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Abstract—In this paper, we study the two-user non-coherent
multiple-input multiple-output broadcast channels with spatially
correlated Rayleigh block fading. We propose a scheme to exploit
the statistical channel state information, namely, the knowledge of
the covariance matrix, and derive the corresponding achievable
degrees of freedom region. The main idea of the proposed scheme
is based on rate-splitting, additive superposition coding, and
channel training. Our result shows that statistical CSI can play
an important role in enhancing the degrees of freedom of a non-
coherent broadcast channel.

I. INTRODUCTION

Since the pioneering works [1], [2] in the late 90s, the
multiple-input multiple-output (MIMO) technology has become
an attractive and efficient solution to exploit the extra spatial
degrees of freedom (DoF). Under the ideal assumption that
the channel matrix is well conditioned and known to either
end of the channel, it can be shown that the capacity of a
point-to-point MIMO channel scales linearly with the number
of antennas as C ∼ min {M,N} log SNR when the signal-to-
noise ratio (SNR) is large, where M and N are the numbers
of transmit and receive antennas, respectively. The degrees of
freedom, defined as the pre-log of the capacity at high SNR,
is min {M,N} in this case.

In practice, however, the channel matrix is a priori unknown
and varies over time. Communication without a priori channel
state information (CSI), also known as non-coherent communi-
cation, has been investigated in a large body of work (see, e.g.,
[3], [4], [5], [6], [7] and the references therein). In particular,
it was shown in [4] that when the channel varies fast enough,
the channel capacity scales as log log SNR + χ(HHH) + o(1)
where χ(HHH) is the so-called fading number of the channel.
For non-coherent block fading MIMO Rayleigh channels with
coherence time T , it was shown [3], [5], [7] that the DoF is
M∗(1−M∗/T ) where M∗ := min

{
M,N, bT2 c

}
. Remarkably,

the optimal DoF can be achieved either by carefully designed
space-time modulations, or by training-based strategies [8].

Non-coherent multi-user communications, such as the broad-
cast channels (BC) and the multiple access channels (MAC),
have been studied in the block fading case (see, e.g., [9] and
the references therein). For the MAC, although the exact DoF

region is still unknown, it has been shown that the optimal sum
DoF can be achieved with a training-based scheme [9]. For the
BC, the exact DoF region is known with isotropic Rayleigh
fading, since it is a special case of stochastically degraded
broadcast channel. It has been shown that time division multiple
access (TDMA) is DoF optimal in this case [9].

In this work, we are interested in the broadcast channels with
spatially correlated (i.e., non-isotropic) fading. Note that such
channels are not degraded in general and the capacity region
is unknown. Our setting is motivated by the fact that spatial
correlation is actually present in most communication systems
where the transmit antennas are co-located. Furthermore, it is
a reasonable assumption that the covariance matrices can be
tracked and known perfectly since the time-variation of the
spatial correlation is usually slow. The main purpose of this
work is to understand how the statistical knowledge can be
exploited to improve the DoF of a non-coherent MIMO BC. To
that end, we study the two-user case and propose a transmission
scheme based on rate-splitting, additive superposition coding,
and channel training. Specifically, the private signals are linearly
precoded and superimposed over the common signal in such
a way that the private signal does not cause any interference
to the unintended receiver whereas the common signal can be
decoded by both users. Then, at each receiver both the private
and common signals can be decoded as in a non-coherent MAC
channel with a training-based scheme. As the main result of
this paper, an achievable DoF region of this BC is derived. We
show that substantial DoF gain can be obtained over the case
without statistical CSI for which TDMA is optimal. To the
best of our knowledge, this work is the first one to investigate
the non-coherent BC with spatial correlation, although the
point-to-point case has been previously studied in [6].

The remainder of the paper is organized as follows. The
system model and assumptions are presented in Section II and
the main result on achievable DoF region of the BC is stated
in Section III. In Section IV, we describe the proposed scheme
and derive the DoF region. Finally, we conclude the paper in
Section V.

Throughout the paper, we use the following notational
conventions. For random quantities, we use upper case non-



italic letters: normal fonts, e.g., X, for scalars; bold fonts,
e.g., VVV, for vectors; and bold and sans serif fonts, e.g., MMM, for
matrices. Deterministic quantities are denoted with italic letters,
e.g., a scalar x, a vector vvv, and a matrix MMM . The transpose
and conjugated transpose of MMM are MMM T and MMMH, respectively.

II. SYSTEM MODEL

We consider a MIMO broadcast channel consisting of a
M -antenna base station (BS) and two users: user 1 with N1

antennas and user 2 with N2 antennas. The channel between
the BS and user k is flat- and block-fading with equal-length
and synchronous coherence interval of T slots. That is, the
channel propagation matrix HHHk ∈ CNk×M , k = 1, 2, remains
constant during each block of length T symbols and changes
to an independent value in the next block. Let the matrix
XXX[b] ∈ CM×T be the transmitted signal from the M antennas
during the coherence interval b. Then, the received signal matrix
at user k during interval b, b = 1, . . . , B, is

YYYk[b] = HHHk[b]XXX[b] +

√
M

ρ
ZZZk[b], k = 1, 2, (1)

where ZZZk[b] ∈ CNk×T is the additive white Gaussian noise with
independent and identically distributed (i.i.d.) CN (0, 1) entries,
independent across users and coherence intervals. The input is
subject to the power constraint 1

B

∑B
b=1 ‖XXX[b]‖2 ≤MT , and

thus ρ is ratio between the average transmit power per antenna
and the noise power. Hereafter, we refer to ρ as the SNR of
the channel.

Correlation structure: We model the channel matrix as

HHHk[b] = WWWk[b]RRR
1
2

k , k = 1, 2, (2)

where WWWk[b] ∈ CNk×rk has i.i.d. CN (0, 1) entries and is
unknown; RRR

1
2

k ∈ Crk×M captures the spatial correlation at the
transmitter side1 and is assumed to be known and deterministic
during the whole communication. We assume rk ≤ bT/2c. For
simplicity, we omit the index b when confusion is not likely.

We factorize the correlation matrix RRRk = 1
Nk

E [HHHH

kHHHk] using
eigendecomposition

RRRk = UUUH

kΣΣΣkUUUk, k = 1, 2, (3)

where ΣΣΣk is a rk × rk diagonal matrix whose elements are the
non-zero eigenvalues of RRRk, and UUUk is a rk ×M orthogonal
matrix whose unit row vectors are the eigenvectors of RRRk
corresponding to the non-zero eigenvalues. Then we can write
RRR

1
2

k = ΣΣΣ
1
2

kUUUk, k = 1, 2. The column vectors of HHHk belong to a
rk-dimensional subspace Vk of CM spanned by the rows of UUUk.
The two channel subspaces V1 and V2 can be overlapping and
the intersection V1∩ V2 is (if not empty) also a subspace of CM .
We assume that V1 ∩ V2 is r0-dimensional. The dimension of
the union subspace V1∪ V2 is r1+r2−r0 =: M ′ ≤M , which
is also the rank of the aggregate channel matrix [HHHT

1 HHHT
2]T.

1The correlation at the receiver side is ignored since it can be removed at
each receiver.

If the rate pair (R1(ρ), R2(ρ)) is achievable at SNR ρ, ∀ ρ ≥
0, i.e., lies within the capacity region of the channel, then we
say that (d1, d2) is an achievable DoF pair with

dk := lim inf
ρ→∞

Rk(ρ)

log2(ρ)
, k = 1, 2. (4)

III. MAIN RESULTS

The main finding of this paper is an achievable DoF region
of the channel described above, as stated in Theorem 1.

Theorem 1. Let us consider a two-user non-coherent MIMO
broadcast channel with statistical CSI as described in Section II,
and assume without loss of generality that r2 ≥ r1. The
following DoF pairs (d1, d2) can be achieved:

D1 =
(
r1

(
1− r1

T

)
, 0
)
, (5)

D2 =
(
0, r2

(
1− r2

T

))
, (6)

D3 =
(
(r1 − r0)

(
1− r1 − r0

T

)
, (r2 − r0)

(
1− r2 − r0

T

))
,

(7)

D4 =
(
(r1 − r0)

(
1− r1

T

)
+ r0

(
1− r2

T

)
, (r2 − r0)

(
1− r2

T

))
,

(8)

D5 =
(
(r1 − r0)

(
1− r1

T

)
, r2

(
1− r2

T

))
. (9)

The convex hull of these five points and the origin in the d1−d2
plane is an achievable region for this channel.

In Fig. 1, we illustrate the achievable DoF region in
Theorem 1 for a fixed coherence time T = 25 in two different
cases: r1 = r2 and r1 < r2. In general, the region enlarges
when r0 descends from min{r1, r2} to 0.
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Fig. 1. The achievable DoF region of two-user non-coherent broadcast channel
with spatial correlation for identical coherence time T = 25 and rk ≤
min{M,Nk, bT/2c}. When r0 is below 2r2+r1−T

2
, D3 becomes a corner

point (see Remark 2).

For further insights, the following remarks are in order.

Remark 1. D1 and D2 contain the maximum individual DoF
one user can achieve when the other user is deactivated. The
BS exploits all the rk dimensions of channel subspace Vk
to transmit signal to the active user k. Without knowing the



channel correlation structure, the best strategy one can do is
time sharing between D1 and D2, which is optimal when the
channel subspaces V1 and V2 are completely overlapping.

Remark 2. D3 is achieved by transmitting a private message
to each user in the non-overlapping part of the channel
subspaces, and leave the intersection V1 ∩ V2 unoccupied to
avoid interference. The number of (interference-free) effective
signal directions to user k is dim(Vk)−dim(V1∩ V2) = rk−r0.
D3 is a corner point of the region only when T+2r0 < r1+2r2,
i.e., the subspace overlap is small enough.

Remark 3. D4 and D5 are achieved by transmitting a private
message to each user in the non-overlapping part of the
channel subspaces, and a common message to both users in the
intersection simultaneously. When the channel is symmetric,
i.e., r2 = r1 =: r, either user can remain at maximum
individual DoF while the DoF of the other user is increased
up to a certain threshold. The achievable DoF is symmetric
and defined by two axes and either

d1 + d2 ≤M ′
(

1− r

T

)
, (10)

if T + 2r0 ≥ 3r, or

min

{
d1

T −M ′
− d2
r − r0

,
d2

T −M ′
− d1
r − r0

}
≤
(

1− r

T

)( r

T −M ′
− 1

)
, (11)

otherwise, where M ′ = 2r−r0 is the total number of effective
signal directions for communication. When the channel is
asymmetric, i.e., r2 > r1, only the user with more effective
signal directions (user 2) can remain at maximum individual
DoF when we increase the DoF of the other user.

Note that for notational simplicity, we assumed that rk ≤
bT/2c. When rk > bT/2c, one should send signal in only
bT/2c effective signal directions to maximize the individual
achievable DoF of user k, as suggested in [5]. Two extreme
cases, in which the achievable region given in Theorem 1
becomes optimal and coincides with some known results in
the literature, are as follows.

1) Best scenario: Non-overlapping subspaces: In the most
favorable case, the channel subspaces V1 and V2 are disjoint,
i.e., V1 ∩ V2 = ∅, r0 = 0 and r1 + r2 ≤M . Every row of UUU1

is linearly independent of any row of UUU2. D3, D4, and D5

coincide and equal
(
r1
(
1− r1

T

)
, r2
(
1− r2

T

))
. The achievable

region is simply a rectangle defined by the two axes and

d1 ≤ r1
(

1− r1
T

)
, d2 ≤ r2

(
1− r2

T

)
. (12)

Both users can simultaneously obtain the full DoF of a non-
coherent point-to-point channel with rk equivalent transmit
antennas and Nk(≥ rk) receive antennas. To achieve this, we
simply transmit the signal to one user in its channel subspace,
which is contained in the null space of the other user’s channel.

2) Worst scenario: Coinciding subspaces: In this case, two
channel subspaces V1 and V2 are completely overlapping, i.e.,
r1 = r2 = r0 = M ′. Every row of UUU1 is a linear combination
of the rows of UUU2, and vice versa. D4 coincides with D1, D5

coincides with D2, and D3 collapses to the origin. The region
is simply a triangle defined by the two axes and

d1 + d2 ≤M ′
(

1− M ′

T

)
. (13)

This is achieved with TDMA. Note that although TDMA does
not requires any statistical CSI, the knowledge of RRRk is still
useful for shaping the input signal. TDMA was shown in [9]
to be DoF-optimal for i.i.d., i.e. isotropic, Rayleigh fading
channels. When the channels are spatially correlated but span
the same subspace, TDMA can still be shown to be DoF-
optimal (we omit the proof due to the lack of space). Thus, in
this case, the achievable DoF region in Theorem 1 is tight.

IV. PROPOSED SCHEME

In this section, we propose a scheme to achieve the DoF
pairs in Theorem 1. This scheme is based on rate splitting,
additive superposition, and channel training.

A. Rate splitting with common and private messages

We would like to send the private signals XXX1 to user 1, XXX2

to user 2, and a common signal XXX0 to both users. Each of these
signals contains an information-carrying matrix pre-multiplied
by a orthogonal precoding matrix. Let PPP k ∈ CM×(rk−r0) be
the precoding matrix in private signal XXXk, i.e.,

XXXk = PPP kSSSk, k = 1, 2, (14)

where SSSk ∈ C(rk−r0)×T is the signal carrying the private
message to user k. As we want the private signal to one user
to be transparent to the other user, the precoders satisfy

UUU2PPP 1 = 0r2×(r1−r0), UUU1PPP 2 = 0r1×(r2−r0), (15)

rank
(
RRR

1
2

kPPP k

)
= rk − r0, k = 1, 2. (16)

That is, the precoder of one user spans the null space of the
channel of the other user. On the other hand, we precode the
common signal as

XXX0 = PPP 0SSS0, (17)

where SSS0 ∈ Cr0×T is the signal carrying the common message.
Since XXX0 is to be decoded by both users, the precoder UUUH

0

is designed such that its span does not overlap with the null
space of either user,2 i.e., PPP 0 is linearly independent of both
PPP 1 and PPP 2, and

rank
(
RRR

1
2
1PPP 0

)
= rank

(
RRR

1
2
2PPP 0

)
= r0. (18)

These signals are additively superposed and the M × T
transmitted signal matrix is simply

XXX = XXX1 +XXX2 +XXX0. (19)

2The columns of PPP 0 form an orthonormal basis for the intersection V1∩V2.
Thus, PPP 0 and be calculated from the basis UUU1 of V1 and the basis UUU2 of V2.



The received signals become

YYY1 = WWW1ΣΣΣ
1
2
1UUU1PPP 1SSS1 +WWW1ΣΣΣ

1
2
1UUU1PPP 0SSS0 +

√
M

ρ
ZZZ1, (20)

YYY2 = WWW2ΣΣΣ
1
2
2UUU2PPP 2SSS2 +WWW2ΣΣΣ

1
2
2UUU2PPP 0SSS0 +

√
M

ρ
ZZZ2, (21)

where the equivalent channels WWW1ΣΣΣ
1
2
1UUU1PPP 1 ∈ CN1×(r1−r0),

WWW1ΣΣΣ
1
2
1UUU1PPP 0 ∈ CN1×r0 , WWW2ΣΣΣ

1
2
2UUU2PPP 2 ∈ CN2×(r2−r0),

WWW2ΣΣΣ
1
2
2UUU2PPP 0 ∈ CN2×r0 are unknown, correlated, and Gaussian

distributed. Each column vector of these channels represents a
(private or common) signal direction from the BS to users.

B. DoF analysis

The received signal at each user is similar to a two non-
coherent two-user MAC: (20) as the MAC 1 with (r1− r0, r0)
equivalent transmit antennas and N1 receive antennas, (21)
as the MAC 2 with (r2 − r0, r0) equivalent transmit antennas
and N2 receive antennas. Note that for each MAC, the two
equivalent channel matrices are correlated and not independent
of each other due to the terms ΣΣΣ

1
2

k . In the case of i.i.d. Rayleigh
block fading, a training-based scheme achieving sum DoF for
the K-user non-coherent MAC was given in [9, Theorem 5].
This result, however, still holds in our setting.

Proposition 1. For the MAC k, with training-based schemes,
we can achieve the convex hull of three DoF pairs (dpk, d

c
k):

DMAC
k,1 =

(
(rk − r0)

(
1− rk

T

)
, r0

(
1− rk

T

))
, (22)

DMAC
k,2 =

(
(rk − r0)

(
1− rk − r0

T

)
, 0

)
, (23)

DMAC
k,3 =

(
0, r0

(
1− r0

T

))
. (24)

Proof. See Appendix A.

Specifically, to achieve DMAC
k,1 , the receiver learns r0 com-

mon signal directions and rk− r0 private directions in the first
rk time slots, then receives data during the remaining T − rk
slots of the coherence interval. DMAC

k,2 and DMAC
k,3 are achieved

by letting the receiver learn and receive data only in the private
signal directions and common signal directions, respectively.

The following proposition relates the achievable DoF region
of these two MACs and the region of the BC.

Proposition 2. The BC can achieve the convex hull of all the
points having the form

fk
(
DMAC

1,i1 , DMAC
2,i2

)
, (25)

for k = 1, 2 and i1, i2 ∈ {1, 2, 3}, where the mapping f is
defined as

fk : R2
+ × R2

+ 7→ R2
+ (26)

(dp1, d
c
1), (dp2, d

c
2)→

{
(dp1 + min{dc1, dc2}, d

p
2), if k = 1,

(dp1, d
p
2 + min{dc1, dc2}), if k = 2.

Proof. Each corner point of the MAC is achieved with a
training-based scheme consisting of a training phase and a
data transmission phase. By aligning these training and data
transmission phases, we can combine the corner points of the
two MACs to have achievable points of the BC. For example,
to combine DMAC

1,1 and DMAC
2,1 , the alignment of the training

and data transmission can be visualized from Fig. 2. In this
figure, each bar represents a subspace in which the private
or common signal lies on. First, it is clear that the (pilot
or data) private signal transmissions in V1 \ (V1 ∩ V2) and
V2 \ (V1 ∩ V2) do not interfere each other. Therefore, user
k can achieve dk = (rk − r0)

(
1− rk

T

)
DoF for the private

message independently. On the other hand, the common signal
in V1∩V2 interferes the private pilot signals of both users, so we
must wait until the training of private signal directions is done
for both users before starting the common data transmission.
As a consequence, the duration for common data transmission
is limited by the user with longer private training (user 2), and
the BC can only achieve mink{r0

(
1− rk

T

)
} = r0

(
1− r2

T

)
DoF for the common message.

r0 r1 - r0 r2 - r1 T - r2

T

Fig. 2. The training model for the achievable scheme of the BC.

The combination of other corner points of the two MACs can
be explained similarly. Therefore, for any achievable DoF pair
(dp1, d

c
1) of the MAC 1 and (dp2, d

c
2) of the MAC 2, the BC can

achieve dp1, d
p
2 DoF for the private messages and min{dc1, dc2}

DoF for the common message, respectively. Next, the BC can
dedicate the common message to either user to achieve two
DoF pairs (dp1 + min{dc1, dc2}, d

p
2) and (dp1, d

p
2 + min{dc1, dc2}),

which are the outputs of the mapping f .
We have shown that all the points having form (25) are

achievable for the BC. The convex hull of these points can be
achieved simply with time sharing.

There are 18 points having the form (25), but some of them
are dominated by the others. By eliminating the dominated
points, we find five possible corner points of the BC, listed in
Theorem 1, as follows:

D1 = f1(DMAC
1,1 , DMAC

2,3 ) (27)

D2 = f2(DMAC
1,3 , DMAC

2,1 ) (28)

D3 = f1(DMAC
1,2 , DMAC

2,2 ) = f2(DMAC
1,2 , DMAC

2,2 ) (29)

D4 = f1(DMAC
1,1 , DMAC

2,1 ) (30)

D5 = f2(DMAC
1,1 , DMAC

2,1 ) (31)

Specifically, these corner points can be achieved as follows.



• D1 and D2 are individual extreme points and can be achieved
by serving only one user as in the point-to-point case.

• D3 can be achieved by transmitting only private signals
XXX1 and XXX2 and letting XXX0 = 0M×T . (20) and (21) become
two parallel non-coherent channels in Rayleigh fading with
r1−r0 and r2−r0 equivalent transmit antennas, respectively.
Then (rk − r0)

(
1− rk−r0

T

)
DoF can be achieved for user

k with a training-based scheme as follows:
– During the first r2 − r0 slots, user k learns its rk − r0

private signal directions. Since user 1 finishes the learning
first (r1 ≤ r2), the BS can start transmitting the private
signal to user 1 using r1− r0 learned directions in r2− r1
time slots, when user 2 is still learning.

– During the last T − (r2 − r0) slots, the BS transmits the
private signal to user k in rk − r0 learned directions.

• D4 and D5 can be achieved by dedicating the common
message in the training-based scheme illustrated in Fig. 2 to
either user.

This method can be used to generalize the result to the
K-user case. The main idea is to use rate splitting to transform
the BC into K MACs, then construct the corner points of the
BC from the corner points of the MACs by a generalization
of the mapping (26).

V. CONCLUSION

For non-coherent MIMO broadcast channels with spatial
correlation, knowing and adapting to the correlation structure
can improve significantly the degrees of freedom, especially
when the intersection of the users’ channel subspaces is small.
We show this by characterizing an achievable DoF region of
this channel in the two-user case. The region is constructed
from the achievable region of some multiple access channels
transformed from the broadcast channel by rate splitting, and
can be achieved with a training-based scheme. While training-
based strategy with Gaussian signaling is DoF-optimal for
point-to-point non-coherent MIMO channel, it is not clear if it
is also optimal for broadcast channels with spatial correlation.
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APPENDIX A
SKETCH OF PROOF OF PROPOSITION 1

This proof applies for both MAC k, k = 1, 2, so we omit
the index k for brevity. The received signal of the MAC is
YYY = HHHP̂PP ŜSS +

√
M
ρ ZZZ, where HHH = WWWRRR

1
2 , P̂PP = [PPP 0 PPP ] ∈ CM×r,

ŜSS = [SSST
0 SSST]T ∈ Cr×T .

We consider a training-based scheme with equal power
for training and data transmission phases. During the train-
ing phase, a r × Tτ matrix ŜSSτ is transmitted, containing
training symbols known to the receiver. The received signal
is YYYτ = HHHP̂PPŜSSτ +

√
M
ρ ZZZτ . We use the MMSE estimator

ĤHH = YYYτ
(
ŜSS

H

τP̂PP
H

RRRP̂PPŜSSτ + M
ρ IIITτ

)−1
ŜSS

H

τP̂PP
H

RRR. The estimation

error H̃HH = HHH− ĤHH has zero mean and covariance 1
NE[H̃HH

H

H̃HH] =(
RRR−1 + ρ

M P̂PPŜSSτŜSS
H

τP̂PP
H
)−1

. In the data transmission, a r ×
(T − Tτ ) matrix ŜSSd ∼ CN (0, IIIr) containing data symbols is
transmitted. The received signal is YYYd = ĤHHP̂PP ŜSSd +

√
M
ρ ZZZ
′
d,

where ZZZ′d =
√

ρ
M H̃HHP̂PP ŜSSd +ZZZd is the combined noise consisting

of additive noise and channel estimation error. With MMSE
estimator, ZZZ′d and ŜSSd are uncorrelated. From [8, Theorem 1],
the worst uncorrelated additive noise has zero-mean Gaussian
distribution. Furthermore, since the distribution of the channel
ĤHH is left rotationally invariant, this worst case Gaussian noise
has identity covariance matrix. Therefore, a lower bound on the
capacity is obtained by replacing ZZZ′d by i.i.d. Gaussian noise
with the same variance σ2

ZZZ′d
= ρ

MN tr
(
P̂PP

H

E[H̃HH
H

H̃HH]P̂PP
)

+ 1:

C ≥ Cl =
T − Tτ
T

E log det

(
IIIN +

ρ

Mσ2
ZZZ′d

ĤHHP̂PPP̂PP
H

ĤHH
H

)
. (32)

Cl is maximized with Tτ = r and σ2
ZZZ′d

= 1 +

ρ
M

ρ+trRRR−1

tr(P̂PP
H
P̂PP )1/2

tr
(

(P̂PP
H

P̂PP )−1/2P̂PPP̂PP
H
)

. Note that with the de-

signed precoders, the matrix 1
Mσ2

ZZZ′
d

ĤHHP̂PPP̂PP
H

ĤHH
H

has rank r with

probability 1. Let µ be an arbitrary non-zero eigenvalue, then

C ≥ Cl =
(

1− r

T

)
rE log (1 + ρµ) (33)

= r
(

1− r

T

)
log(ρ) +O(1), when ρ→∞. (34)

This means a total r
(
1− r

T

)
DoF can be achieved for

the two messages coded in ŜSS. Since SSS and SSS0 contribute
r − r0 and r0 rows in ŜSS, respectively, (r − r0)

(
1− r

T

)
DoF can be achieved for the message in SSS and r0

(
1− r

T

)
DoF for SSS0. We have proved that the DoF pair DMAC

1 =(
(r − r0)

(
1− r

T

)
, r0
(
1− r

T

))
is achievable for the equiva-

lent MAC. The other achievable pairs DMAC
2 and DMAC

3 can
be shown similarly by modifying P̃PP and S̃SS.



APPENDIX B
PROOF OF PROPOSITION 1 IN MORE DETAILS

This proof applies for both MAC k, k = 1, 2, so we omit
the user index k for brevity. The received signal of the MAC
is

YYY = WWWRRR
1
2PPPSSS +WWWRRR

1
2PPP 0SSS0 +

√
M

ρ
ZZZ (35)

= HHHP̂PP ŜSS +

√
M

ρ
ZZZ, (36)

where P̂PP = [PPP 0 PPP ] ∈ CM×r, ŜSS =

[
SSS0
SSS

]
∈ Cr×T .

First, let us prove that we can achieve DMAC
1 =(

(r − r0)
(
1− r

T

)
, r0
(
1− r

T

))
using a training-based scheme.

We assume equal power allocation for training and data
transmission phases. During the training phase of Tτ ≥ r time
slots, a r × Tτ matrix ŜSSτ is transmitted, containing training
symbols known to the receiver. The received signal is

YYYτ = WWWRRR
1
2 P̂PPŜSSτ +

√
M

ρ
ZZZτ . (37)

We use the MMSE estimator ĤHH = YYYτAAA, where AAA is the
minimizer of the mean square error

1

N
E[‖HHH− ĤHH‖2F ] = tr(RRR)− tr(RRRP̂PPŜSSτAAA)− tr(AAAHŜSS

H

τP̂PP
H

RRR)

+ tr

(
AAAH

(
ŜSS

H

τP̂PP
H

RRRP̂PPŜSSτ +
M

ρ
III

)
AAA

)
. (38)

Solving ∂
∂AAA

1
NE[‖HHH − ĤHH‖2F ] = 0 yields the optimal AAAopt =(

ŜSS
H

τP̂PP
H

RRRP̂PPŜSSτ + M
ρ IIITτ

)−1
ŜSS

H

τP̂PP
H

RRR, hence

ĤHH = YYYτ

(
ŜSS

H

τP̂PP
H

RRRP̂PPŜSSτ +
M

ρ
IIITτ

)−1
ŜSS

H

τP̂PP
H

RRR. (39)

The estimation error H̃HH = HHH−ĤHH has zero mean and covariance

1

N
E[H̃HH

H

H̃HH] = RRR−RRRP̂PPŜSSτ
(
ŜSS

H

τP̂PP
H

RRRP̂PPŜSSτ +
M

ρ
IIITτ

)−1
ŜSS

H

τP̂PP
H

RRR

(40)

=
(
RRR−1 +

ρ

M
P̂PPŜSSτŜSS

H

τP̂PP
H
)−1

(41)

by the Woodbury identity.
In the data transmission, a r×(T−Tτ ) matrix ŜSSd containing

data symbols is transmitted. The received signal is

YYYd = HHHP̂PP ŜSSd +

√
M

ρ
ZZZd (42)

= ĤHHP̂PP ŜSSd +

√
M

ρ
ZZZ′d, (43)

where ZZZ′d =
√

ρ
M H̃HHP̂PP ŜSSd +ZZZd is the combined noise consisting

of additive noise and channel estimation error. With MMSE
estimator, this combined noise and data signal are uncorrelated.

From [8, Theorem 1], we know that the worst case uncorrelated
additive noise has zero-mean Gaussian distribution. Further-
more, since the distribution of the channel ĤHH is left rotationally
invariant, this worst case Gaussian noise has identity covariance
matrix. Therefore, a lower bound on the capacity is obtained
by replacing ZZZ′d by i.i.d. Gaussian noise with the same power
constraint

σ2
ZZZ′d

=
1

N(T − Tτ )
trE[ZZZ′Hd ZZZ

′
d] (44)

=
ρ

MN(T − Tτ )
tr
(
P̂PP

H

E[H̃HH
H

H̃HH]P̂PPE[ŜSSdŜSS
H

d]
)

+ 1 (45)

=
ρ

MN
tr
(
P̂PP

H

E[H̃HH
H

H̃HH]P̂PP
)

+ 1, (46)

with Gaussian signaling ŜSSd ∼ CN (0, IIIr). The capacity lower
bound is

C ≥ Cl =
T − Tτ
T

E

[
log det

(
IIIN +

ρ

Mσ2
ZZZ′d

ĤHHP̂PPP̂PP
H

ĤHH
H

)]
.

(47)

To maximize Cl, we minimize σ2
ZZZ′d

and Tτ . Minimizing σ2
ZZZ′d

is equivalent to

min
tr(P̂PPŜSSτŜSS

H

τP̂PP
H
)=M

tr

(
P̂PP

H
(
RRR−1 +

ρ

M
P̂PPŜSSτŜSS

H

τP̂PP
H
)−1

P̂PP

)
(48)

This can be solved using Lagrange multiplier method

L(ŜSSτ , λ) = tr

(
P̂PP

H
(
RRR−1 +

ρ

M
P̂PPŜSSτŜSS

H

τP̂PP
H
)−1

P̂PP

)
+ λ(tr(P̂PPŜSSτŜSS

H

τP̂PP
H

)−M) (49)

Solving ∂L(ŜSSτ ,λ)

∂ŜSS
H

τP̂PP
H = 0, we obtain that the optimal training

matrix should satisfy

P̂PPŜSSτŜSS
H

τP̂PP
H

=
M

ρ
√
λ

(P̂PP
H

P̂PP )1/2 − M

ρ
RRR−1. (50)

Using the condition tr(P̂PPŜSSτŜSS
H

τP̂PP
H

) = M , we find that

P̂PPŜSSτŜSS
H

τP̂PP
H

=
M

ρ

ρ+ trRRR−1

tr(P̂PP
H

P̂PP )1/2
(P̂PP

H

P̂PP )1/2 − M

ρ
RRR−1. (51)

Then

σ2
ZZZ′d

= 1 +
ρ

M

ρ+ trRRR−1

tr(P̂PP
H

P̂PP )1/2
tr
(

(P̂PP
H

P̂PP )−1/2P̂PPP̂PP
H
)
. (52)

Now let us plug this worst noise variance to the capacity
lower bound Cl given in (47). Note that with the designed
precoder, the matrix 1

Mσ2
ZZZ′
d

ĤHHP̂PPP̂PP
H

ĤHH
H

has rank r, i.e., r non-zero

eigenvalues. Let µ be an arbitrary eigenvalue among these, and
notice that Tτ ≥ r, then

C ≥ Cl =
(

1− r

T

)
rE log (1 + ρµ) (53)

= r
(

1− r

T

)
log(ρ) +O(1), when ρ→∞. (54)

This means a total r
(
1− r

T

)
DoF can be achieved for the two

messages coded in ŜSS. Since SSS and SSS0 contribute r− r0 and r0



rows in ŜSS, respectively, (r− r0)
(
1− r

T

)
DoF can be achieved

for the message in SSS and r0
(
1− r

T

)
DoF for SSS0.

We have proved that the DoF pair DMAC
1 =(

(r − r0)
(
1− r

T

)
, r0
(
1− r

T

))
is achievable for the equiv-

alent MAC. The other achievable pairs DMAC
2 and DMAC

3 can
be shown similarly by modifying P̃PP and S̃SS.


