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Abstract—In this paper, we introduce and analyze a practical
codebook for single-antenna non-coherent communications, with
codewords belonging to the Grassmannian of lines defined on
the complex vector space. This codebook is structured and
has zero storage requirement. It has higher packing efficiency,
represented by the minimum distance, than other structured
codebooks in the literature. Numerical results show that this
codebook outperforms the training-based scheme in terms of
error probability and achievable rate.

I. INTRODUCTION

In wireless communication over fading channels, the in-
stantaneous knowledge of channel state information (CSI)
enables to adapt the transmission and reception to current
channel conditions. The communication with a priori CSI at the
receiver is said to be coherent. In practice, however, the channel
coefficients are not granted for free prior to communication
and need to be estimated at a cost that should not be ignored.
Thus, communication without a priori CSI, also known as non-
coherent communication [1], is a more reasonable framework.

We consider non-coherent communication over block fading
channels such that the channel coefficients change indepen-
dently between coherence blocks of T ≥ 2 symbols. No a
priori CSI is available at either end of the channel. Specifically,
we are interested in the single-input single-output (SISO) case,
i.e., both the transmitter and the receiver have a single antenna.
The non-coherent capacity, in bits per channel use, of this
channel with Rayleigh fading was calculated for the high
signal-to-noise ratio (SNR) regime in [2], [1] as

C(ρ, T ) =
T − 1

T
log2

ρT

eγ+1
+

1

T
log2

1

(T − 1)!
+ o(1), (1)

when the SNR ρ goes to infinity, where γ ≈ 0.5772 is Euler’s
constant. The pre-log factor T−1T suggests that the non-coherent
systems can still achieve a significant fraction of the coherent
ergodic capacity Ccoh(ρ) = log2(ρ/e

γ)+o(1), especially when
T is large. A natural scheme achieving this pre-log is based
on channel training, in which one channel use is dedicated
to transmit a reference symbol known to the receiver. The
receiver estimates the channel from the noisy observation of
this reference symbol, and then performs coherent detection
on the remaining T − 1 data symbols [3]. The performance of
this approach, however, is always at a constant gap below the
full capacity C(ρ, T ) [1].

It was shown in [2], [1] that the optimal strategy achieving
the capacity C(ρ, T ) is to transmit an isotropically distributed
vector on CT during each coherence block and use the direction
of this vector to carry information. The intuition behind this
is that the channel coefficient h only scales the transmitted
signal vector without changing its direction. Therefore, upon
normalization, the transmitted vector xxx and the noise-free
observation hxxx are identical in the Grassmannian of lines
on CT . A number of Grassmannian constellation designs
have been proposed (mostly for the multiple-antenna case
at large) with different criteria, codebook generation and
decoding methods. The codebooks generated by numerical
optimization of max-min distance between codewords [4],
[5] often exhibit good distance spectrum; however, the lack
of structure imposes to store the whole codebook at both
the transmitter and receiver, as well as to use a maximum-
likelihood (ML) decoder at the receiver, which limits practical
use to small codebooks. Other codebooks are generated with
particular structures. For example, the Fourier codebook [6]
contains the rows of the discrete Fourier transform (DFT)
matrix with optimized frequencies. The exponential-mapped
codebook [7] is obtained by mapping each coherent codeword
qqq ∈ CT−1 containing T − 1 QAM symbols to a non-coherent
codeword xxx =

[
cos(‖qqq‖) − sin(‖qqq‖)

‖qqq‖ qqqT

]T
.

In this work, we introduce a structured Grassmannian
codebook for single-antenna non-coherent communications.
Motivated by the relation between Grassmannian constella-
tions and quantization codebooks for a Grassmannian source,
we use the codebook generated by the cube-split quantizer
proposed in [8] as a non-coherent constellation. We integrate
soft demapping (using log-likelihood ratio) and compare the
performance of this codebook with the training-based approach
and some existing codebooks in the literature. We also derive
the achievable rate of the system using this codebook.

The remainder of this paper is organized as follows. The
system model is introduced in Section II. We describe the so-
called cube-split codebook and maximum likelihood decoder in
Section III, then calculate the bit-wise log-likelihood ratio and
achievable rate associated with this codebook in Section IV.
Numerical results on the error rates are provided in Section V.
Finally, Section VI concludes this paper.



In this paper, the Grassmannian manifold G(CT , 1) is defined
as the space of one-dimensional subspaces (lines) in CT . We
use a vector xxx ∈ CT of unit Euclidean norm (‖xxx‖ = 1) to
represents the set {λxxx, λ ∈ C}, which is a point in G(CT , 1).
We define the chordal distance between two Grassmannian
lines represented by xxx1 and xxx2 as d(xxx1,xxx2) =

√
1− |xxxH

1xxx2|2.

II. SYSTEM MODEL

We consider a SISO non-coherent channel in which both
the transmitter and receiver have a single antenna. The channel
propagation is characterized by a scalar coefficient h with
arbitrary distribution1. The channel is block fading such that
h remains unchanged during each coherence block of T > 1
symbols, and changes independently between blocks. Within a
coherence block, the transmitter transmits a codeword xxx ∈ CT
satisfying E

[
‖xxx‖2

]
= 1 at power ρ. The received signal is

yyy =
√
ρT hxxx+www, (2)

where www ∼ CN (0, IIIT ) is the additive white Gaussian noise
independent of h. We omit the block index for simplicity. Since
the noise power is normalized, the transmit power ρ is identified
with the SNR at the receiver. The codeword xxx is taken from a
codebook C of finite cardinality |C|. Let N = log2(|C|) be the
number of bits per codeword.

A. A baseline codebook with channel training

Let us first consider a baseline codebook based on channel
training. Each codeword xxx begins with a reference symbol
x1 =

√
ρτ
ρT where ρτ is the training power, followed by T − 1

data symbols xi =
√

ρT−ρτ
ρT qi−1, i = 2, . . . , T where qi are

normalized quadrature amplitude modulation (QAM) symbols
such that E [qi] = 1, i = 1, . . . , T − 1. Let qqq := [q1, . . . , qT−1].
The receiver has the observation

yyy =
[√

ρτh
√
ρT − ρτhqqqT

]T
+www, (3)

and performs a scalar minimum mean square error (MMSE)
channel estimation ĥ =

√
ρτ

1+ρτ
y1 ∼ CN (0, ρτ

1+ρτ
). The receiver

then applies the QAM demapper on the equalized symbols

x̂zfi =
1

√
ρT − ρτ ĥ

yi, x̂mmse
i =

√
ρT − ρτ ĥ∗

(ρT − ρτ )|ĥ|
2
+ 1

yi, (4)

i = 2, . . . , T , with zero-forcing (ZF) and MMSE equalizers
respectively.

III. A NON-COHERENT CODEBOOK ON THE
GRASSMANNIAN OF LINES

A. Cube-split codebook

We have seen that the optimal input achieving the capacity
C(ρ, T ) of the channel (2) is an isotropically distributed vector
such that its distribution is invariant under rotation, i.e.,

p(xxx) = p(QQQxxx), (5)

1We do not restrict to Rayleigh fading in this paper.

for any deterministic T × T unitary matrix QQQ. That is, xxx is
uniformly distributed on the Grassmannian of lines G(CT , 1).
By definition, xxx and hxxx are identical in G(CT , 1). Therefore,
Grassmannian signaling guarantees error-free detection without
CSI in the absence of the additive noise www. When the noise
www is involved, since it might not be aligned with xxx, the signal
direction is perturbed, and yyy can be dragged away from xxx with
respect to the chordal distance measure. If the codewords are
sufficiently distant, it is likely that yyy is still within the decision
region centered at xxx, facilitating correct detection. Therefore,
a good Grassmannian constellation must be a collection of
vectors on G(CT , 1) with maximum pairwise distance.

For a given constellation size |C|, a commonly used codebook
design criteria is to maximize the minimum distance between
two distinct codewords, i.e,

max
C

min
1≤j<k≤|C|

d(xxxj ,xxxk). (6)

It was shown that constellations with maximum minimum
distance have low overall error probability, especially for a
small number of transmit antennas [4]. A direct numerical
solution of (6) would generate an optimal codebook without
any structure. Due to the lack of structure, this kind of
codebook is normally used with maximum-likelihood decoding.
Furthermore, it needs to be stored at both ends of the channel.
These complexity and storage requirements hinder the use of
unstructured codebooks in practice. As we go for a practical
codebook, we would rather relax (slightly) the minimum dis-
tance optimality requirement (6) to have a structured codebook
that satisfies the implementation constraints on complexity and
storage, while preserving good packing properties.

In this work, we propose to use the quantization codebook
recently introduced in [8], so-called cube-split codebook, as a
constellation for communication. This codebook is structured,
requires no storage, and has high packing efficiency. It can
be constructed with T × 22B0(T−1) codewords, where B0 is a
positive integer. Thus, each codeword can be given a binary
label of

N = dlog2(T )e+ 2B0(T − 1) (7)

bits. In the rest of the paper, we refer to the cube-split codebook
as CS(T,B0) codebook whenever the parameters T and B0

need to be specified. The following proposition gives the
minimum distance of CS(T,B0) codebook.

Proposition 1. The minimum distance of the CS(T,B0) non-
coherent codebook is given by

dmin(T,B0) =

√√√√√√1−

∣∣∣∣∣∣∣
B +A

(
m0+im1

|m0+im1|

)2
B +A

∣∣∣∣∣∣∣
2

, (8)

where m0 := N−1
(
2−B0−1

)
,m1 := N−1

(
1
2 + 2−B0−1

)
,

with N (x) := 1√
2π

∫ x
−∞ e−

t2

2 dt, and

A :=
1− exp

(
−m

2
0+m

2
1

2

)
1 + exp

(
−m

2
0+m

2
1

2

) , B := 1 + (T − 2)
1− e−m2

0

1 + e−m
2
0

.



We omit the proof of Proposition 1 due to the lack of space.

Lemma 1. The minimum distance δ of the optimal codebook
C of cardinality |C| on the complex Grassmannian of lines
G(CT , 1) is bounded by

2|C|−
1

2(T−1) ≥ δ ≥ |C|−
1

2(T−1) . (9)

Proof. On G(CT , 1) with normalized invariant measure µ(.),
the volume of a metric ball B(δ) of radius δ is given by [9]

µ(B(δ)) = δ2(T−1). (10)

Let C denotes the optimal codebook on G(CT , 1) with
minimum distance δ, we have the Gilbert-Varshamov lower
bound and Hamming upper bound on the size of the code:

1

µ(B(δ/2))
≥ |C| ≥ 1

µ(B(δ))
. (11)

Next, by substituting (10) into (11), (9) follows readily.

In Fig. 1, we plot these fundamental bounds and the mini-
mum distance of CS(T,B0) codebook given in Proposition 1
for T = 2 and T = 4. We also show the minimum distance
of other structured Grassmannian constellations, namely, the
Fourier codebook in [6] and the exponential-mapped codebook
in [7]. From the figure, it is clear that the cube-split codebook
has greater minimum distance than the two other codebooks.
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Fig. 1. The minimum distance vs. codebook size of cube-split codebook
in comparison with other codebooks and the fundamental limits of optimal
codebook. In the case T = 4, due to the the lack of analytical expression, we
only show an upper bound of the minimum distance of the Fourier codebook [6]
and the exponential-mapped codebook [7] obtained by a random search.

Next, in Fig. 2, we plot the spectrum of the codeword-wise
minimum distance, i.e., the distance from a given codeword to
its nearest neighbor, of the CS(2, 4) and CS(4, 1) codebooks.
It can be seen that the codeword-wise minimum distances
of these codebooks are localized and compare well to the
fundamental bounds. Every codeword in the CS(4, 1) codebook
even has the same distance to its nearest neighbor, which is
dmin(4, 1). This property holds for any CS(T, 1) codebooks.
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Fig. 2. The codeword-wise minimum distance spectrum of CS(2, 4) and
CS(4, 1) codebooks with 512 and 256 codewords, respectively. The dashed
and dash-dotted lines are upper bound and lower bound, respectively, of
the minimum distance of the optimal codebook of the same size, given in
Lemma 1.

B. Maximum likelihood decoder

The ML decoder is

x̂xx = argmax
xxx∈C

p(yyy|xxx). (12)

Given xxx, yyy is a Gaussian vector with zero mean and covariance
matrix E [yyyyyyH|xxx] = IIIT + ρTxxxxxxH, hence the likelihood function
can be derived as

p(yyy|xxx) =
exp

(
−yyyH(IIIT + ρTxxxxxxH)−1yyy

)
πTdet(IIIT + ρTxxxxxxH)

(13)

=
exp

(
−|yyy|2 + ρT

1+ρT |yyy
Hxxx|2

)
πT (1 + ρT )

. (14)

Thus, the ML decoder is simply

x̂xx = max
xxx∈C
|yyyHxxx|. (15)

Following the footsteps of [2], we can derive the pairwise error
probability of the ML decoder

PML
pe (xxxi → xxxj) =

1

2

[
1−

(
1 +

4(1 + ρT )

(d(xxxi,xxxj)ρT )2

)− 1
2

]
.

(16)

IV. LOG-LIKELIHOOD RATIO AND ACHIEVABLE RATE

Let us now consider the use of this codebook together with
a channel code. We assign to each codeword of CS(T,B0)
codebook a N -bit labeling [b1 b2 . . . bN ] in the same manner
as in [8]. We assume uniform input probabilities, i.e., all the
codewords are equally likely to be transmitted, and so are
the bits. The log-likelihood ratio (LLR) of bit bi given the
observation yyy is

LLRi(yyy) = log
Pr(bi = 1|yyy)
Pr(bi = 0|yyy)

(17)

= log

∑
ααα∈C(1)i

Pr(yyy|xxx = ααα)∑
βββ∈C(0)i

Pr(yyy|xxx = βββ)
, (18)



where C(b)i , b = 0, 1, denotes the set of all possible codewords
in CS(T,B0) such that bi = b. Applying (14), we have

LLRi(yyy) = log

∑
ααα∈C(1)i

exp
(

ρT
1+ρT |yyy

Hααα|2
)

∑
βββ∈C(0)i

exp
(

ρT
1+ρT |yyyHβββ|2

) (19)

≈ ρT

1 + ρT

(
max
ααα∈C(1)i

|yyyHααα|2 − max
βββ∈C(0)i

|yyyHβββ|2
)
. (20)

by using the approximation log(
∑
i exp(xi)) ≈ maxi xi. We

note that the bits in different position have different error
protection, and therefore different LLR distributions. This can
be seen in Fig. 3, where we depict the LLR histogram of the
first 4 bits, given that 0 was sent, for the CS(2, 3) codebook.
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Fig. 3. The histogram of the LLR of the first 4 bits, given that 0 was sent,
using CS(2, 3) codebook, which has 128 codewords, i.e., 7 bits/codeword.
Please note the difference in the horizontal scale of the sub-figures.

Next, we compute the achievable rate achieved with the
cube-split codebook. Under the assumption of uniform input
probabilities, the average mutual information of bit bi and its
log-likelihood ratio LLRi(yyy) is given by

I(bi; LLRi(yyy)) = Ebi,LLRi(yyy)
[
log2

p(LLRi(yyy)|bi)
p(LLRi(yyy))

]
=

1

2

1∑
b=0

ELLRi(yyy)

[
log2

2p(LLRi(yyy)|bi = b)∑1
b0=0 p(LLRi(yyy)|bi = b0)

]
,

(21)

which can be estimated empirically using the Monte Carlo
method. By ignoring the correlation between the LLRs, a
lower bound on the achievable rate is then

R =
1

T

N∑
i=1

I(bi; LLRi(yyy)) bits/channel use. (22)

Similarly, we can calculate the achievable rate of the training-
based codebook with QAM input in Section II-A. With ZF

equalizer x̂i = yi√
ρT−ρτ ĥ

, i = 2, . . . , T , the likelihood function
of the equalized symbol x̂i is

p(x̂i|xi) =
1+ρτ

ρτ (ρT−ρτ ) +
|xi|2
ρτ

π
(

1+ρτ
ρτ (ρT−ρτ ) +

|xi|2
ρτ

+ |x̂i − xi|2
)2 . (23)

Let us denote x{i} the transmitted QAM symbol accounting
for the bit bi, i = 1, . . . , N , and x̂{i} the estimation of x{i} at
the receiver (after equalization), then the LLR of the bit bi is

LLRtraining
i (x̂{i}) = log

Pr(bi = 1|x̂{i})
Pr(bi = 0|x̂{i})

(24)

= log

∑
α∈Q(1)

i
p(x̂{i}|x{i} = α)∑

β∈Q(0)
i
p(x̂{i}|x{i} = β)

, (25)

where Q(b)
i , b = 0, 1, denotes a subset of the chosen QAM

constellation such that bi = b. The achievable rate of the
training-based scheme is then calculated similarly to (22).

In Fig. 4, we compare the achievable rate of cube-split
codebook given in (22) with the high-SNR channel capacity
given in (1) and the rate achieved with training-based scheme
with equal power allocation ρτ = ρ, QAM input, and ZF
equalizer. The cube-split codebook can achieve higher rate
than the training-based scheme at a given SNR.
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Fig. 4. The achievable rate achieved with cube-split codebook in comparison
with channel capacity given in (1), and the achievable rate of the training-based
scheme with QAM input for T = 2 and N = 3, 5, 7 and 9 bits/codeword.

V. ERROR PERFORMANCE

In this section, we compare numerically the error rates of
our cube-split codebook and other structured Grassmannian
codebooks, as well as the training-based scheme with equal
power allocation ρτ = ρ. To be fair, in all the figures, we
compare different codebooks of the same size, i.e., the same
number of bits per codeword. Here, we consider Rayleigh
fading h ∼ CN (0, 1).

1) Error rate of uncoded codebooks: First, in Fig. 5, we
plot the codeword error rate of the cube-split codebook, the
Fourier codebook [6], the exponential-mapped codebook [7],
and the training-based scheme when T = 2. While the



Fourier codebook and the exponential-mapped codebook are
worse than the training-based scheme, which spends half
of the time resource for channel estimation, our cube-split
codebook outperforms the training-based scheme. The cube-
split codebook is also better in terms of bit error rate, as shown
in Fig. 6, where the training-based scheme uses Gray labeling
for QAM symbols.

Fig. 5. Codeword error rate of cube-split codebook vs. other structured
codebooks and training-based scheme for T = 2 and N = 5 and 9
bits/codeword.

10 15 20 25 30 35 40 45 50

SNR (dB)

10-4

10-3

10-2

10-1

100

Cube-split codebook

Training-based scheme, ZF equalizer

Training-based scheme, MMSE equalizer

N = 3, 5, 7, 9

Fig. 6. Bit error rate of cube-split codebook vs. training-based scheme for
T = 2 and N = 3, 5, 7, and 9 bits/codeword.

2) Performance with channel coding: Next, we integrate
a systematic parallel concatenated rate-1/3 turbo code with
two identical convolutional encoders. The turbo encoder takes
in each packet of 640 bits. The turbo decoder calculates the
LLR of the received encoded bits and performs 10 iterations
of decoding for each bit block.

Fig. 7 presents the bit error rate of the coded cube-split
codebook in comparison with coded training based scheme
with the same number of uncoded bit per codeword. Having
observed that the performance of training-based scheme with
ZF equalizer and MMSE equalizer are very close, we consider

only ZF equalizer for the simplicity of LLR calculation. As
can be seen, in spite of the uneven LLR distribution across
the bits, turbo code works well for cube-split codebook and
enhances its advantage over the training-based scheme. The
power gain for the same bit error rate can be about 2 dB.
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Fig. 7. Bit error rate of cube-split codebook vs. training-based scheme with
turbo codes for T = 2 and N = 3, 5, 7, 9 bits/codeword.

VI. CONCLUSION

Aiming for practical application, we have proposed a
structured Grassmannian codebook for single-antenna non-
coherent communications. Analytical and numerical results
show that this codebook has larger minimum distance than
other structured codebooks in the literature and outperforms
the training-based approach in terms of codeword error rate,
bit error rate with/without channel codes, as well as achievable
rate.
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