint distribution of the states.
Remarkably, both inner and outer bounds are subject to linear
constraints and can be evaluated numerically with standard
tools. Focusing on the symmetric case, our analytical results
show that the proposed scheme achieves the capacity region
in some nontrivial cases.

The setting of mixed CSIT has been considered for multi-
antenna fading broadcast channels in [7], [8], [9] where the
optimal degrees of freedom region has been derived. As pointed
out in [10], [6], there are close connections between the fading



Gaussian BC and the erasure BC in some special cases. Indeed,
both channels fall into the class of state-dependent memoryless
channels with feedback for which general achievable rate
regions have been investigated, e.g., in [11], [12]. Nevertheless,
such results can provide useful insights on particular channels
only when the auxiliary random variables are properly chosen
in such a way that the region can be evaluated analytically
or numerically. Furthermore, finding tractable and tight outer
bounds is another obstacle to characterizing the capacity. That
being said, this paper derives both inner and outer bounds in a
simple form for the EBC with mixed CSIT, which we believe
is novel and constructive.

The paper is organized as follows. In Section II, we
describe the system model, achievable rate region is derived
in Section III while outer bound is proposed in Section IV.
Some examples are given in Section V. Finally, Section VI
concludes the paper.

II. SYSTEM MODEL

Throughout the paper, we use the following notations.
Logarithm is to the base 2. The vector of ones is denoted
by 111. We use uuu � vvv to mean that ui ≤ vi, ∀ i. uuu ◦ vvv is the
point-wise product between vectors uuu and vvv. Matrix transpose
is denoted by ·T.

First, let us consider a general two-user discrete memoryless
state-dependent BC (X × S × Ŝ, p(y|x, s)p(s, ŝ),Y1 × Y2):

p (yyy1, yyy2|xxx,sss) p(sss, ŝss) =
∏n

i=1
p(y1i, y2i|xi, si)p(si, ŝi), (4)

where sss ∈ Sn, ŝss ∈ Ŝn,xxx ∈ Xn, yyy1 ∈ Yn1 , yyy2 ∈ Y2
n are

the sequences of the channel state, estimated channel state,
the channel input, and the channel output at receiver 1 and
receiver 2, respectively. We assume that at time i, the channel
state information sssi−1 is available to the transmitter via perfect
feedback, whereas the estimated channel state information ŝss can
be somehow obtained non-causally from an unreliable source.
At the end of the transmission of n symbols, both sss and ŝss are
known to both receivers for the decoding. In particular, for
the transmission of messages (m1,m2) to receivers 1 and 2,
respectively, with mk ∈ Mk := [1 : 2nRk ], k ∈ {1, 2}, the
encoding functions are {φi :M1×M2×Si−1×Ŝn → X}ni=1,
whereas the decoding function at receiver k, k ∈ {1, 2}, is
ϕk : Ynk×Sn×Ŝn →Mk. The rate pair (R1, R2) is achievable
if the probability of error of each user goes to 0 when n→∞.

The erasure BC that we consider in this paper is a special
case of the above channel where S := {(h1, h2) : h1, h2 ∈
{0, 1}} and that the outputs are deterministic functions of the
input given the state, namely, at each time i, the output of
receiver k is yk,i = xi when hk,i = 1 and yk,i = ? when
hk,i = 0. Therefore, Y1 = Y2 = X ∪ {?}. We also assume
that Ŝ = S and the states are in short {00, 01, 10, 11}. The
joint distribution of (S, Ŝ) is P

(
S = s, Ŝ = ŝ

)
for s, ŝ ∈ S.

For convenience, we define the following probability vectors,
for each s ∈ S,

ppps :=
[
P
(

S = s, Ŝ = ŝ
)

: ŝ ∈ Ŝ
]
∈ [0, 1]4 (5)

and ppps̄ := 1− ppps. Further, we define the marginal probability
ps := P (S = s) for each s ∈ S. Thus we have ps = 111Tppps.
In particular, the erasure probabilities for users 1 and 2 are
defined as δ1 := p01,00 and δ2 := p10,00, respectively. Finally,
let us define the vector of the marginal probabilities of Ŝ

p̂pp :=
[
P(Ŝ = 00), P(Ŝ = 01), P(Ŝ = 10), P(Ŝ = 11)

]T
. (6)

III. ACHIEVABLE RATE REGION

The main result of this paper is stated below.

Theorem 1 (Inner bound). Let us define

R(ααα1,ααα2) :=

{
(R1, R2) :

R1 ≤ αααT
1ppp00 log |X |,

R2 ≤ αααT
2ppp00 log |X |,

}
. (7)

Then an achievable rate region of the two-user EBC with mixed
CSIT is the convex hull of the union of R(ααα1,ααα2) over all
ααα1,ααα2 ∈ [0, 1]4 such that ααα1 +ααα2 � 111 and

αααT

2ppp10,11 +αααT

1ppp00 ≤ 1− δ1, (8)

αααT

1ppp01,11 +αααT

2ppp00 ≤ 1− δ2. (9)

In the rest of the section, we first describe the proposed
scheme and derive a general region, then we choose the
distribution that leads us to the above result.

A. Proposed scheme

In this part, we describe the proposed scheme in detail. The
proposed scheme generalizes the JSC scheme in [6] for the
two-user case, by integrating the block-Markov coding and
current state information. Hereafter, we refer to our scheme as
the BM-JSC scheme.

The BM-JSC scheme works in multiple blocks. In each block,
the source encodes and transmits the fresh private messages
together with the side information common message. Such side
information is generated from the state and private messages of
the previous block. The transmission in each block is controlled
by the coded time-sharing sequence which also depends on
the estimated channel state. At the end of the transmission
of all the blocks, a backward decoding is performed by each
receiver. To be specific, each receiver decodes first the side
information message using the observations of the current and
previous blocks. Then, it decodes the private message using
the observation of the current block as well as the decoded
side information during the “future” block.

In particular, the transmission consists of B + 1 blocks
each of length n. The messages Mk intended for receiver k,
k ∈ {1, 2}, is divided into B sub-messages, i.e., mk,b ∈Mk,
each one transmitted in block b, b ∈ [1 : B].

Codebook generation: Fix a probability mass function (pmf)

p(x|v0,v1,v2,q)p(v0)p(v1)p(v2)p(ŷ|v0,v1,v2,s,q)p(q|ŝ). (10)

1) Before each block, randomly generate the time-sharing
sequence according to

∏n
t=1 p(qt | ŝt).

2) At the beginning of each block, for each user k ∈ {1, 2},
randomly and independently generate 2nRk sequences
vvvk(mk), mk ∈ [1 : 2nRk ], each according to

∏n
t=1 p(vk,t).



At the same moment, randomly generate 2nR0 independent
sequences vvv0(m0), m0 ∈ [1 : 2nR0 ], each according to∏n
t=1 p(v0,t).

3) At the end of each block, and upon the reception of the
state feedback sss, randomly and independently generate
2nR0 sequences ŷyy(m0), m0 ∈ [1 : 2nR0 ], each according
to
∏n
t=1 p(ŷt|st, qt).

Encoding: We assume by convention that m0,0 = 1 and
m1,B+1 = m2,B+1 = 1.
• At the end of block b, b ∈ [1 : B], given the state

feedback sssb and messages m0,b−1, m1,b, and m2,b,
the encoder looks for a unique message index m0,b

such that the corresponding sequence ŷyy(m0,b) satisfies
(ŷyy(m0,b), vvv0(m0,b−1), vvv1(m1,b), vvv2(m2,b), sssb, qqqb, ŝssb) ∈
T nεn(Ŷ V0V1V2SQŜ). If there is more than one index, it
selects one of them uniformly at random, otherwise an
error is declared. According to the covering lemma [13],
such an index can be found with high probability if

nR0 ≥ nI(Ŷ ;V0, V1, V2|S,Q, Ŝ) + nεn. (11)

• In block b, b ∈ [1 : B + 1], the transmitter generates
a sequence xxx from (vvv0(m0,b−1), vvv1(m1,b), vvv2(m2,b), qqqb)
according to

∏n
t=1 p(xt | v0t, v1t, v2t, qt).

Decoding:
- After receiving all the signals, a backward decoding is

performed at each receiver. For b ∈ [1 : B], with the
knowledge of m̂k,b+1 and the states information, the
receiver k finds a unique index m̂0,b such that both
typicalities (ŷyy(m̂0,b), yyyk,b, sssb, qqqb, ŝssb) ∈ T nεn(Ŷ YkSQŜ)
and (vvv0(m̂0,b), vvvk(m̂k,b+1), yyyk,b+1, sssb+1, qqqb+1, ŝssb+1) ∈
T nεn(V0VkYkSQŜ) hold simultaneously. Following the
footsteps of error analysis in [14], [6], such an index
m̂0,b = m0,b can be found with high probability if

nR0 ≤ nI(Ŷ ;Yk |S,Q, Ŝ)

+ nI(V0;Yk |Vk, S,Q, Ŝ)− nε′n. (12)

- Given that m̂0,b is available for b ∈ [1 : B], the
decoder k looks for a unique message index m̂k,b such
that the typicality (vvvk(m̂k,b), yyyk,b, ŷyy(m̂0,b), sssb, qqqb, ŝssb) ∈
T nεn(VkYkŶ SQŜ) holds. Such an index m̂k,b = mk,b can
be found with high probability provided that

nRk ≤ nI(Vk;Yk, Ŷ |S,Q, Ŝ)− nεn. (13)

From (11)-(13), letting n→∞, then B →∞, we obtain the
following achievable rate region for the general case.

Proposition 1 (BM-JSC inner bound). For any pmf (10), a
rate pair (R1, R2) is achievable with the proposed BM-JSC
scheme if the following conditions are satisfied

R1 ≤ I(V1;Y1, Ŷ |S,Q, Ŝ), (14)

R2 ≤ I(V2;Y2, Ŷ |S,Q, Ŝ), (15)

I(Ŷ ;V0, V1, V2 |Y1, S,Q, Ŝ) ≤ I(V0;Y1 |V1, S,Q, Ŝ), (16)

I(Ŷ ;V0, V1, V2 |Y2, S,Q, Ŝ) ≤ I(V0;Y2 |V2, S,Q, Ŝ). (17)

In order to derive the rate region in Theorem 1 for the
erasure BC, we make the following choices on the pmf (10).
• The coded time-sharing random variable (RV) Q condi-

tional on the estimated state Ŝ is distributed as

P
(
Q = i | Ŝ = ŝ

)
= αi,ŝ, (18)

where i ∈ Q := {0, 1, 2} , ŝ ∈ Ŝ with αi,ŝ ≥ 0 and∑2
i=0 αi,ŝ = 1 for ŝ ∈ Ŝ.

• The signal V ’s are uniformly distributed over X .

P (Vi = x) =
1

|X |
, x ∈ X , i ∈ Q.

• The input X is a deterministic function of V and Q.

X = VQ. (19)

• The side information Ŷ is a deterministic function of
(V, S,Q).

Ŷ =


V1, if Q = 1, S = 01,

V2, if Q = 2, S = 10,

0, otherwise.
(20)

Applying the above choices to (14)-(17), we have, for k = 1,

I(V1;Y1, Ŷ |S,Q, Ŝ)

=
∑

s∈S,ŝ∈S

I(V1;Y1Ŷ |Q = 1, S = s, Ŝ = ŝ)

· P(Q = 1 | Ŝ = ŝ)P(S = s, Ŝ = ŝ)

=
∑

s6=00,ŝ∈S

α1,ŝP(S = s, Ŝ = ŝ)H(V1)

= αααT

1 ppp00 log |X |, (21)

I(V0;Y1 |V1, S,Q, Ŝ)

=
∑

s∈S,ŝ∈S

I(V0;Y1 |Q = 0, S = s, Ŝ = ŝ)

· P(Q = 0 | Ŝ = ŝ)P(S = s, Ŝ = ŝ)

=
∑

s∈{10,11},ŝ∈S

α0,ŝP(S = s, Ŝ = ŝ)H(V0)

= αααT

0 ppp10,11 log |X |, (22)

I(Ŷ ;V0, V1, V2 |Y1, S,Q, Ŝ)

=
∑

s∈S,ŝ∈S,i∈Q

I(Ŷ ;V0, V1, V2 |Y1, Q = i, S = s, Ŝ = ŝ)

· P(Q = i | Ŝ = ŝ)P(S = s, Ŝ = ŝ)

=
∑
ŝ∈S

P(Q = 1 | Ŝ = ŝ)P(S = 01, Ŝ = ŝ)H(V1) (23)

= αααT

1 ppp01 log |X |, (24)

where we define αααi := [αi,ŝ : ŝ ∈ S] ∈ [0, 1]4, i ∈ Q, with
ααα0 +ααα1 +ααα2 = 111. Therefore, we have

R1 ≤ αααT

1 ppp00 log |X |, (25)
αααT

1 ppp01 ≤ αααT

0 ppp10,11. (26)



Due to the symmetry, the same calculation applies for k = 2.
After eliminating ααα0, we can obtain the result in Theorem 1.

Remark III.1. Note that the coded-time sharing variable
is controlled by the estimated state. If we use the two-
phase scheme without the block-Markov encoding, this is still
possible, but only in the first phase during which the private
information is sent [6]. In this case, the proportion of the
phase lengths cannot depend on the state, which yields strictly
worse performance than BM-JSC scheme in which coded-time
sharing can provide a flexible dependence on the state during
the whole transmission.

IV. OUTER BOUND

The current channel can be seen equivalently as a state-
dependent memoryless BC in which Ŝ is the state known
non-causally everywhere and Ỹk := (Yk, S) is the output at
receiver k ∈ {1, 2}. If a genie provides Ỹ2 to receiver 1, we
obtain a physically degraded BC with X ↔ Ỹ1Ỹ2 ↔ Ỹ2 for
which feedback does not enlarge the capacity region [15]. The
single-letter capacity region for such a degraded channel is the
set of all (R1, R2) such that

R1 ≤ I(X; Ỹ1, Ỹ2 | Ŝ, U), (27)

R2 ≤ I(U ; Ỹ2 | Ŝ), (28)

for some pmf p(x, u | ŝ). Note that XU ↔ Ŝ ↔ S. Thus,

R1 ≤ I(X;Y1, Y2 |S, Ŝ, U) (29)

=
∑

s∈S,ŝ∈S

I(X;Y1, Y2 |S = s, Ŝ = ŝ, U)P(S = s, Ŝ = ŝ)

=
∑
ŝ∈S

H(X | Ŝ = ŝ, U)P(S 6= 00, Ŝ = ŝ) (30)

= βββTppp00 log|X |, (31)

R2 ≤ I(U ;Y2 |S, Ŝ) (32)

=
∑
ŝ∈S

(
H(X | Ŝ = ŝ)−H(X | Ŝ = ŝ, U)

)
· P(S ∈ {01, 11}, Ŝ = ŝ) (33)

≤
∑
ŝ∈S

(log |X | −H(X | Ŝ = ŝ,U))

· P(S∈{01, 11}, Ŝ = ŝ) (34)
= p01,11 log |X | − βββTppp01,11 log|X |, (35)

where (34) is from the upper bound of entropy; we define
log|X |βββ :=

[
H(X | Ŝ = ŝ, U) : ŝ ∈ S

]
with βββ � 111.

Obviously, any achievable rate pair (R1, R2) of the original
channel must satisfy (31) and (35) from the genie-aided
argument. Similarly, the genie can provide Ỹ1 to receiver 2
and we obtain the following outer bound region.

Theorem 2. (Outer bound) Any achievable rate pair (R1, R2)
for the two-user EBC with feedback and estimated current CSI
must satisfy, for all λ ≥ 1,

R1+λR2 ≤
(
λ (1− δ2)+111T

(
ppp00 − λppp01,11

)+)
log|X |, (36)

R2+λR1 ≤
(
λ (1− δ1)+111T

(
ppp00 − λppp10,11

)+)
log|X |. (37)

Proof. From (31) and (35), we have

R1 + λR2 ≤
(
λ (1− δ2) + βββT(ppp00 − λppp01,11)

)
log |X |,

which can be maximized by letting βŝ = 0 whenever the
corresponding component in ppp00 − λppp01,11 is negative and
letting βŝ = 1 otherwise. This can be written equivalently as
in the right hand side of (36). Due to the symmetry, the second
bound (37) follows similarly.

V. EXAMPLES

In general, both the inner bound region in Theorem 1 and the
outer bound region in Theorem 2 can be evaluated numerically.
However, it is harder to compare both regions analytically, due
to the generality of the state distribution p(s, ŝ). In this section,
we look at some particular examples and apply the inner and
outer bounds. For simplicity, we consider the binary case.

A. Perfect CSIT
In this case, we have ppp00 = [0 p01 p10 p11]T, ppp01,11 =

[0 p01 0 p11]T, and ppp10,11 = [0 0 p10 p11]T. For λ ≥ 1, we have
111T
(
ppp00 − λppp01,11

)+
= p10 and 111T

(
ppp00 − λppp10,11

)+
= p01.

We can verify that the corner points in the outer bound are
(R1, R2) = (p10, 1− δ2) and (R1, R2) = (1− δ1, p01). It can
be shown that both corner points are achievable. Indeed, setting
ααα1 = [0 0 1 0]T and ααα2 = [0 1 0 1]T in Theorem 1, and we
see that (R1, R2) = (p10, 1− δ2) is achievable with equality
in both (8) and (9). The other corner point follows similarly.

B. Delayed CSIT only
In this case, Ŝ and S are independent, which implies that

ppp00 = p00 p̂pp, ppp01,11 = (1 − δ2) p̂pp, and ppp10,11 = (1 − δ1) p̂pp,
where the vector p̂pp is defined in (6). It follows that there is
only one corner point in the positive quadrant. And the outer
bound region is reduced to

R1

p00

+
R2

1− δ2
≤ 1, (38)

R2

p00

+
R1

1− δ1
≤ 1. (39)

In fact, this region corresponds to the inner bound region (8)
and (9) if we let R1 = αααT

1ppp00 and R2 = αααT
2ppp00 and use the

identities αααT
1ppp00 = αααT

1ppp01,11
p00

1−δ2 and αααT
2ppp00 = αααT

2ppp10,11
p00

1−δ1 .

C. Mixed CSIT in symmetric channels
The general joint distribution of (S, Ŝ) involves a large num-

ber of parameters. To limit the number of parameters, we con-
sider the symmetric and spatially independent case. Specifically,
for S = (H1, H2) ∈ {0, 1}2 and Ŝ = (Ĥ1, Ĥ2) ∈ {0, 1}2,
let us assume P(S = (h1, h2), Ŝ = (ĥ1, ĥ2)) = P(H1 =
h1, Ĥ1 = ĥ1)P(H2 = h2, Ĥ2 = ĥ2), with P(Hk = 0) = δ
and P(Hk = 1 | Ĥk = 0) = P(Hk = 0 | Ĥk = 1) = ε, which
yields P(Ĥk = 0) = δ−ε

1−2ε , for k ∈ {1, 2}. Here ε captures the
estimation error probability. We can rewrite

ppp00 = p̂pp ◦
[
1− ε̄2 1− εε̄ 1− εε̄ 1− ε2

]
, (40)

ppp01,11 = p̂pp ◦
[

ε ε̄ ε ε̄
]
, (41)

ppp10,11 = p̂pp ◦
[

ε ε ε̄ ε̄
]
. (42)



Fig. 1. Rate region for two-user symmetric EBC with δ = 0.8, ε = 0.1. Fig. 2. Rate region for two-user symmetric EBC with δ = 0.5, ε = 0.1.

By inspecting (ppp00 − λppp01,11)+ assuming λ ≥ 1 and ε ≤
0.5, we can completely characterize the region from (36) in
Theorem 2 over all λ ≥ 1 using the five corner points below:

R1 R2

CP1 0 P(S ∈ {01, 11})
CP2 P(S 6= 00, Ŝ = 10) P(S ∈ {01, 11}, Ŝ 6= 10)

CP3 P(S 6= 00, Ŝ ∈ {00, 10} P(S ∈ {01, 11}, Ŝ ∈ {01, 11})
CP4 P(S 6= 00, Ŝ 6= 01) P(S ∈ {01, 11}, Ŝ = 01)
CP5 P(S 6= 00) 0

Specifically, the convex hull Rout of these corner points is
an outer bound. From the symmetry, we know that R′out :=
{(R1, R2) : (R2, R1) ∈ Rout} is also an outer bound that can
be derived from the second constraint in Theorem 2. Therefore,
Rout ∩ R′out provides a tighter outer bound with up to seven
corner points inside the positive quadrant1. Let us take a closer
look at two numerical examples.

First, we let δ = 0.8 and ε = 0.1. As shown in Figure 1, the
outer bound region contains five corner points. It can be verified
that there exist ααα1 and ααα2 for each of these corner points such
that the conditions (7)-(9) hold. In particular, to achieve the
symmetric point (0.1582, 0.1582), we can let αααT

1 = [α 0 1 0]
and αααT

2 = [α 1 0 0] with α such that (8) and (9) hold with
equality (α ≈ 0.4032).

Then, we let δ = 0.5 and ε = 0.1. In this case, we
compute the inner bound numerically with linear programming
routines. The outer bound can be obtained with the corner
point characterization. As shown in Figure 2, the inner bound
is strictly smaller than the outer bound region. It is however
unclear whether this is due to the looseness of the outer bound
or the sub-optimality of the proposed scheme.

VI. CONCLUSION

In this work, we proposed a novel transmission scheme that
exploits both the delayed CSIT and estimated instantaneous

1There can be at most three corner points from Rout in Rout∩R′
out inside the

positive quadrant. and another three from Rout. The intersection Rout ∩R′
out

creates one more corner point.

CSIT in a two-user EBC. Our scheme is based on block-Markov
coding and joint source-channel coding. We also derived an
outer bound region that coincides with the inner bound region
for some nontrivial cases. Nevertheless, the capacity region
with general state distribution remains unknown.
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