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Robust Calibration of Radio Interferometers in

Non-Gaussian Environment
Virginie Ollier, Mohammed Nabil El Korso, Rémy Boyer, Senior Member, IEEE, Pascal Larzabal, Member, IEEE

and Marius Pesavento, Member, IEEE

Abstract—The development of new phased array systems in
radio astronomy, as the low frequency array (LOFAR) and the
square kilometre array (SKA), formed of a large number of
small and flexible elementary antennas, has led to significant
challenges. Among them, model calibration is a crucial step
in order to provide accurate and thus meaningful images and
requires the estimation of all the perturbation effects introduced
along the signal propagation path, for a specific source direction
and antenna position. Usually, it is common to perform model cal-
ibration using the a priori knowledge regarding a small number
of known strong calibrator sources but under the assumption of
Gaussianity of the noise. Nevertheless, observations in the context
of radio astronomy are known to be affected by the presence
of outliers which are due to several causes, e.g., weak non-
calibrator sources or man made radio frequency interferences.
Consequently, the classical Gaussian noise assumption is violated
leading to severe degradation in performances. In order to
take into account the outlier effects, we assume that the noise
follows a spherically invariant random distribution. Based on
this modeling, a robust calibration algorithm is presented in this
paper. More precisely, this new scheme is based on the design of
an iterative relaxed concentrated maximum likelihood estimation
procedure which allows to obtain closed-form expressions for the
unknown parameters with a reasonable computational cost. This
is of importance as the number of estimated parameters depends
on the number of antenna elements, which is large for the
new generation of radio interferometers. Numerical simulations
reveal that the proposed algorithm outperforms the state-of-the-
art calibration techniques.

Index Terms—Calibration, robustness, spherically invariant
random process, relaxed concentrated maximum likelihood,
Jones matrices, radio astronomy

I. INTRODUCTION

Radio astronomy aims to study radio emissions from the

sky, in order to detect, identify new objects and observe known

structures at higher resolution, in a specific electromagnetic

spectrum [1]. This fundamental thematic shines a new light on

our universe, revealing more about its nature and history. In

order to carry out particularly sensitive observations in a large
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range of the spectrum, and to handle significant cosmological

issues, largely distributed sensor arrays are currently being

built or planned, such as the low frequency array (LOFAR) [2]

and the square kilometre array (SKA) [3]. They will notably

be composed of a large number of relatively low-cost small

antennas with wide field of view, resulting in a large collecting

area and high resolution imaging. Nevertheless, to meet the

theoretical optimal performances of such next generation radio

interferometers, a plethora of signal processing challenges

must be overcome, among them, calibration, data reduction

and image synthesis [4]–[7]. These aspects are intertwined

and must be dealt with to take advantage of the new advanced

radio interferometers. As an example, lack of calibration has

dramatic effects in the image reconstruction by causing severe

distortions. In this paper, we focus on calibration, which

involves the estimation of all unknown perturbation effects

and represents a cornerstone of the imaging step [8]–[10].

Array calibration aspects have been tackled for a few

decades in the array processing community leading to a variety

of calibration algorithms [11]–[13]. Such algorithms can be

classified into two different approaches depending on the

presence [14]–[16], or the absence [17]–[22], of one or more

cooperative sources, named calibrator sources. In the radio

astronomy context, calibration is commonly treated using the

first approach as we have access to prior knowledge thanks

to tables describing accuratly the position and flux of the

brightest sources [23].

Following this methodology, the majority of proposed cal-

ibration schemes in radio interferometry are least squares-

based approaches. The state-of-the-art consists in the so-called

alternating least squares approach [24]–[27], which leads to

statistically efficient algorithm under a Gaussian model, since

the least squares estimator is equivalent to the maximum

likelihood (ML) estimator in this case. On the other hand,

expectation maximization (EM) [28]–[30] and EM-based al-

gorithms, such as the space alternating generalized expectation

maximization algorithm [31], have been proposed in order

to enhance the convergence rate of the least squares-based

calibration algorithms [32]. Nevertheless, the major drawback

of these schemes is the Gaussianity assumption which is

not realistic in the radio astronomy context. Specifically, the

presence of outliers has multiple causes, among which i) the

radio frequency interferers, which corrupt the observations and

are not always perfectly filtered in practice [33,34], ii) the

presence of unknown weak sources in the background [35],

iii) the presence of some punctual events such as interference

due to the Sun or due to strong sources in the sidelobes which



can also randomly create outliers [36]. To the best of our

knowledge, the proposed scheme in [35], represents the only

alternative to the existing calibration algorithms based on a

Gaussian noise model.

In [35], theoretical and experimental analyses have been

conducted in order to demonstrate that the effect of outliers in

the radio astronomy context can indeed be modeled by a non-

Gaussian heavy-tailed distributed noise process. Nevertheless,

the algorithm presented in [35] has its own limits, since the

noise is specifically modeled as a Student’s t with independent

identically distributed entries. To improve the robustness of the

calibration, we propose, in this paper, a new scheme based

on a broader class of distributions gathered under the so-

called spherically invariant random noise modeling [37,38],

which includes the Student’s t distribution. A spherically

invariant random vector (SIRV) is described as the product

of a positive random variable, named texture, and the so-

called speckle component which is Gaussian, resulting in a

two-scale compound Gaussian distribution [39]. The flexibility

of the SIRV modeling allows to consider non-Gaussian heavy-

tailed distributed noise in the presence of outliers, but also to

adaptively consider Gaussian noise in the extreme case when

there are no outliers. Under the SIRV model, we estimate

the unknown parameters iteratively based on a relaxed ML

estimator, leading to closed-form expressions for the noise

parameters while a block coordinate descent (BCD) algorithm

[40,41] is designed to obtain the estimates of parameters of

interest efficiently and at a low cost.

Finally, it is worth mentioning that the parametric model

used in this paper to describe the perturbation effects is

based on the so-called Jones matrices [42,43]. Such formalism

describes in a flexible way the conversion of the incident

electric field into voltages. Indeed, along its propagation path,

the signal is affected by various effects and transformations

which correspond to matrix multiplications in the mathemati-

cal Jones framework. Multiple distortion effects caused by the

environment and/or the instruments can be easily incorporated

into the model using an adequate parametrization of the Jones

matrices. Such effects can represent, for example, the iono-

spheric phase delay resulting in angular shifts, the atmospheric

distortions, the typical phase delay due to geometric pathlength

difference, the voltage primary beam, the cross-leakage or

also the electronic gains [44,45]. For the above reasons and

due to its flexibility [1,32,42]–[44], we adopt this parametric

model. We make a distinction between the non-structured and

the structured cases: in the first one, one total Jones matrix

stands for all the effects along the full signal path while in

the second case, we regard each physical effect separately

thanks to individual Jones terms in a cumulative product. Thus,

different corruptions are described by different kinds of Jones

matrices. We emphasize that the proposed algorithm, entitled

relaxed concentrated ML estimator, is a generic algorithm as

it is based on a non-structured Jones matrices formulation as

a first step. However, it can be adapted to various regimes

describing distinct calibration scenarios in which an array can

operate [46]. In this paper, we consider the specific example

of the direction dependent distortion regime with a compact

set of antennas, which we refer to as the 3DC regime. The

array is therefore considered as a closely packed group of

antennas but the array elements have a wide field of view.

This is particularly well-adapted for calibration of compact

arrays, typically a LOFAR station.

The rest of the paper is organized as follows: in Section

II, we present the data model in the context of radio astron-

omy, first with non-structured Jones matrices and thereafter,

we study an example of structured Jones matrices for the

3DC calibration regime. In Section III, we give an overview

of the proposed robust ML estimator, based on spherically

invariant random process (SIRP) noise modeling. An efficient

estimation procedure of the distortions introduced on each

signal propagation path is derived in Section IV. Then, the

algorithm is adapted to the case of structured Jones matrices in

Section V for the 3DC calibration regime. Finally, we provide

numerical simulations in Section VI to assess the robustness

of the approach and draw our conclusions in Section VII.

In this paper, we use the following notation: symbols (·)T ,

(·)∗, (·)H denote, respectively, the transpose, the complex

conjugate and the Hermitian transpose. The Kronecker product

is represented by ⊗, E{·} denotes the expectation operator,

bdiag{·} is the block-diagonal operator, whereas diag{·} con-

verts a vector into a diagonal matrix. The trace and determinant

operators are, respectively, referred by tr {·} and | · |. The

symbol IB represents the B×B identity matrix, vec(·) stacks

the columns of a matrix on top of one another, || · ||F is the

Frobenius norm, while ||·||2 denotes the l2 norm. Finally, ℜ{·}
represents the real part and we note j the complex number

whose square equals −1.

II. DATA MODEL

A. Case of non-structured Jones matrices

Let us consider M antennas with known locations that

receive D signals emitted by calibrator sources. Each antenna

is dual polarized and composed of two receptors, in order

to provide sensitivity to the two orthogonal polarization di-

rections (x, y) of the incident electromagnetic plane wave.

Consequently, the relation between the i-th source emission

and the measured voltage at the p-th antenna is given by

[42,43,47]

vi,p(θ) = Ji,p(θ)si (1)

where si = [six , siy ]
T is the incoming signal, vi,p(θ) =

[vi,px
(θ), vi,py

(θ)]T is the generated voltage with one output

for each polarization direction and Ji,p(θ) denotes the so-

called 2×2 Jones matrix, parametrized by the unknown vector

of interest θ. The Jones matrix models the array response

and all the perturbations introduced along the path from the

i-th source to the p-th sensor. Since each propagation path

is particular, we can associate a different Jones matrix with

each source-antenna pair (i, p), leading to a total number of

DM Jones matrices. In this section, we consider the non-

structured case where no specific perturbation model is used

to describe the physical mechanism behind each perturbation

effect and the unknown elements correspond to the entries of

all Jones matrices [32,48] (a structured example is given for

3DC calibration regime, in Section II-B).
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For each antenna pair, we compute the correlation of the

output signals, resulting in the typical observations recorded

by a radio interferometer. The correlation between voltages is

given, in the case of noise free measurements, for the (p, q)
antenna pair, by

Vpq(θ) = E

{(

D
∑

i=1

vi,p(θ)

)(

D
∑

i=1

vH
i,q(θ)

)}

=

D
∑

i=1

Ji,p(θ)CiJ
H
i,q(θ) for p < q, p, q ∈ {1, . . . ,M},

(2)

where the signals emitted by the sources are assumed uncor-

related and the 2 × 2 matrix Ci = E{sisHi } is known from

prior knowledge. Let us remark that autocorrelations are not

considered as shown by the condition p < q in (2) (this is a

typical situation in the radio astronomy context where radio

interferometric systems automatically flag the autocorrelations

[2]).

Using the property vec(ABC) = (CT ⊗ A)vec(B), we

rewrite (2) as a 4× 1 vector

ṽpq(θ) = vec
(

Vpq(θ)
)

=

D
∑

i=1

ui,pq(θ) (3)

in which ui,pq(θ) =
(

J∗
i,q(θ)⊗ Ji,p(θ)

)

ci with ci =
vec(Ci). We stack all the noisy measurements within a full

vector x =
[

vT
12,v

T
13, . . . ,v

T
(M−1)M

]T

∈ C
4B×1, where

B = M(M−1)
2 denotes the total number of antenna pairs and

vpq = ṽpq(θ) + npq with npq the noise sample at a specific

antenna pair. Specifically, x reads

x =

D
∑

i=1

ui(θ) + n (4)

in which ui(θ) =
[

uT
i,12(θ),u

T
i,13(θ), . . . ,u

T
i,(M−1)M (θ)

]T

and n =
[

nT
12,n

T
13, . . . ,n

T
(M−1)M

]T

is the full noise vector

which accounts for Gaussian noise, but also the presence

of outliers in our data. Therefore, the noise can no longer

be considered Gaussian and a robust calibration method is

required. To investigate non-Gaussian noise modeling and

encompass a broad range of noise distributions, we propose

to adopt the SIRP noise model [37,38]. Specifically, the noise

at each antenna pair is assumed to be generated as

npq =
√
τpq gpq, (5)

where the positive real random variable τpq is referred to as

texture, whereas the complex speckle component gpq follows

a zero-mean Gaussian distribution1, i.e.,

gpq ∼ CN (0,Ω). (6)

In order to remove scaling ambiguities, we impose tr {Ω} = 1.

Note that the choice of this constraint is arbitrary and does not

affect the estimates of interest as argued in [49].

1Let us note that it is possible to consider a different covariance matrix Ωpq

for each speckle component gpq in (6). In this case, the proposed algorithm
requires a few modifications and the corresponding expressions are presented
in Appendix A.

A: array aperture

V : station field-of-view

ionosphere

S: ionospheric

irregularity scale

Fig. 1. 3DC calibration regime, for which V ≫ S and S ≫ A. All receiving
elements in the station see the same ionosphere part but, due to their wide
field of view, a multitude of sources are visible and perturbations are highly
direction dependent.

In this section, we adopted the non-structured Jones matrices

formulation which is relevant in the radio astronomical context

[32,48]. In this case, there is no need to specify the full

propagation path, avoiding misspecification in the model.

Besides, it is highly flexible and can be adapted to different

scenarios [46]. In the following, we present the direction

dependent distortion regime with a compact set of antennas,

named 3DC regime.

B. Specific case of the 3DC calibration regime

For a specific propagation path, from the i-th source to the

p-th antenna, the global Jones matrix Ji,p accounts for multiple

effects which can be described explicitly. Indeed, each global

matrix can be decomposed into individual Jones terms which

stand for specific physical effects [43,44]. This way, instead

of estimating entries of all Jones matrices as done in the

non-structured case, we will estimate physically meaningful

parameters, thus reducing the total number of parameters to

estimate. Introducing structured Jones matrices can be done in

the context of calibration scenarios [10,46]. In what follows,

we target one specific commonly used calibration regime that

we call 3DC calibration regime, described in Fig. 1, which is

well adapted for calibration of LOFAR on station level [26],

and also for stations of the future SKA radio interferometer

[10]. In this scenario, direction dependent distortions play a

significant role since individual elements in the array have
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a wide field of view. Indeed, this implies different propaga-

tion conditions towards distinct sources in the field of view.

However, the array being relatively compact, made of similar

elements, some effects might be the same for all antennas.

In the following, we introduce a particular sequence of Jones

matrices with specific parametrizations, in the context of 3DC

calibration regime [50]

Ji,p(θ
3DC
i,p ) = Gp(gp)Hi,pZi,p(αi)Fi(ϑi) (7)

for i ∈ {1, . . . , D}, p ∈ {1, . . . ,M} and θ3DC
i,p =

[ϑi,g
T
p ,α

T
i ]

T . We note Hi,p the only assumed known matrix

thanks to electromagnetic simulations in terms of antenna

response and a priori knowledge given by calibrator source

and antenna positions [43,44,50,51], whereas the remaining

matrices are explained in the following items.

• Ionospheric effects :

Propagation through the ionosphere, the outer layer of the

earth’s atmosphere, introduces propagation delay on the signal

which is affected by spatially variable fluctuations. If these

perturbation effects are not corrected for, the sources may

appear shifted from their intrinsic positions [10,52]. In the

case of a compact array, the ionospheric delay matrix is in

fact a scalar direction-dependent phase given by

Zi,p(αi) = exp
{

jϕi,p

}

I2 (8)

in which ϕi,p = ηiup + ζivp where αi = [ηi, ζi]
T is the

vector of unknown offsets resulting in a shift of the i-th source

direction and rp = [up, vp]
T is the vector of known antenna

position in units of wavelength.

On top of that, passing through the ionosphere is associated

with a rotation of the polarisation plane of each signal source

around the line of sight. We call it the ionospheric Faraday

rotation matrix Fi(ϑi) and write it as

Fi(ϑi) =

[

cos(ϑi) − sin(ϑi)
sin(ϑi) cos(ϑi)

]

(9)

where ϑi is the unknown Faraday rotation angle, assumed

identical for all antennas, since the array has a limited spatial

extent [44].

• Instrumental effects :

Individual antennas are described by electronic complex gains

which appear in Gp(gp) = diag{gp} with gp the unknown

electronic gain vector.

Therefore, in this specific structured case, the physi-

cal model parameters in (7) are collected in the vec-

tor ε3DC = P[θ3DCT

1,1 , θ3DCT

1,2 , . . . , θ3DCT

D,M ]T where P is

an appropriate rearrangement matrix such that ε3DC =
[ϑ1, . . . , ϑD,gT

1 , . . . ,g
T
M ,αT

1 , . . . ,α
T
D]T .

III. ROBUST CALIBRATION ESTIMATOR

This section is devoted to the design of a robust calibra-

tion estimator based on the model (4). As it can be seen

from (5), one has to specify the probability density function

(pdf) of each texture parameter τpq in order to obtain the

exact ML estimates. Nevertheless, in pratical scenarios, such

prior knowledge is not available. Consequently, our idea is

to make use of a relaxed version of the exact model, i.e.,

we assume deterministic but unknown texture realizations in

the estimation process [53,54]. This ensures more flexibility

in our algorithm as the texture distribution is not precisely

described and avoids any possible model misspecification,

which is consistent with our motivation to design a broad

robust estimator w.r.t. the presence of outliers. On the other

hand, we adopt here an iterative procedure in order to reduce

the computational cost. In doing so, the proposed algorithm

sequentially updates each block of unknown parameters while

fixing the remaining parameters. This leads to a relaxed

concentrated ML based calibration estimator for which the

expression of the likelihood function, when independency is

assumed between measurements, is written as

f(x|θ, τ ,Ω) =
∏

pq

1

|πτpqΩ|
exp

{

− 1

τpq
aHpq(θ)Ω

−1apq(θ)

}

, (10)

where the vector composed of all texture realizations is

τ = [τ12, τ13, . . . , τ(M−1)M ]T and apq(θ) = vpq − ṽpq(θ).
Consequently, the log-likelihood function reads

log f(x|θ, τ ,Ω) = −4B log π

− 4
∑

pq

log τpq −B log |Ω| −
∑

pq

1

τpq
aHpq(θ)Ω

−1apq(θ).

(11)

In the following, we present the sequential updates of each

block of unknown parameters, namely, τ , Ω and θ, following

the methodology as in [55,56].

1) Derivation of τ̂pq: Taking the derivative of the log-

likelihood function in (11) w.r.t. τpq leads to the following

texture estimate

τ̂pq =
1

4
aHpq(θ)Ω

−1apq(θ). (12)

2) Derivation of Ω̂: The derivative of the log-likelihood

function w.r.t. the element [Ω]k,l of the speckle covariance

matrix, using classical differential properties [57, p. 2741],

leads to

−Btr
{

Ω̂−1eke
T
l

}

+
∑

pq

1

τpq
aHpq(θ)Ω̂

−1eke
T
l Ω̂

−1apq(θ) = 0

(13)

where the vector ek contains zeros except at the k-th position

which is equal to unity. The permutation property of the trace

operator enables to rewrite (13) as

−BeTl Ω̂
−1ek +

∑

pq

1

τpq
eTl Ω̂

−1apq(θ)a
H
pq(θ)Ω̂

−1ek = 0.

(14)

This finally leads to the following estimate of the speckle

covariance matrix

Ω̂ =
1

B

∑

pq

1

τpq
apq(θ)a

H
pq(θ). (15)

Inserting (12) into (15), we obtain

Ω̂h+1 =
4

B

∑

pq

apq(θ)a
H
pq(θ)

aHpq(θ)
(

Ω̂h

)−1

apq(θ)

(16)
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where h denotes the h-th iteration. Due to the introduced

constraint, we normalize the estimate of Ω by its trace, as

follows

Ω̂h+1 =
Ω̂h+1

tr
{

Ω̂h+1
} . (17)

3) Estimation of θ̂: For given Ω and τ , estimating θ̂ is

equivalent to the following minimization problem

θ̂ = argmin
θ

{

∑

pq

1

τpq
aHpq(θ)Ω

−1apq(θ)

}

. (18)

In the following, we aim to reduce the computational cost of

the minimization procedure in (18) by use of the EM algo-

rithm. For generality, we first adopt the non-structured Jones

matrix formulation, which can also be specified depending on

the scenario, as shown in Section V.

IV. ESTIMATION OF θ̂ FOR NON-STRUCTURED JONES

MATRICES

Estimating directly the entries of the Jones matrices avoids

specifying any particular physical model, leading to a cali-

bration algorithm which is less sensitive to model errors in

comparison with algorithms based on the structured case. Due

to the possible large size of θ, a multi-dimensional parameter

search needs to be carried out to solve the optimization

problem in (18) which requires significant computation time.

To reduce this complexity, we make use of the EM algorithm.

The essence of this algorithm relies on a proper parameter

vector partitioning as well as an adequate choice of the so-

called complete data. As mentioned above, the parameters

of interest θ represent the entries of all Jones matrices.

Consequently, it is natural to consider the following partition

θ = [θT
1 , . . . , θ

T
D]T = [θT

1,1, . . . , θ
T
1,M , . . . , θT

D,1, . . . , θ
T
D,M ]T ,

(19)

for which the vector θi,p ∈ R8×1 is the parametrization of

the path from the i-th calibrator source to the p-th sensor, i.e.,

Ji,p(θ) = Ji,p(θi,p).

A. Use of the EM algorithm to solve (18)

The EM algorithm [28]–[30] enables to compute the ML

estimates and reduce the computational cost, via the iteration

of two steps. The first one is the E-step which reduces, in our

scenario, to the computation of the conditional expectation

of the complete data given the observed data and the current

estimate of parameters [32,58]. Afterwards, the log-likelihood

function of this conditional distribution is maximized in the

M-step. Therefore, this last step consists in an optimization

process which can be performed numerically, for instance

with the Levenberg-Marquardt (LM) algorithm [59]–[61], or

analytically if closed-form expressions are available. As we

show in the following, the optimization step is carried out

w.r.t. to θi ∈ C4M×1 instead of θ ∈ C4DM×1. Therefore,

the global multiple source estimation problem is reduced to

multiple single source sub-problems.

1) E-step: For the i-th source, we introduce the so-called

complete data vector wi such that

x =
D
∑

i=1

wi (20)

with wi = ui(θi) + ni and n =
∑D

i=1 ni, in which

ni ∼ CN (0, βiΨ). We have
∑D

i=1 βi = 1 and Ψ is the

covariance matrix of n. Since npq ∼ CN (0, τpqΩ) and with

the independence property, we obtain the following block-

diagonal expression for Ψ

Ψ = bdiag{τ12Ω, . . . , τ(M−1)MΩ}. (21)

Let us note w = [wT
1 , . . . ,w

T
D]T the complete data vector,

whose covariance matrix, denoted as Ξ, has the following form

Ξ = bdiag{β1Ψ, . . . , βDΨ}. (22)

With [62, p. 36], and after some calculus, the expression of

the conditional expectation is given by

ŵi = E{wi|x; θ, τ ,Ω}

= ui(θi) + βi

(

x−
D
∑

l=1

ul(θl)

)

. (23)

2) M-step: The goal of this step is to estimate θi. Once

ŵi are computed for i ∈ {1, . . . , D}, the estimated complete

data vector ŵ can be evaluated. The M-step is an optimization

problem based on the following likelihood function where wi

are independent

f(ŵ|θ, τ ,Ω) =

1

|πΞ| exp
{

−
(

ŵ− u(θ)
)H

Ξ−1
(

ŵ − u(θ)
)

}

=

D
∏

i=1

1

|πβiΨ|
exp

{

−
(

ŵi − ui(θi)
)H

(βiΨ)−1
(

ŵi − ui(θi)
)

}

.

(24)

To obtain an estimation of θi, we need to minimize the

following cost function

φi(θi) =
(

ŵi − ui(θi)
)H

(βiΨ)−1
(

ŵi − ui(θi)
)

. (25)

To decrease even more the complexity cost of the proposed

robust calibration scheme, we use the BCD algorithm [40,41]

in the M-step. Consequently, we obtain analytical solutions for

each single source sub-problems in (25), as shown below.

B. Use of the BCD algorithm to minimize (25)

In (25), the optimization is performed w.r.t. θi. However,

this unknown parameter vector can be partitioned according

to the antennas, as expressed in (19). In the following, we

perform the optimization of the cost function w.r.t. each θi,p

(p-th antenna), given the current estimates of all the other θi,q

with q 6= p. This leads to a closed-form expression of θ̂i,p

as function of θi,q for q 6= p and the optimization process is

repeated for each component vector θi,p for p ∈ {1, . . . ,M}.
If we want to minimize (25) w.r.t. block-coordinate vector

θi,p, we notice that only a subset of ui(θi) is actually

5



dependent on θi,p, i.e., {ui,pq} for q > p, q ∈ {1, . . . ,M}
and {ui,qp} for q < p, q ∈ {1, . . . ,M}. Therefore, (25)

reads

φi(θi,p) =
M
∑

q=1
q>p

(

wi,pq − ui,pq(θi,p)
)H

(βiτpqΩ)−1
(

wi,pq − ui,pq(θi,p)
)

+

M
∑

q=1
q<p

(

wi,qp − ui,qp(θi,p)
)H

(βiτqpΩ)−1
(

wi,qp − ui,qp(θi,p)
)

+

Constant. (26)

By Constant, we mean the expressions independent of θi,p.

We show in Appendix B that it is possible to write ui,pq

directly as a function of θi,p, i.e.,

ui,pq(θi,p) = Σi,qθi,p. (27)

In the same way, we have

ui,qp(θi,p) = Υi,qθ
∗
i,p. (28)

Notation and calculations being introduced in Appendix B, we

only present here the results obtained, i.e., the expression of

the estimated entries of the Jones matrix associated with the

path from the i-th calibrator source to the p-th sensor which

is given by

θ̂i,p =











(ΣH
i Ai,pΣi +Υ

H
i Ãi,pΥi)

−1
×

(ΣH
i Ai,pwi,p +Υ

H
i Ãi,pw̃i,p) for 1 < p < M

(ΣH
i Ai,pΣi)

−1
Σ

H
i Ai,pwi,p for p = 1

(ΥH
i Ãi,pΥi)

−1
Υ

H
i Ãi,pw̃i,p for p = M

(29)

Therefore, θi,p for p ∈ {1, . . . ,M} are estimated in an

iterative loop. With (25) and (29), it can be proven that the

BCD algorithm leads to unique solutions and thus, conver-

gence to at least a local maximizer, is ensured [63]. If the

M-step is performed exactly (i.e., the BCD gives the exact

minimizer of (25) and consequently, the M step is exactly

solved), convergence of the EM algorithm to a stationary

point is ensured (to avoid the unusual case of convergence

to a saddle point, a proper initialization is required) [30],

with a theoretical infinite number of iterations. Finally, in

this case, convergence of the concentrated MLE is guaranteed

for an infinite number of iterations since the value of the

cost function at each step can either improve or maintain

but cannot worsen [64]. In practice, only a finite number of

iterations is considered in each loop, so we might not attain

local convergence. However, we show in section VI-A the

relatively good numerical stability of the algorithm.

The scheme of the proposed algorithm is described in

Algorithm 1.

V. STRUCTURED JONES MATRICES

We recall that the output of Algorithm 1 is the estimate

of each Jones matrix denoted by Ĵi,p for i ∈ {1, . . . , D} and

p ∈ {1, . . . ,M}. In the following, we consider the data model

in (7) for the specific 3DC calibration regime, and intend to

estimate the unknown parameter vector of interest ε3DC in a

Algorithm 1: Relaxed concentrated ML based calibration

algorithm

input : D, M , B, Ci, βi, x

output : θ̂

initialize: Ω̂ ← Ωinit, τ̂ ← τinit, θ̂ ← θinit

1 while stop criterion unreached do

2 while stop criterion unreached do

33 E-step: ŵi obtained from (23), i ∈ {1, . . . , D}
44 M-step: θ̂i obtained as follows, i ∈ {1, . . . , D}
5 while stop criterion unreached do

6 θ̂i,p obtained from (29),

p ∈ {1, . . . ,M}
7 end

8 end

99 Obtain Ω̂ from (16) and (17),

1010 Obtain τ̂ from (12)

11 end

sequential manner. To do so, we use an iterative estimation

procedure by optimizing a cost function w.r.t. one parameter

while fixing the others.

1) Estimation of gp: The diagonal elements of the gain

matrix are given by

ĝp = argmin
gp

κ(gp) (30)

where κ(gp) =
∑D

i=1 ||Ĵi,p − Gp(gp)Hi,pZi,pFi||2F . We

rewrite the cost function as

κ(gp) =
D
∑

i=1

Tr
{(

Ĵi,p−Gp(gp)Ri,p

)(

Ĵi,p−Gp(gp)Ri,p

)H}

(31)

in which Ri,p = Hi,pZi,pFi. The derivation of κ(gp) w.r.t.

the k-th element [gp]k leads to

∂κ(gp)

∂[gp]k
=

D
∑

i=1

Tr
{

− eke
T
kRi,pĴ

H
i,p + eke

T
kRi,pR

H
i,pG

H
p

}

.

(32)

Let us denote Xi,p = Ri,pĴ
H
i,p and Wi,p = Ri,pR

H
i,p. From

(32), we deduce the equation satisfied by the gain matrix

D
∑

i=1

[Xi,p]k,k =

D
∑

i=1

[Wi,pĜ
H
p ]k,k

=

D
∑

i=1

[Wi,p]k,k[Ĝ
∗
p]k,k (33)

for k ∈ {1, 2}, since Gp is a diagonal matrix. Therefore, each

complex gain element is estimated as

[ĝp]k =
(

D
∑

i=1

[W∗
i,p]k,k

)−1 D
∑

i=1

[X∗
i,p]k,k. (34)

2) Estimation of αi: We first need to estimate ϕi,p (we

recall that ϕi,p = ηiup + ζivp). This is done as follows

ϕ̂i,p = argmin
ϕi,p

κ̃(ϕi,p) (35)
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where κ̃(ϕi,p) = ||Ĵi,p −GpHi,pZi,p(ϕi,p)Fi||2F . Taking the

derivative of κ̃(ϕi,p) w.r.t. ϕi,p and setting the result to zero,

we obtain

Tr
{

j exp−jϕ̂i,p Ĵi,pF
H
i HH

i,pG
H
p − j expjϕ̂i,p GpHi,pFiĴ

H
i,p

}

= 0 (36)

which leads to

exp
{

2jϕ̂i,p

}

=
Tr
{

Mi,p

}

Tr
{

MH
i,p

} (37)

where Mi,p = Ĵi,pF
H
i HH

i,pG
H
p .

In the case of a compact array, we can write for the i-th

source

ϕT
i = α̂T

i Λ (38)

where ϕi = [ϕ̂i,1, . . . , ϕ̂i,M ]T and Λ =

[

u1, . . . , uM

v1, . . . , vM

]

.

Therefore, estimation of the directional shifts due to propaga-

tion in the ionosphere is given by

α̂T
i =

ϕT
i Λ

H

[

∑M
p=1 v

2
p −∑M

p=1 upvp

−∑M

p=1 vpup

∑M

p=1 u
2
p

]

∑M

p=1 u
2
p

∑M

p=1 v
2
p − (

∑M

p=1 upvp)2
. (39)

3) Estimation of ϑi: We consider the following minimiza-

tion problem

ϑ̂i = argmin
ϑi

M
∑

p=1

||Ĵi,p −GpHi,pZi,pFi(ϑi)||2F . (40)

We assume a large number of antennas M while the number

of calibrator sources D is relatively reduced, such that ob-

servations outnumber unknown parameters. For each source,

the 1D optimization in (40) can be computed in a reasonable

computational time through a classical data grid search or a

Newton type algorithm.

Finally, the proposed algorithm for the structured Jones

matrices case regarding 3DC calibration regime is given in

Algorithm 2.

Algorithm 2: Case of structured Jones matrices

input : D, M , B, Ci, βi, x, Ĵi,p as output of

Algorithm 1, i ∈ {1, . . . , D} and

p ∈ {1, . . . ,M}
output : ε̂3DC

initialize: ε̂3DC ← ε3DC
init

1 while stop criterion unreached do

11 Obtain ϑ̂i from (40), i ∈ {1, . . . , D}
22 Obtain ĝp from (34), p ∈ {1, . . . ,M}
33 Obtain αi = [ηi, ζi]

T from (39), i ∈ {1, . . . , D}
4 end

VI. NUMERICAL SIMULATIONS

In this part, we first aim to assess the statistical performance

of Algorithm 1, when the noise model matches our noise

assumption, i.e., a SIRP noise modeling. Afterwards, we

intend to study our proposed algorithm, in a more realistic

scenario where outliers are present. More specifically, the sky

is composed of D known bright calibrator sources but also

D′ weak non-calibrator sources which are absorbed in the

noise component and act as outliers. Under such assumption,

we compare our scheme with the recently introduced robust

calibration approach based on Student’s t [35] and with the

traditional Gaussian cases [32]. Finally, we apply Algorithm 2

to the introduced 3DC calibration regime where Jones matrices

are structured.

A. Numerical results under SIRP noise

The unknown parameters to estimate, θ given in (19),

correspond to the real and imaginary parts of the entries of

all Jones matrices. The additive noise in (4) is assumed to

follow a SIRP as in (5) and the number of Monte Carlo runs

is set to 100.

In order to evaluate the estimation performance of the

relaxed concentrated ML based calibration algorithm, we fix

the noise distribution, e.g., as a Student’s t and make use of

the Cramér-Rao bound (CRB) [65]. To do so, each random

texture component is supposed to follow an inverse gamma

distribution [66]. As an example,

τpq ∼ IG(ν/2, ν/2), (41)

with ν degrees of freedom [67] and we choose for example

[Ω]k,l = σ20.9|k−l| expj
π
2
(k−l).

The covariance inequality principle states that, under quite

general/weak conditions, the variance satisfies

MSE([θ̂]k) = E
{(

[θ̂]k − [θ]k

)2}

> [CRB(θ)]k,k (42)

where the CRB is given as the inverse of the Fisher informa-

tion matrix (FIM) F. A Slepian-Bangs type formula of the FIM

for SIRP observations is given in [68] which can be adapted

to our case and reads

[F]k,l = 2
ν + 4

ν + 5

∑

pq

ℜ
{

∂ṽH
pq(θ)

∂[θ]k
Ω−1 ∂ṽpq(θ)

∂[θ]l

}

. (43)

Note that the noise parameters are decoupled from the param-

eters of interest. Consequently, only the part corresponding to

the latter is kept in the FIM expression.

First, in Fig. 2(a), we plot the mean square error (MSE)

of the real part of each unknown parameter, obtained with

Algorithm 1, for a signal-to-noise ratio SNR = 15dB. We

only plot the parameters relative to one given source, the

behavior being the same for any source. We also compare

the MSE of one given parameter, as a function of the SNR,

to its corresponding CRB in Fig. 2(b). This enables to assess

the statistical performance of Algorithm 1, and we notice that

the MSE approaches the CRB. The small gap between the

bound and the algorithm is explained by the relaxed nature

hypothesis used in the design of Algorithm 1. Indeed, we
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Fig. 2. (a) MSE of the real part of the first 32 unknown parameters for a
given SNR, (b) MSE vs. SNR for the real part of a given unknown parameter
and the corresponding CRB, for D = 2 bright signal sources and M = 8

antennas, leading to 128 real unknown parameters of interest to estimate and
224 measurements.

have assumed unknown and deterministic texture parameters

when we derived the estimates using Algorithm 1, but in

the data model, these parameters are generated as random

variables following inverse gamma distribution and the CRB

was derived using the prior of the pdf of the texture.

Second, we now aim to investigate numerically the conver-

gence properties of our algorithm, which is composed of 3

loops. In each of these loops, θ is updated at each iteration.

We therefore consider the following quantity

ǫhℜ{θ} = ||ℜ
{

θh − θh−1
}

||22 (44)

where h refers to the h-th iteration. In Fig. 3 we present the

convergence rate of loops described in Algorithm 1 at line 1

and 2 (the analysis of convergence of the third loop, given in

line 5, has the same behavior as the loop in line 2 and thus,

is not reported here). We note that around 5 iterations are

required in loop 2 to attain convergence while approximately

20 iterations are needed for the algorithm to be stable, in
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Fig. 3. ǫh
ℜ{θ}

as function of the h-th iteration, for loop in line 2 (a), and in

line 1 (b) from Algorithm 1.

loop 1. Nevetheless, in simulations, we notice that only 3 to

4 iterations are sufficient to get close to the CRB.

B. Numerical results using a realistic model

Let us investigate the robustness of our proposed calibration

procedure in a realistic situation, and compare it with the

state-of-the-art. To do so, we consider D calibrator sources,

D′ weak outlier sources and Gaussian background noise in

our data model. The real parameters of interest to estimate

still correspond to the real and imaginary entries of the

Jones matrices associated to the calibrator sources paths. In

the following, we compare Algorithm 1 with i) the calibra-

tion approach exposed in [35] which assumes a Student’s

t noise modeling using the so-called expectation-conditional

maximization either algorithm [69,70] and ii) the traditional

calibration scheme based on zero-mean white Gaussian noise

modeling using a least squares approach [32]. The comparative

results are plotted in Fig. 4, for the same computation times.

We notice better estimation performance with Algorithm 1,

since we did not specify any particular noise distribution in
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Fig. 4. (a) MSE of the real part of the 64 unknown parameters for a given
SNR, (b) MSE vs. SNR for the real part of a given unknown parameter, for
D = 2, M = 8 and D′ = 8, leading to 128 real parameters of interest to
estimate and 224 measurements.

our procedure and a SIRP includes many different types of

distributions. Furthermore, no assumption was made about

independent entries in the noise vector, thus ensuring more

flexibility and robustness.

C. Structured case

In order to compare our proposed global algorithm (Algo-

rithm 1 followed by Algorithm 2) with the approach based on

Student’s t [35] and the Gaussian case [32] which were both

introduced in the non-structured case, we apply Algorithm 2

on the output of these two latter algorithms.

Each Jones matrix is generated according to (7) with

g = [gT
1 , . . . ,g

T
M ]T . In all exposed simulations, we consider

similar computation times for the three presented patterns. We

show the results only for the complex gains, cf. Fig. 5(a), and

the source offset ζ1, cf. Fig 5(b), due to lack of space, the

behavior being the same for the other parameters, i.e., ϑ1,

ϑ2, η2, η1 and ζ2. In the case of structured Jones matrices,

adapted to the 3DC calibration regime, and in the presence of
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Fig. 5. (a) MSE of the real part of the 16 complex gains for a given SNR,
(b) MSE of ζ1 vs. SNR, for D = 2, M = 8, and D′

= 4, leading to 38 real
parameters of interest to estimate and 224 measurements.

outliers, we still notice the better performances of Algorithm 1,

compared to the state-of-the-art. This is expected since better

estimation of the Jones entries leads to better estimation of the

physical parameters describing the structured Jones matrices.

VII. CONCLUSION

In this paper, we proposed a robust calibration technique

where perturbation effects are modeled thanks to Jones ma-

trices. To deal with the presence of outliers in our data,

the introduced ML estimation method is based on SIRP

noise modeling, leading to a relaxed concentrated ML based

calibration algorithm. Numerical simulations show that the

proposed algorithm is more robust to the presence of outliers

in comparison with the state-of-the-art, for both non-structured

and structured Jones matrices, with a reasonable computational

complexity.

APPENDIX A

We describe here the corresponding expressions of (12) and

(16) when we assume a different Ωpq for p < q, p, q ∈
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{1, . . . ,M}. In this case, the log-likelihood function is written

as

log f(x|θ, τ ,Ω12,Ω13, . . . ,Ω(M−1)M ) = −4B log π

− 4
∑

pq

log τpq −
∑

pq

log |Ωpq| −
∑

pq

1

τpq
aHpq(θ)Ω

−1
pq apq(θ).

(45)

For each antenna pair, the texture estimate is given by

τ̂pq =
1

4
aHpq(θ)Ω

−1
pq apq(θ) (46)

while the speckle covariance estimate reads

Ω̂h+1
pq = 4

apq(θ)a
H
pq(θ)

aHpq(θ)
(

Ω̂h
pq

)−1

apq(θ)
. (47)

The remainder of the algorithm is straightforwardly obtained

using (47).

APPENDIX B

We present here the steps to obtain (29). Firstly, for sake of

clarity, let us denote ci = [ci1 , ci2 , ci3 , ci4 ]
T to refer to the four

entries of the vectorization of source coherency matrix Ci.

Likewise, for the i-th source, we write Ji,p(θi,p) =

[

pi1 pi2
pi3 pi4

]

for the p-th antenna and Ji,q(θi,q) =

[

qi1 qi2
qi3 qi4

]

for the

q-th antenna, i.e., θi,p = [pi1 , pi2 , pi3 , pi4 ]
T and θi,q =

[qi1 , qi2 , qi3 , qi4 ]
T . Using these latter notation, we obtain (27)

where

Σi,q =









αi,q βi,q 0 0
0 0 αi,q βi,q

γi,q ρi,q 0 0
0 0 γi,q ρi,q









(48)

in which αi,q = q∗i1ci1 + q∗i2ci3 , βi,q = q∗i1ci2 + q∗i2ci4 , γi,q =
q∗i3ci1 + q∗i4ci3 and ρi,q = q∗i3ci2 + q∗i4ci4 .

We also obtain (28) where

Υi,q =









λi,q µi,q 0 0
νi,q ξi,q 0 0
0 0 λi,q µi,q

0 0 νi,q ξi,q









(49)

in which λi,q = qi1ci1 + qi2ci2 , µi,q = qi1ci3 + qi2ci4 , νi,q =
qi3ci1 + qi4ci2 and ξi,q = qi3ci3 + qi4ci4 .

Finally, the cost function in (26) can be written as

φi(θi,p) =
(

wi,p − ui,p(θi,p)
)H

Ai,p

(

wi,p − ui,p(θi,p)
)

+
(

w̃i,p − ũi,p(θi,p)
)H

Ãi,p

(

w̃i,p − ũi,p(θi,p)
)

+Constant

(50)

where wi,p = [wT
i,p(p+1), . . . ,w

T
i,pM ]T , ui,p(θi,p) =

[uT
i,p(p+1)(θi,p), . . . ,u

T
i,pM (θi,p)]

T and Ai,p =

bdiag{βiτp(p+1)Ω, . . . , βiτpMΩ}−1.

Furthermore, we have w̃i,p = [w∗T

i,1p, . . . ,w
∗T

i,(p−1)p]
T ,

ũi,p(θi,p) = [u∗T

i,1p(θi,p), . . . ,u
∗T

i,(p−1)p(θi,p)]
T and Ãi,p =

bdiag{βiτ1pΩ
∗, . . . , βiτ(p−1)pΩ

∗}−1.

We make use of (27) in what follows

ui,p(θi,p) =







ui,p(p+1)(θi,p)
...

ui,pM (θi,p)






=







Σi,p+1θi,p

...

Σi,Mθi,p






= Σiθi,p

(51)

where Σi = [ΣT
i,p+1, · · · ,ΣT

i,M ]T . Likewise, we use (28) in

ũi,p(θi,p) =







u∗
i,1p(θi,p)

...

u∗
i,(p−1)p(θi,p)






=







Υ∗
i,1θi,p

...

Υ∗
i,p−1θi,p






= Υiθi,p

(52)

in which Υi = [Υ∗T

i,1 , · · · ,Υ∗T

i,p−1]
T . Inserting (51) and (52)

into (50) and taking the derivative w.r.t. θi,p leads to the

expressions in (29), using the fact that Ai,p and Ãi,p are

Hermitian.
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