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ABSTRACT

Nowadays, fire safety engineers are increasingly relying on sophisticated numerical simulators, typically

based on Computational Fluid Dynamics (CFD) solvers, to conduct their analyses. However, the complexity

of these numerical models often limits drastically the number of simulations that can be afforded, making tra-

ditional methods of safety analysis difficult or impossible to apply. This paper proposes a statistical method

to evaluate a quantity of interest with an expensive simulator while saving computation time. The method is

based on Bayesian statistics and multi-fidelity. We use Gaussian process regression to construct a Bayesian

model of the complex simulator. This model is based on a multi-fidelity approach, which consists in simu-

lating at different levels of accuracy, for instance by varying the spatial discretization in a CFD solver. We

illustrate the method on an example of fire safety analysis, where the quantity of interest is the probability of

exceeding a tenability threshold in a building on fire.

KEYWORDS: risk assessment, statistics, numerical experiments, meta-model, multi-fidelity

NOMENCLATURE LISTING

General notations Estimation of conformity

f env distribution of environmental inputs np number of sample paths

f sim
x,t distribution of output at (x, t) nx number of values of environmental inputs

N normal distribution Pf (x, t) probability of failure at the input (x, t)
t fidelity input Pf (xs) probability of failure at the scenario xs

tHF highest level of fidelity zcrit critical safety threshold

x = (xe,xs), physical inputs

xe environmental inputs Application

xs scenario inputs A f fire area (m2)

Z output of the simulator H f smoke radiative heat flux (kW ·m−2)

Bayesian modeling Patm atmospheric pressure (bar)

k covariance function Q̇′′ maximal heat release rate per unit area (kW ·m−2)

m mean function q f d
total released energy per unit area (MJ ·m−2)

n number of observations Tamb ambient temperature (◦C)

(xi) n points of observations Tc temperature at 1.8 m (◦C)

(xi,zi) n observations Text external temperature (◦C)

(zi) n values of observations txyz mesh size (cm)

n computed with n observations V visibility (m)

λ variance of the stochastic effect Ysoot soot yield (kg ·kg−1)

µ value of a constant mean function α fire growth acceleration (kW · s−2)

ξ mean response of the simulator

ACRONYMS

CFD Computational Fluid Dynamics GP Gaussian Process

DOE Design Of Experiments LHS Latin Hypercube Sampling

FDS Fire Dynamics Simulator OpenFOAM Open Field Operation And Manipulation
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INTRODUCTION

The use of sophisticated numerical simulators, often based on Computational Fluid Dynamics (CFD) solvers

such as Fire Dynamics Simulator (FDS) or Open Field Operation And Manipulation (OpenFOAM), is be-

coming more and more common in fire safety analyses. These simulators can be used to test various fire

scenarios, which would be too difficult or impossible to test using real experiments [1]. However, they are

usually very time-consuming, which limits the number of numerical experiments that can be afforded. Con-

sequently, traditional mathematical methods for fire safety analysis based on Monte-Carlo methods [2; 3]

become impractical, and fire safety engineers have to assess the safety of a building from a small number of

simulation results. Moreover, operator dependence may cause different conclusions on a same problem, and

complicate the comparison of experiments.

This paper proposes a new approach to help carry out fire safety analyses using complex, expensive-to-run

numerical simulators, with a limited budget of simulation time. This approach comes from the statistical liter-

ature on the design and analysis of computer experiments (see, e.g., [4] and references therein), and is based

on two key ingredients: Bayesian statistics and multi-fidelity. Bayesian statistics, on the one hand, is a math-

ematical framework for data analysis, where results are expressed in term of probability statements [5]. Each

unknown quantity of interest is equipped with a probability distribution, which describes current knowledge

of the quantity, and is updated whenever additional data becomes available (see [6] for an overview). The

Bayesian method presented in this text is based on Gaussian process regression, which is a well-established

approach in the statistical literature for modeling complex computer experiments. Multi-fidelity, on the other

hand, is a technique that can be used when fast approximations of the simulator are available [7–11]. Typ-

ically, this is the case when the accuracy of the simulation can be tuned by changing the mesh size of the

spatial discretization and/or its time step. A simulation with a coarser mesh describes the same physical phe-

nomenon with a lower fidelity, but runs faster than a high-fidelity simulation. The multi-fidelity approach

combines low- and high-fidelity simulations to obtain information about the quantities of interest faster than

with high-fidelity simulations only.

Complex simulator

Z ∼ f sim
x,t (z)

z

fsi
m

x
,t

(z
)x

t

Fig. 1. Diagram of a numerical experiment. A simulator is described as a black box. The implementation is

ignored, only the inputs and output are considered.

Let us consider the simulator as a black box, taking physical inputs x and a fidelity input t, and returning

an output Z (see Figure 1). The fidelity input t controls level of the fidelity of simulations [9]. The physical

input x represent physical quantities (temperatures, fire properties, boundary conditions. . . ). In our approach,

several forms of uncertainty affecting the output must be distinguished [12]. First, some of the physical inputs

can be imperfectly known in the scenario under study. This lack of knowledge is modeled by a probability

distribution, which conveys a first form of uncertainty, called input uncertainty. Second, the output Z (which

may be the heat flux, the visibility. . . ) is assumed stochastic. A typical example is the case of a deterministic

CFD solver with random initial or boundary conditions, or a random forcing term. Thus, the output at a given

input point (x, t) follows a certain distribution f sim
x,t (z). This constitutes a second form of uncertainty, called

output uncertainty. Finally, we consider a third form of uncertainty, the Bayesian modeling uncertainty, which

represents the lack of knowledge about the simulator itself, i.e., about the output distributions f sim
x,t (z). This

form of uncertainty is progressively reduced when the number of simulations grows, and with it the available

knowledge about the simulator. The method proposed in this paper will provide, along with estimations of

the quantities of interest, a quantification of the uncertainty about these estimations resulting from these three

sources of uncertainty.

The paper is organized as follows. The second section provides a short introduction to Gaussian process re-

gression, and discusses the assumption of stochasticity about the ouput. The third section presents the main
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contribution of this paper, which is a methodology based on Bayesian multi-fidelity modeling to estimate

virtually any quantity of interest using a limited budget of simulation time, and quantify the associated un-

certainty. The fourth section illustrates the methodology with an example of conformity assessment, where

the quantity of interest is the probability of exceeding a tenability threshold in a given period of time after the

start of a fire (this probability, also called probability of failure, can be for instance the probability that the

mean heat flux exceeds 2.5 kW ·m−2 or that the mean temperature at 1.8 m exceeds 60 ◦C). The final section

concludes the paper with a summary of our contributions and discussion of future work.

BAYESIAN APPROACH TO MODELING THE OUTPUT OF THE SIMULATOR

Gaussian process regression

The objective of this section is to provide a short introduction to Gaussian process regression. Here, for the

sake of simplicity, the input t corresponding to the mesh size is not considered. There is no loss of generality

in doing so at this point.

Let (xi,zi)1≤i≤n be a data set of n observations of the simulator, where the xi’s are inputs, and the zi’s are the

associated outputs. Each xi is a vector whose components correspond to the physical inputs of the simulator

(temperatures, fire area. . . ). Each zi corresponds to a scalar output of the simulation (e.g., the visibility)

associated to xi. To model the fact that the output of the simulator is stochastic, we assume that the observed

response is a random variable Z with a Gaussian probability density function f sim
x such that

f sim
x (z) =

1√
2πλ(x)

e
− 1

2
(z−ξ(x))2

λ(x) , z ∈ R, (1)

where ξ(x) and λ(x) stand respectively for the mean and variance of the stochastic output of the simulator

at x. In this section, we assume that λ is known, and ξ is unknown.

To deal with the fact that ξ is unknown, we assume that ξ is a Gaussian Process (GP), which will be denoted

by

ξ ∼ GP (m,k) , (2)

where m and k are respectively the mean and covariance functions of the Gaussian process. The mean function

is assumed to be constant and unknown. The covariance function is chosen by the user in such a way to

describe how he/she expects two values ξ(x) and ξ(x′) to be similar if x and x′ are close to each other. In

particular, the covariance function specifies the smoothness of the simulator. From a Bayesian point of view,

the Gaussian process represents our prior knowledge about the unknown mean response of the simulator.

Once our Bayesian model is set up, the next step is to condition the model on the observations (xi,zi)1≤i≤n.

Bayes’ theorem yields the posterior distribution of ξ. Under the assumptions of a constant mean function,

m(x) = µ, with a uniform prior on µ, and known covariance and output variance functions k and λ, the

posterior distribution of ξ(x) is Gaussian, with mean

mn (x) = µ̂+ kkkT (x) [K +Λ]−1 (zzz− µ̂111) (3)

and variance

σ2
n (x) = k(x,x)− kkkT (x) [K +Λ]−1

kkk (x)+

(
1−111T [K +Λ]−1

kkk (x)
)2

111T [K +Λ]−1
111

, (4)

where zzz= (zi) are the outputs, K = (k(xi,x j)) is the covariance matrix of the observations, Λ=Diag(λ(xi)) is

the diagonal matrix of variances of stochastic effects at observation points, kkk (x) = (k(xi,x)) is the covariance

vector between observations and the point x, 111 a n×1 is vector of ones, and

µ̂ =
(

111T [K +Λ]−1
111
)−1

111T [K +Λ]−1
zzz

is the generalized least squares estimate of µ. We refer the reader to Stein [13] or Forrester et al. [14] for more

details about how these expressions can be established. Note that the function mn can be seen as an estimator
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of ξ, and the function σn can be seen as a measure of our lack of knowledge about ξ. The function mn is also

called a meta-model, or an emulator, of the mean response of the simulator. The computation of the posterior

distribution of ξ is usually carried out using dedicated softwares. The Small (Matlab/Octave) Toolbox for

Kriging (STK) [15] has been used in this paper. Once the posterior distribution is obtained, it can be used to

estimate quantities of interest, and in particular, a probability of exceeding a safety threshold.

Example

This section illustrates the approach on a simple example. We consider a numerical model with a scalar

input x and a stochastic scalar output Z. The quantity of interest is the mean response of the numerical model.
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Fig. 2. Illustration of Gaussian process regression. (a) The unconditioned Gaussian process. (b) Observations

of the numerical model. (c) The conditioned Gaussian process. (d) An estimate of the mean response.

The first step of the Bayesian approach is to define a prior distribution. Although the numerical model is seen

as a black box, some assumptions can be made about it, for instance about its smoothness. These assumptions

are translated into a Gaussian process prior about ξ. Figure 2a shows five sample paths of ξ, which represent

what the mean response could be prior to any observation.

The second step is to observe the numerical model. Thus, n inputs x1, . . . ,xn are selected. Then, for each

input xi, the numerical model is run, and returns a result zi. Figure 2b shows n = 20 observations (xi,zi)
corresponding to the stochastic outcome of the numerical model.

Conditioning the prior distribution on the observations produces the posterior distribution of the output of

the numerical model. Figure 2c shows five sample paths of the posterior distribution. The sample paths of

the posterior distribution have smoothness properties similar to those of the prior distribution, but they now

“capture” the observations.

Finally, Figure 2d represents an estimate of the unknown mean response. The solid line is the function mn

(Eq. (3)), which is an estimator of the unknown mean response. The inner area around the line is a 95%

confidence interval of the estimate, which is proportional to σn (Eq. (4)). The outer area is a 95% confidence
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interval of future observations, taking into account the stochastic effect. In other words, a new observation

of the unknown numerical model has a 95% chance to be in this area according to the posterior distribution.

Confidence intervals are sometimes called credible intervals by Bayesian statisticians.

Remarks on the stochastic nature of the output

We have assumed until now that the output Z of the simulator at a given input point is stochastic. As explained

in the introduction, a typical example is the case of a deterministic CFD solver with random initial or boundary

conditions. Stochastic simulators have the property that running several simulations at the same point yields

different output values. This calls for two remarks.

First, it is important to note that smooth deterministic simulators can be seen as a special case of the above

model (when λ(x) becomes equal to zero everywhere). The main difference, in this case, is that conditional

sample paths (see Figure 2c) interpolate between the observed values. Thus, the general methodology pro-

posed in this paper can actually be used with such simulators as well, with some minor modifications of the

underlying statistical model.

Second, we emphasize that the same statistical model can also be used in the case of a deterministic sim-

ulator, when the ouput can be decomposed as the sum of the smooth term and a very irregular (visually,

“noisy”) term. In such a situation, running two simulations with almost—but not strictly—identical inputs

yields different outputs, exactly as in the case of a truly stochastic simulator. Using an additional Gaussian

“noise term” to represent this local variability is a well-established practice in the statistical literature (see,

e.g., Gramacy and Lee [16]). This term, sometimes called nugget effect in reference to the geostatistical lit-

erature, corresponds to the variance λ(x) in our model. From a mathematical point of view, as long as no

replicated simulations (i.e., simulation at the same input x) are performed, this is perfectly equivalent to the

model described earlier in this section except for the prediction of a future simulation output at an already

observed location.

PROPOSED METHODOLOGY

Multi-fidelity

Because of the complexity of CFD computer models, the number of observations that can be made is limited.

In this section, we will detail how, by making specific assumptions about the Bayesian model presented

above, we can derive a multi-fidelity model.

Multi-fidelity is a solution to reduce the uncertainty in the posterior distribution at a small budget of com-

putation time. In a simulator using a CFD solver based on a field model, such as FDS or OpenFOAM, the

accuracy of a simulation is controlled by the spatial discretization. A high-density mesh improves space

accuracy (hence should also increase fidelity to physical reality) but also increases computation time. The

multi-fidelity approach consists in simulating at different levels of fidelity, instead of only the highest one.

Thus, the idea is to combine fast low-fidelity simulations (by changing the mesh size) with slow high-fidelity

simulations to improve the quality of the posterior model.

In the literature, multi-fidelity often deals with only two levels of fidelity [7; 8]. In this article, we work with

a continuum of levels of fidelity indexed by a positive scalar t, following Picheny and Ginsbourger [9] and

Tuo et al. [10]. The level t can be seen as an input of the simulator, as the input vector x (see Figure 1). In this

work, since the level of fidelity t is related to the mesh size, fidelity increases when t tends to zero, even if this

level of spatial discretization is impossible to simulate. We denote by tHF the highest available level of fidelity

(lowest value of t, corresponding to the finest meshes). This ideal level of fidelity tHF should be selected in

order to adequately resolve the fluid flow and fire dynamics. In the case of a CFD code, where t corresponds to

the size of mesh cells, Lin et al. [17] recommend to use tHF ≤ D⋆/10, with D⋆ the characteristic fire diameter.

The first subsection proposes a prior Gaussian-process-based multi-fidelity model of the simulator to describe

the relationship between the levels of spatial discretization. Then, the second subsection describes how the

numerical experiments are selected. As the observations improve the knowledge about the simulator, the

distribution modeling the simulator is updated by conditioning. This posterior distribution can be used to

estimate any quantity of interest. The third subsection shows an example of such an estimation, with the
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estimation of a probability of failure. Note that, even if we focus only on the highest level of fidelity tHF , this

posterior model could be used at any level of fidelity, in other words, for each spatial resolution.

Multi-fidelity prior model

The simulators that we aim to describe have a fidelity input t and a stochastic output Z. Following the model

of stochastic simulator described Eq. (1), we suppose that the output Z at (x, t) follows a normal probability

distribution, whose parameters depend on (x, t):

f sim
x,t (z) =

1√
2πλ(x, t)

· e
− 1

2 ·
(z−ξ(x,t))2

λ(x,t) , (5)

where ξ(x, t) and λ(x, t) are respectively the mean and the variance of the output at (x, t), which are both

assumed unknown now. The next paragraphs present briefly our prior models about ξ and λ.

The prior distribution that we propose for the mean response ξ was simultaneously introduced, with minor

differences, by Picheny and Ginsbourger [9] and Tuo et al. [10] for deterministic simulators. To build this

prior model, the mean response ξ is assumed to be the sum of an ideal response ξ0 and a numerical error ε:

ξ(x, t) = ξ0 (x)+ ε(x, t) , (6)

where the ideal response ξ0 corresponds to the case where t tends to zero, whereas the numerical error ε
stems from the numerical approximations of the equations of physics. Thus, it is assumed that ε(x, t = 0) = 0

for all x. Moreover, the two processes ξ0 and ε are supposed independent, which means that knowing the

physical phenomena represented by the simulator (ξ0) does not help to know how the simulator approximate

these phenomena (ε). Following the suggestion of Tuo et al. [10], we propose to use the following covariance

for the process ε:

kε

(
(x, t) ,

(
x′, t ′

))
= min

{
t, t ′
}L

k̃ε

(
x,x′
)
, (7)

where kε is the covariance function of the numerical error ε, and k̃ε is a covariance function defined on

the space of the physical inputs x. The term min{t, t ′}L
is such that the numerical error decreases when t

decreases, i.e., when fidelity increases. Notice that the numerical error and the stochastic effect are two

distinct parts of the simulator. The simulator would still be stochastic, even if the numerical error was zero.

The prior distribution that we propose for the noise variance λ is described in detail by Stroh et al. [18].

In order to simplify the model, we suppose that the noise variance depends only on the levels of spatial

discretization, so that λ depends only on the fidelity levels t . Then, the noise variance is assumed to be

different at each level, but have the same order of magnitude. These assumptions are summed up in a log-

normal prior distribution.

Design of Experiments

This section presents how numerical experiments are selected once the Bayesian model has been set.

In our multi-fidelity framework, we choose the set of observations, also called Design Of Experiments (DOE),

in such a way that the computation time remains low. It is well-known that to construct a good Bayesian

model, the DOE should be space-filling (see Pronzato and Müller [19] for a review). One of the most popular

method to obtain a space-filling DOE is to use maximin Latin Hypercube Sampling (LHS). A design is

LHS, when the inputs are regularly spaced along all one-dimensional axis (see Figure 3a for an example of

space-filling LHS). More details can be found in Santner et al. [4].

In our multi-fidelity approach, since low-fidelity is cheaper than high-fidelity, low-fidelity should be more

often observed than high-fidelity. To this purpose, we use nested LHS. A design is said to be nested, when

each point observed at an high-fidelity level is also observed at lower-fidelity levels (see Figure 3b).

In order to construct a nested LHS design, we use the algorithm developed by Qian [20], which produces

nested LHS design, with an additional maximin optimization at each level, to obtain a good space-filling.

6



x1

x 2
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(b) A nested design, n = 36+18+6+3, d = 1,

S = 4

Fig. 3. Two examples of design. (a) A Latin Hypercube Sampling. (b) A nested design (the lowest level of

fidelity is below). n is the number of points, d the dimension, S the number of levels of fidelity.

This method imposes a constraint on the size of the design: the number of design points at a given level must

be a multiple of the number of points at the next (finer) level.

Estimation of the conformity of a building using the multi-fidelity model

Given the results of the simulations, we can compute the posterior distribution which can be used in turn to

estimate quantities of interest, and therefore assess the conformity of a building during a fire. In this paper,

conformity is assessed by comparing the output Z to a critical threshold zcrit. More precisely, we estimate the

probability that Z exceeds the threshold zcrit in various fire scenarios, in order to find which scenarios are the

most dangerous.

The procedure to estimate the probability of failure at a given fire scenario is based on two steps. First, we

consider a pointwise probability of failure defined as the probability that the output Z at (x, t) exceeds its

safety threshold zcrit (for instance, the probability that the heat flux predicted by the simulator at a given fire

scenario, weather conditions and spatial discretization exceeds 2.5 kW ·m−2),

Pf (x, t) = P

(
Z > zcrit

)
=

∫ +∞

zcrit
f sim
x,t (z)dz, (8)

where f sim
x,t (z) denotes the output density at (x, t) (see Introduction). Recall from (5) that Z is assumed to

follow a normal distribution. Given ξ and λ, the pointwise probability of failure can be computed as

Pf (x, t) = Φ

(
ξ(x, t)− zcrit

√
λ(x, t)

)
, (9)

where Φ is the normal cumulative distribution function.

Until here, all components of the input x have been treated without distinction. Now, two kinds of inputs

are distinguished: the environmental inputs xe on the one hand, and the fire scenario inputs xs on the other

hand (in such a way that x = (xe,xs)). The environmental inputs can vary in time, which is modeled by a

distribution f env (xe) representing the variations of the environmental inputs. We would like to express the

probability of failure only as a function of the scenario inputs xs, to assess their impact on the conformity of

the building during a fire. Of course, our objective is to estimate the conformity at high-fidelity level, so that

the fidelity parameter is fixed to tHF . Then, the probability of failure can be written as

Pf (xs) =
∫

Pf (xs,xe, tHF) f env (xe)dxe. (10)

This second type of probability of failure depends on the output and input distributions. Since, Pf (xs) depends

on ξ and λ, Pf (xs) has a posterior distribution which depends on those of ξ and λ.
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The posterior distribution of Pf (xs) has no closed-form expression. Consequently, numerical approximations

must be used. We resort to a Monte-Carlo method. To estimate the probability of failure given a scenario xs,

we begin by drawing randomly nx values of environmental inputs (xe,i) from the distribution f env. Then, we

draw randomly np sample paths of ξ and λ from the posterior distribution (see Figure 2c). For each path, the

probability of failure can be estimated by computing the pointwise probability of failure, and averaging on

the environmental input samples:

p j (xs) =
1

nx

nx

∑
i=1

P
( j)
f (xe,i,xs, tHF) , 1 ≤ j ≤ np. (11)

The p j’s are approximate samples of the posterior distribution of Pf (xs).

From these samples, a point estimate and an uncertainty can be computed. We use respectively median and

95% confidence interval. The uncertainty of the estimate takes account on the uncertainty of the environmen-

tal inputs (when nx values of environmental inputs are generated), of the output (when pointwise probability

of failure are computed), and of the posterior Bayesian model (when np sample paths are drawn from posterior

distribution). This algorithm has to be applied for each scenario of interest.

Summary of the methodology

Consider a fire safety study which has to be effected on a numerical field model. The numerical model is a

stochastic complex simulator, taking physical inputs x and a fidelity input t, and returning an output Z. The

inputs x must be the most significant on the output. Other parameters must be set, and are supposed known

and constant. The simulations should ideally be run at the level of fidelity tHF . The inputs x are divided

in two categories: environmental inputs xe and scenario inputs xs, x = (xe,xs). A distribution f env (xe) on

environmental inputs is specified. In order to estimate any quantity of interest, the procedure consists of:

1. Define different levels of fidelity, which must be lower fidelity than tHF . Generate a nested Latin Hy-

percube Sampling design (xi, ti)1≤i≤n according to the computation budget. For each point (xi, ti) of the

design, run the corresponding simulation, and get the output zi.

2. Condition the Gaussian process which models the simulator to the observations (xi, ti,zi)1≤i≤n.

3. Compute the posterior distribution of the quantity of interest. Deduce an estimate and an uncertainty.

For instance, the method described above can be used to estimate a probability of failure.

The methodology has two main advantages. First, as the simulator is described as a black box, the method is

not intrusive, and therefore, easily applicable on many types of simulators. Second, the distinction between

scenario and environment inputs does not impact the conditioning of Gaussian process. Consequently, once

the posterior distribution is computed, the scenario xs and the distribution f env (xe) can be changed as wished.

If scenario and/or environment distributions are modified, only the last step of the methodology must be

relaunched. This fact allows to draw curves of probabilities of failure according to various configurations.

APPLICATION

Description of the case

To illustrate the methodology, we present an example of fire safety analysis. We consider a real building

of the Laboratoire National de métrologie et d’Essais (LNE), which is a 20 m by 12 m by 16 m rectangular

parallelepiped. The thickness and the thermal properties of the walls are defined in accordance with the

present structure. It has two open doors at the floor level, 2 m by 1 m, and two natural smoke removal systems

in the ceiling, 2 m by 2 m (Figures 4a and 4b). The fire source is located in the center of the test hall, and

is described by a Heat Release Rate (HRR) evolution in three steps which are growing, steady state and

decreasing (Figure 4c). Concerning the boundary conditions, the gas in the computational domain is set still

with ambient temperature, and, at the free sides, a static pressure boundary condition is employed.
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Fig. 4. (a) External view of the considered building. (b) Section of the building. The triangle in the middle is

the fire, the bullet points are the sensors. (c) Time evolution of the Heat Release Rate.

The conformity of the smoke control system is estimated by comparing tenability conditions to critical thresh-

olds (see Table 1), determined according to the ISO standard 13571:2012 [21]. The three studied outputs are

the radiative heat flux H f , the temperature at 1.8 m Tc, and the visibility V . A simulation of FDS returns these

three outputs. During a simulation, sensors are put in the whole building at 1.8 m above the ground, except

above the plume of the fire (see Figure 4b). The distance between the sensors is 1 m. Each sensor returns a

time evolution of the three outputs. A post-treatment transforms these time evolutions into one scalar value

per output: the values on all sensors are averaged at each time step, and then the extremal value of this time-

dependent average is computed (maximum for the heat flux and the temperature, minimum for the visibility).

The outputs are analyzed separately.

Outputs Signification Failure

HF (kW ·m−2) Radiative Heat Flux > 2.5kW ·m−2

Tc (◦C) Temperature at 1.8 m > 60 ◦C

V (m) Visibility < 5m

Table 1. List of outputs studied during this experiment.

The study is carried out using FDS version 5.5.3. It is a CFD model of fire-driven fluid flow, developed by the

National Institute of Standards and Technology (NIST), which solves an approximation of the Navier-Stokes

equations appropriate for low-Mach number using finite difference methods [22].

Strictly speaking, the FDS-based simulator used in this application is a stochastic simulator (random fields

are initialized, inside FDS, with a pseudo-random number generator) that has been turned into a deterministic

simulator by fixing the seed of the generator. It can be observed, however, that the outputs of this simulator

are still very irregular functions of its physical inputs. This justifies, as explained previously, the use of a

stochastic simulator model (more precisely, a model with a nugget effect).

We focus on eight particular input variables, which are the most influential ones. Three of them are considered

as environmental inputs (external temperature, atmospheric pressure, and ambient temperature), while the

five other are categorized as scenario inputs (fire growth acceleration, fire area, maximal surface power, total

surface energy, and soot yield). Moreover, the size txyz of the mesh cells is used as the fidelity input in our

multi-fidelity approach. The time step is determined automatically from the mesh size txyz by FDS, in order

to satisfy the Courant-Friedrichs-Lewy (CFL) stability conditions [22, Section 6.4.7]. See Table 2 for more

information.

In this particular study, the number of mesh cells per meter is constrained by the geometry of the building

to be an integer (this constrained could be relaxed by using a less regular, adapted mesh). Consequently, the

mesh size txyz must be equal to 100cm/n, where n is a positive integer. Moreover, based on computation-time
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Random inputs Signification Distributions

Text (◦C) External temperature Text(
◦C)∼ N

(
10,6.662

)

Patm (bar) Mean atmospheric pressure Patm(bar)∼ N
(
1,0.006662

)

Tamb (◦C) Initial ambient temperature Tamb(
◦C)Text(

◦C)∼ N
(

22.5+2
(Text−10)

6.66
,1.52

)

Scenario inputs Signification Ranges

α (kW · s−2) Growth acceleration [0.011338;0.2]kW · s−2

A f (m2) Fire area [1;20]m2

Q̇′′ (kW ·m−2) Maximal Heat Release Rate [300;600]kW ·m−2

q fd (MJ ·m−2) Total surface released energy [300;600]MJ ·m−2

Ysoot (kg ·kg−1) Soot yield [0.01227;0.1227]kg ·kg−1

Fidelity input Signification Values

txyz (cm) Mesh size {100; 50; 33; 25; 20}cm

Table 2. List of inputs studied during this experiment. N is the normal distribution.

Levels 100 cm 50 cm 33 cm 25 cm 20 cm Total

Number of simulations in the design 270 90 30 10 0 400

Approximate computation time 4.7 min 65 min 6.2 h 21 h 2.3 days 21.4 days

Comparison with level 20 cm 1/700 1/50 1/8.8 1/2.6 1 9.5

Table 3. Description of the levels. Remarks: the computation time depends on the hardware, and the

simulations can be parallelized.

considerations, tHF = 20cm is chosen as the highest fidelity level. Five levels of fidelity are thus considered:

100 cm, 50 cm, 100/3 cm (hereafter referred to as 33 cm), 25 cm and 20 cm.

Numerical experiments are performed according to a nested LHS with four levels of observations: 270 simu-

lations at level 100 cm, 90 at 50 cm, 30 at 33 cm, 10 at 25 cm, which correspond to a total computation time

of approximately 21.4 days (see Table 3). No observations are made at the highest level tHF = 20cm, which

is only used for validation purposes.

Results

This section presents results obtained with our methodology. First, as an example of the kind of results that

can be obtained from the posterior distribution. Figure 5 presents the estimates of the three outputs along

the fire area A f axis, at high-fidelity level txyz = 20cm (other inputs being fixed at Text = 10 ◦C, Patm = 1bar,

Tamb = 22.5 ◦C, α = 0.1057kW · s−2, Q̇′′ = 460kW ·m−2, q fd = 450MJ ·m−2 and Ysoot = 0.027kg ·kg−1).

The solid line is the mean function of the posterior distribution, which is our estimator of ξ (defined in

Eq. (1)). The inner area around the line is the 95% confidence interval of the estimate. The outer area is the

95% confidence interval of future simulations, which also takes into account the output variability measured

by the variance λ (defined in Eq. (1)). We can observe that, as expected, the building becomes more dangerous

when the fire area grows.

Let us now consider the evaluation of conformity for some fire scenarios. As written in previous sections, the

building conformity can be assessed by the probability of exceeding the safety threshold (Table 1). We let the

fire area A f vary between 1 m2 and 20 m2, with one scenario every 0.25 m2. Other scenario inputs are fixed

to α = 0.1057kW · s−2; Q̇′′ = 460kW ·m−2; q fd = 450MJ ·m−2; Ysoot = 0.027kg ·kg−1. Thus, there are 77

fire scenarios for which the probability of failure is estimated. We use the method described in the previous

section to estimate probability of exceeding the threshold, with np = 106 sample paths and nx = 700 values

of environmental inputs. Estimates are presented in Figure 6. The solid line is the estimate of the probability

of exceeding the threshold at the given scenario. The area is the 95% confidence interval. Once again, we
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Fig. 5. Estimates of the three outputs as function of the fire area A f ∈ [1;20] m2. (a) Heat Flux H f . (b)

Temperature Tc. (c) Visibility V . The safety threshold of H f is never reached.
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Fig. 6. Estimates of probabilities of failure as function of the scenario variable A f ∈ [1;20] m2, the fire area.

Each figure corresponds to one output: (a) Heat Flux H f , (b) Temperature Tc and (c) Visibility V .
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find that the place becomes more dangerous when fire becomes bigger. These graphs show also the critical

scenario of the building. Thus, other scenario inputs being fixed, the building is safe until the fire area A f is

greater than 12 m2. We can also observe on the visibility, Figure 6c, that estimation of probability of failure

becomes very inaccurate around 17 m2. In fact, the width of the confidence interval becomes equal to 1,

implying that nothing can be deduced from the data about the value of the probability Pf at this point. To fix

this, additional simulations must be added to reduce the uncertainty. Of course, the inputs of these simulations

should be properly selected to provide as much information as possible. The methods for selecting the inputs

to observe are called sequential design of experiments.

In this subsection, the presented results depend on the fire area A f . However, the results (distribution of

outputs, probability of failure. . . ) can be analyzed according to any inputs (Q̇′′, α. . . , or many of them).

The Bayesian approach provides an estimate and a corresponding measure of uncertainty for any quantity of

interest.

The relevance of our method can be seen by comparing computation time (see Table 3). In fact, we can

observe that our multi-level design takes 270× 4.7
60×24

+ 90× 65
60×24

+ 30× 6.2
24

+ 10× 21
24

= 21.4 days to be

evaluated. In such a delay, about 21.4
2.3 = 9.5 high-fidelity simulations could be run, which is too few to draw

any conclusion about output values at unobserved locations or probability of failure. The other parts of our

procedure (selecting a DOE, building the posterior model, deducing results) last together about one hour.

Validation on additional data

The previous part presented the estimates obtained with a Bayesian multi-fidelity approach. This part com-

pares estimates with outputs of high-fidelity simulations, to assess their accuracy. In fact, there is no simula-

tion on the highest level of fidelity (see Table 3). However, we use our method to study a non-observed level.

Consequently, we must ensure that the method can estimate a non-observed level.

To do this, we launch 100 new simulations at 20 cm, the highest fidelity level. These new data are designed

according to an optimized maximin LHS, but are not involved in the construction of the conditional Gaussian

processes. The previously built posterior distribution estimates the outputs at the inputs of these high-fidelity

simulations. Thus, estimates (with uncertainty) can be compared with high-fidelity simulations.

Figure 7 presents the comparison between simulations and estimates at the highest level of fidelity, for the

three outputs. On these figures, estimates and simulations are distributed around the y = x line. The estimates

seems good on the whole input space. Observe that a few uncertainty bars do not cross the y = x line, which

is expected since they are 95% confidence intervals.

The method can also be checked by comparing the estimate of the probability of failure with the estimate

obtained with another method. To do it, the following fire scenario is chosen: α = 0.1057kW · s−2, A f =
14m2, Q̇′′ = 460kW ·m−2, q fd = 450MJ ·m−2, Ysoot = 0.027kg ·kg−1. This fire scenario is present on the

curves presented Figure 6. The results obtained by our method for this specific scenario are compared with

estimates of the probabilities of failure by Monte-Carlo, using 150 high-fidelity simulations.

Figure 8 presents the different results returned by both methods. For each figure, the left result is obtained

with our methodology and the uncertainty is measured as a 95% confidence interval, and the right one is

computed with Monte-Carlo and the uncertainty is measured as a 95% confidence interval. For the smoke

radiative Heat Flux, both methods estimate a probability of failure at 0. For the Temperature, both results are

similar. For the Visibility, our methodology returns a larger 95% interval than the Monte-Carlo method. As

emphasized earlier, some additional simulations are needed to learn on the Visibility. In the three cases, the

results of both methods are compatible.

Recall that the results presented for our methodology are based on a data set which took 21.4 days to be

computed. In contrast, the design used by Monte-Carlo method takes 150×2.3 = 345 days (see Table 3). So,

our method is 345
21.4 = 16 time faster than a direct Monte-Carlo method. Moreover, the Monte-Carlo method

gives a probability of failure for one scenario, while our methodology can provide estimates of the probability

of failure for any scenario.
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Fig. 7. Comparison between estimates (ordinate) and high-fidelity simulations (abscissa), for the three

outputs: (a) Heat Flux H f , (b) Temperature Tc and (c) Visibility V . The dashed diagonals are the lines y = x.

CONCLUSION

This article provides a method to assess the fire safety of a building using a complex, expensive-to-run nu-

merical simulator. The proposed method is non-intrusive, and treats the simulator as a black box, using a

Bayesian multi-fidelity approach. More exactly, we use a Gaussian process model to efficiently learn about

the simulator with a limited budget of simulation time. The prior Gaussian model, which represents our

assumption about the simulator, and observations of the simulator are combined to construct a posterior dis-

tribution, which is used to estimate quantities of interest, such as, in this paper, the probability of exceeding

a safety threshold.

Because of the complexity of the CFD model, the number of observation is limited. The multi-fidelity ap-

proach is a way to reduce the uncertainties of estimates for a given budget computation time. The idea consists

in combining fast low-fidelity and slow high-fidelity simulations of the simulator based on a CFD solver to

construct the posterior distribution.

The methodology was tested on a fire safety study. By comparing the computation time, the Bayesian multi-

fidelity approach was found to be, on this example, one order of magnitude faster than a standard one-level

Monte Carlo approach with comparable accuracy. The developed Bayesian models can estimate the expected

outputs of the simulator at the highest level of fidelity, and probabilities of failure at given fire scenarios.

Moreover, the posterior distributions provide a quantification of uncertainty for the quantities of interest. Our

methodology assesses safety quicker and with more confidence than with traditional analyses.

The proposed methodology, being non-intrusive by nature, can in principle be applied to virtually any sim-

ulator, and therefore to much more complicated examples than the one used in this paper as an illustration.

Some care is required, however, in order to ensure that the underlying prior model faithfully represents avail-

able knowledge about the simulator at hand. It is thus important to complement the methodology with tools

for model validation (e.g., cross-validation or posterior predictive checks) and assessment of robustness with

respect to modeling assumptions. These directions will be investigated in future work.
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Fig. 8. Comparison between the estimates of probabilities of failure returned by the method (left on figures)

and by Monte-Carlo (right on figures). The bullet points are estimates, and the bars are 95% uncertainties.

The methodology can also be improved regarding how the simulation points are selected. Indeed, the design

of experiment that we proposed follows general recommendations of the statistical literature, but additional

observations of the numerical model could be selected for the specific purpose of improving the estimation

of a particular quantity of interest. Future work will thus also focus on the sequential design of experiments

in such a multi-fidelity setting.
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