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Robust Calibration of Radio Interferometers in
Non-Gaussian Environment

Virginie Ollier, Mohammed Nabil El Korso, Rémy Boyer, Senior Member, IEEE, Pascal Larzabal, Member, IEEE
and Marius Pesavento, Member, IEEE

Abstract—The development of new phased array systems in
radio astronomy, as the low frequency array (LOFAR) and the
square kilometre array (SKA), formed of a large number of
small and flexible elementary antennas, has led to significant
challenges. Among them, model calibration is a crucial step
in order to provide accurate and thus meaningful images and
requires the estimation of all the perturbation effects introduced
along the signal propagation path, for a specific source direction
and antenna position. Usually, it is common to perform model cal-
ibration using the a priori knowledge regarding a small number
of known strong calibrator sources but under the assumption of
Gaussianity of the noise. Nevertheless, observations in the context
of radio astronomy are known to be affected by the presence
of outliers which are due to several causes, e.g., weak non-
calibrator sources or man made radio frequency interferences.
Consequently, the classical Gaussian noise assumption is violated
leading to severe degradation in performances. In order to
take into account the outlier effects, we assume that the noise
follows a spherically invariant random distribution. Based on
this modeling, a robust calibration algorithm is presented in this
paper. More precisely, this new scheme is based on the design of
an iterative relaxed concentrated maximum likelihood estimation
procedure which allows to obtain closed-form expressions for the
unknown parameters with a reasonable computational cost. This
is of importance as the number of estimated parameters depends
on the number of antenna elements, which is large for the
new generation of radio interferometers. Numerical simulations
reveal that the proposed algorithm outperforms the state-of-the-
art calibration techniques.

Index Terms—Calibration, robustness, spherically invariant
random process, relaxed concentrated maximum likelihood,
Jones matrices, radio astronomy

I. INTRODUCTION

Radio astronomy aims to study radio emissions from the
sky, in order to detect, identify new objects and observe known
structures at higher resolution, in a specific electromagnetic
spectrum [1]. This fundamental thematic shines a new light on
our universe, revealing more about its nature and history. In
order to carry out particularly sensitive observations in a large
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range of the spectrum, and to handle significant cosmological
issues, largely distributed sensor arrays are currently being
built or planned, such as the low frequency array (LOFAR) [2]
and the square kilometre array (SKA) [3]. They will notably
be composed of a large number of relatively low-cost small
antennas with wide field of view, resulting in a large collecting
area and high resolution imaging. Nevertheless, to meet the
theoretical optimal performances of such next generation radio
interferometers, a plethora of signal processing challenges
must be overcome, among them, calibration, data reduction
and image synthesis [4]-[7]. These aspects are intertwined
and must be dealt with to take advantage of the new advanced
radio interferometers. As an example, lack of calibration has
dramatic effects in the image reconstruction by causing severe
distortions. In this paper, we focus on calibration, which
involves the estimation of all unknown perturbation effects
and represents a cornerstone of the imaging step [8]-[10].

Array calibration aspects have been tackled for a few
decades in the array processing community leading to a variety
of calibration algorithms [11]-[13]. Such algorithms can be
classified into two different approaches depending on the
presence [14]-[16], or the absence [17]-[22], of one or more
cooperative sources, named calibrator sources. In the radio
astronomy context, calibration is commonly treated using the
first approach as we have access to prior knowledge thanks
to tables describing accuratly the position and flux of the
brightest sources [23].

Following this methodology, the majority of proposed cal-
ibration schemes in radio interferometry are least squares-
based approaches. The state-of-the-art consists in the so-called
alternating least squares approach [24]-[27], which leads to
statistically efficient algorithm under a Gaussian model, since
the least squares estimator is equivalent to the maximum
likelihood (ML) estimator in this case. On the other hand,
expectation maximization (EM) [28]-[30] and EM-based al-
gorithms, such as the space alternating generalized expectation
maximization algorithm [31], have been proposed in order
to enhance the convergence rate of the least squares-based
calibration algorithms [32]. Nevertheless, the major drawback
of these schemes is the Gaussianity assumption which is
not realistic in the radio astronomy context. Specifically, the
presence of outliers has multiple causes, among which i) the
radio frequency interferers, which corrupt the observations and
are not always perfectly filtered in practice [33,34], ii) the
presence of unknown weak sources in the background [35],
iii) the presence of some punctual events such as interference
due to the Sun or due to strong sources in the sidelobes which



can also randomly create outliers [36]. To the best of our
knowledge, the proposed scheme in [35], represents the only
alternative to the existing calibration algorithms based on a
Gaussian noise model.

In [35], theoretical and experimental analyses have been
conducted in order to demonstrate that the effect of outliers in
the radio astronomy context can indeed be modeled by a non-
Gaussian heavy-tailed distributed noise process. Nevertheless,
the algorithm presented in [35] has its own limits, since the
noise is specifically modeled as a Student’s t with independent
identically distributed entries. To improve the robustness of the
calibration, we propose, in this paper, a new scheme based
on a broader class of distributions gathered under the so-
called spherically invariant random noise modeling [37,38],
which includes the Student’s t distribution. A spherically
invariant random vector (SIRV) is described as the product
of a positive random variable, named texture, and the so-
called speckle component which is Gaussian, resulting in a
two-scale compound Gaussian distribution [39]. The flexibility
of the SIRV modeling allows to consider non-Gaussian heavy-
tailed distributed noise in the presence of outliers, but also to
adaptively consider Gaussian noise in the extreme case when
there are no outliers. Under the SIRV model, we estimate
the unknown parameters iteratively based on a relaxed ML
estimator, leading to closed-form expressions for the noise
parameters while a block coordinate descent (BCD) algorithm
[40,41] is designed to obtain the estimates of parameters of
interest efficiently and at a low cost.

Finally, it is worth mentioning that the parametric model
used in this paper to describe the perturbation effects is
based on the so-called Jones matrices [42,43]. Such formalism
describes in a flexible way the conversion of the incident
electric field into voltages. Indeed, along its propagation path,
the signal is affected by various effects and transformations
which correspond to matrix multiplications in the mathemati-
cal Jones framework. Multiple distortion effects caused by the
environment and/or the instruments can be easily incorporated
into the model using an adequate parametrization of the Jones
matrices. Such effects can represent, for example, the iono-
spheric phase delay resulting in angular shifts, the atmospheric
distortions, the typical phase delay due to geometric pathlength
difference, the voltage primary beam, the cross-leakage or
also the electronic gains [44,45]. For the above reasons and
due to its flexibility [1,32,42]-[44], we adopt this parametric
model. We make a distinction between the non-structured and
the structured cases: in the first one, one total Jones matrix
stands for all the effects along the full signal path while in
the second case, we regard each physical effect separately
thanks to individual Jones terms in a cumulative product. Thus,
different corruptions are described by different kinds of Jones
matrices. We emphasize that the proposed algorithm, entitled
relaxed concentrated ML estimator, is a generic algorithm as
it is based on a non-structured Jones matrices formulation as
a first step. However, it can be adapted to various regimes
describing distinct calibration scenarios in which an array can
operate [46]. In this paper, we consider the specific example
of the direction dependent distortion regime with a compact
set of antennas, which we refer to as the 3DC regime. The

array is therefore considered as a closely packed group of
antennas but the array elements have a wide field of view.
This is particularly well-adapted for calibration of compact
arrays, typically a LOFAR station.

The rest of the paper is organized as follows: in Section
II, we present the data model in the context of radio astron-
omy, first with non-structured Jones matrices and thereafter,
we study an example of structured Jones matrices for the
3DC calibration regime. In Section III, we give an overview
of the proposed robust ML estimator, based on spherically
invariant random process (SIRP) noise modeling. An efficient
estimation procedure of the distortions introduced on each
signal propagation path is derived in Section IV. Then, the
algorithm is adapted to the case of structured Jones matrices in
Section V for the 3DC calibration regime. Finally, we provide
numerical simulations in Section VI to assess the robustness
of the approach and draw our conclusions in Section VII.

In this paper, we use the following notation: symbols (-)”,
()", ()H denote, respectively, the transpose, the complex
conjugate and the Hermitian transpose. The Kronecker product
is represented by ®, E{-} denotes the expectation operator,
bdiag{-} is the block-diagonal operator, whereas diag{-} con-
verts a vector into a diagonal matrix. The trace and determinant
operators are, respectively, referred by tr{-} and | - |. The
symbol I represents the B x B identity matrix, vec(-) stacks
the columns of a matrix on top of one another, || - || is the
Frobenius norm, while ||-||2 denotes the I3 norm. Finally, # {-}
represents the real part and we note j the complex number
whose square equals —1.

1I. DATA MODEL
A. Case of non-structured Jones matrices

Let us consider M antennas with known locations that
receive D signals emitted by calibrator sources. Each antenna
is dual polarized and composed of two receptors, in order
to provide sensitivity to the two orthogonal polarization di-
rections (z,y) of the incident electromagnetic plane wave.
Consequently, the relation between the i-th source emission
and the measured voltage at the p-th antenna is given by
[42,43,47]

Vip(0) = Ji,(0)s; (1

where s; = [s;,,s;,]” is the incoming signal, v;,(8) =
[Vip. (8),vip, (0)]" is the generated voltage with one output
for each polarization direction and J; ,(60) denotes the so-
called 2 x 2 Jones matrix, parametrized by the unknown vector
of interest 8. The Jones matrix models the array response
and all the perturbations introduced along the path from the
i-th source to the p-th sensor. Since each propagation path
is particular, we can associate a different Jones matrix with
each source-antenna pair (i, p), leading to a total number of
DM Jones matrices. In this section, we consider the non-
structured case where no specific perturbation model is used
to describe the physical mechanism behind each perturbation
effect and the unknown elements correspond to the entries of
all Jones matrices [32,48] (a structured example is given for
3DC calibration regime, in Section II-B).



For each antenna pair, we compute the correlation of the
output signals, resulting in the typical observations recorded
by a radio interferometer. The correlation between voltages is
given, in the case of noise free measurements, for the (p, q)
antenna pair, by

D D
Via(8) =Eq (D _vin(0) ) [ D viL(0)
i=1 i=1

2
where the signals emitted by the sources are assumed uncor-
related and the 2 x 2 matrix C; = E{s;s} is known from
prior knowledge. Let us remark that autocorrelations are not
considered as shown by the condition p < ¢ in (2) (this is a
typical situation in the radio astronomy context where radio
interferometric systems automatically flag the autocorrelations
[2]).

Using the property vec(ABC) = (CT ® A)vec(B), we
rewrite (2) as a 4 x 1 vector

Vpe(0) = vec(qu(O)) = iui,pq(a)

in which u;,q(0) = (qu(e) ®J;p(0))c; with ¢; =
vec(C;). We stack all the noisy measurements within a full

3)

T
vector x = [V1T2,V1T3, . ,v(TM_l)M} € C*B*1 where
B = % denotes the total number of antenna pairs and

Vpq = Vpe(0) + np,q with n,, the noise sample at a specific
antenna pair. Specifically, x reads

D
x =Y uwi(6)+n @)
=1

T
in which u;(0) = {ug:12(0)7ug:13(0)7'-~7u3:(M71)M(0):|

and n = [anQ,ang,...,n(TM_l)M
which accounts for Gaussian noise, but also the presence
of outliers in our data. Therefore, the noise can no longer
be considered Gaussian and a robust calibration method is
required. To investigate non-Gaussian noise modeling and
encompass a broad range of noise distributions, we propose
to adopt the SIRP noise model [37,38]. Specifically, the noise
at each antenna pair is assumed to be generated as

Npq = \/Tpq 8pa> ()

where the positive real random variable 7, is referred to as
texture, whereas the complex speckle component g, follows
a zero-mean Gaussian distribution?, i.e.,

8pg ~ CN(0,9Q). (6)

In order to remove scaling ambiguities, we impose tr {2} = 1.
Note that the choice of this constraint is arbitrary and does not
affect the estimates of interest as argued in [49].

is the full noise vector

ILet us note that it is possible to consider a different covariance matrix £2,q
for each speckle component gy, in (6). In this case, the proposed algorithm
requires a few modifications and the corresponding expressions are presented
in Appendix A.

D
> 3ip(0)CI(0) for p<q, pge{l,..., M},
=1

S ionospheric
irregularity scale

A: array aperture

Fig. 1. 3DC calibration regime, for which V' >> S and S > A. All receiving
elements in the station see the same ionosphere part but, due to their wide
field of view, a multitude of sources are visible and perturbations are highly
direction dependent.

In this section, we adopted the non-structured Jones matrices
formulation which is relevant in the radio astronomical context
[32,48]. In this case, there is no need to specify the full
propagation path, avoiding misspecification in the model.
Besides, it is highly flexible and can be adapted to different
scenarios [46]. In the following, we present the direction
dependent distortion regime with a compact set of antennas,
named 3DC regime.

B. Specific case of the 3DC calibration regime

For a specific propagation path, from the i-th source to the
p-th antenna, the global Jones matrix J; ;, accounts for multiple
effects which can be described explicitly. Indeed, each global
matrix can be decomposed into individual Jones terms which
stand for specific physical effects [43,44]. This way, instead
of estimating entries of all Jones matrices as done in the
non-structured case, we will estimate physically meaningful
parameters, thus reducing the total number of parameters to
estimate. Introducing structured Jones matrices can be done in
the context of calibration scenarios [10,46]. In what follows,
we target one specific commonly used calibration regime that
we call 3DC calibration regime, described in Fig. 1, which is
well adapted for calibration of LOFAR on station level [26],
and also for stations of the future SKA radio interferometer
[10]. In this scenario, direction dependent distortions play a
significant role since individual elements in the array have



a wide field of view. Indeed, this implies different propaga-
tion conditions towards distinct sources in the field of view.
However, the array being relatively compact, made of similar
elements, some effects might be the same for all antennas.
In the following, we introduce a particular sequence of Jones
matrices with specific parametrizations, in the context of 3DC
calibration regime [50]

Jup(@igc) = Gy(gp)HipZi p(ai)Fi(0:) (7

for i € {1,...,D}, p € {l1,...,M} and 0;3_1;0 =
[9:,87,al]T. We note H; ,, the only assumed known matrix
thanks to electromagnetic simulations in terms of antenna
response and a priori knowledge given by calibrator source
and antenna positions [43,44,50,51], whereas the remaining
matrices are explained in the following items.
e Jonospheric effects :

Propagation through the ionosphere, the outer layer of the
earth’s atmosphere, introduces propagation delay on the signal
which is affected by spatially variable fluctuations. If these
perturbation effects are not corrected for, the sources may
appear shifted from their intrinsic positions [10,52]. In the
case of a compact array, the ionospheric delay matrix is in
fact a scalar direction-dependent phase given by

Z;,(a;) = exp {japi7p}12 ®)

in which ¢;, = nu, + (v, where a; = [n;, ()7 is the
vector of unknown offsets resulting in a shift of the i-th source
direction and r,, = [u,,v,]7 is the vector of known antenna
position in units of wavelength.

On top of that, passing through the ionosphere is associated
with a rotation of the polarisation plane of each signal source
around the line of sight. We call it the ionospheric Faraday
rotation matrix F;(¢;) and write it as

cos(¥;) —sin(d;)
sin(¢;)  cos(t;) ©)

where 1¥; is the unknown Faraday rotation angle, assumed
identical for all antennas, since the array has a limited spatial
extent [44].

o Instrumental effects :
Individual antennas are described by electronic complex gains
which appear in G,(g,) = diag{g,} with g, the unknown
electronic gain vector.

Therefore, in this specific structured case, the physi-
cal model parameters in (7) are collected in the vec-

Fi(¥;) =

3DC  _ 3DCT g3DC” 3DCT T ;
tor & = P[O77> ,075% ,...,0py |7 where P is
an appropriate rearrangement matrix such that &3PC
T T T TT
[Y1,...,9D,81,- 8y, ap].

IIT. ROBUST CALIBRATION ESTIMATOR

This section is devoted to the design of a robust calibra-
tion estimator based on the model (4). As it can be seen
from (5), one has to specify the probability density function
(pdf) of each texture parameter 7,, in order to obtain the
exact ML estimates. Nevertheless, in pratical scenarios, such
prior knowledge is not available. Consequently, our idea is
to make use of a relaxed version of the exact model, i.e.,

we assume deterministic but unknown texture realizations in
the estimation process [53,54]. This ensures more flexibility
in our algorithm as the texture distribution is not precisely
described and avoids any possible model misspecification,
which is consistent with our motivation to design a broad
robust estimator w.r.t. the presence of outliers. On the other
hand, we adopt here an iterative procedure in order to reduce
the computational cost. In doing so, the proposed algorithm
sequentially updates each block of unknown parameters while
fixing the remaining parameters. This leads to a relaxed
concentrated ML based calibration estimator for which the
expression of the likelihood function, when independency is
assumed between measurements, is written as

1 _
————exp {—aﬁl(é’)ﬂ 1a]gq(O)} , (10)
Tpq
where the vector composed of all texture realizations is
T = [r2, 713, Tu—nym)” and apg(0) = v — Vpe(6).
Consequently, the log-likelihood function reads

log f(x|6,T,Q) = —4Blog 7
1 _
— 4210g7},q — Blog |2 — Z —aﬁl(e)ﬂ ta,,(0).
pq pg P4
(11)

In the following, we present the sequential updates of each
block of unknown parameters, namely, 7, €2 and 6, following
the methodology as in [55,56].

1) Derivation of 7,,: Taking the derivative of the log-
likelihood function in (11) w.r.t. 7, leads to the following
texture estimate

. 1 _
Tpqg = Zaﬁl(e)ﬂ lapq(a)-

12)

2) Derivation of : The derivative of the log-likelihood
function w.r.t. the element [Q]; of the speckle covariance
matrix, using classical differential properties [57, p. 2741],
leads to

A 1 A A
—Btr {QilekeIT}JrZ T_azf{;(e)ﬂilekeljﬂﬂilapq(e) =0
pg P4

(13)
where the vector ey, contains zeros except at the k-th position
which is equal to unity. The permutation property of the trace
operator enables to rewrite (13) as

a 1 a A
~Bel Q7 e, + > T—elTQ La,,(0)all (0)Q2 e, = 0.
pq P4

(14)
This finally leads to the following estimate of the speckle

covariance matrix

R 1 1 I
Q= > aam(a)apq(@). (15)
pq
Inserting (12) into (15), we obtain
Qh+l — 4 apq(0)aj; (0) (16)

BT ano)(ar) )



where h denotes the h-th iteration. Due to the introduced
constraint, we normalize the estimate of €2 by its trace, as

follows R
R Qh+1
Q= - (17

wfon ]
3) Estimation of 6: For given 2 and 7, estimating 0 is
equivalent to the following minimization problem

6 = argmin {Z Laﬁl(é’)ﬂ1apq(0)} . (18)

-
o pq P4

In the following, we aim to reduce the computational cost of
the minimization procedure in (18) by use of the EM algo-
rithm. For generality, we first adopt the non-structured Jones
matrix formulation, which can also be specified depending on
the scenario, as shown in Section V.

IV. ESTIMATION OF é FOR NON-STRUCTURED JONES
MATRICES

Estimating directly the entries of the Jones matrices avoids
specifying any particular physical model, leading to a cali-
bration algorithm which is less sensitive to model errors in
comparison with algorithms based on the structured case. Due
to the possible large size of 6, a multi-dimensional parameter
search needs to be carried out to solve the optimization
problem in (18) which requires significant computation time.
To reduce this complexity, we make use of the EM algorithm.

The essence of this algorithm relies on a proper parameter
vector partitioning as well as an adequate choice of the so-
called complete data. As mentioned above, the parameters
of interest 6 represent the entries of all Jones matrices.
Consequently, it is natural to consider the following partition

T T T T T T 1T
0=1[07,...,0p] = [01,1a'--701,M7~-~70D,1a'~-70D,I\/I] )

(19)
for which the vector 0;, € R®**! is the parametrization of
the path from the i-th calibrator source to the p-th sensor, i.e.,

Jiyp(e) = Jiyp(eiyp)

A. Use of the EM algorithm to solve (18)

The EM algorithm [28]-[30] enables to compute the ML
estimates and reduce the computational cost, via the iteration
of two steps. The first one is the E-step which reduces, in our
scenario, to the computation of the conditional expectation
of the complete data given the observed data and the current
estimate of parameters [32,58]. Afterwards, the log-likelihood
function of this conditional distribution is maximized in the
M-step. Therefore, this last step consists in an optimization
process which can be performed numerically, for instance
with the Levenberg-Marquardt (LM) algorithm [59]-[61], or
analytically if closed-form expressions are available. As we
show in the following, the optimization step is carried out
wrt to 8; € C*™Mx1 instead of @ € C*PMX1 Therefore,
the global multiple source estimation problem is reduced to
multiple single source sub-problems.

1) E-step: For the i-th source, we introduce the so-called
complete data vector w; such that

D
X = E W;
i=1

with w; = w(60;) + n; and n = Zil n;, in which
n; ~ CN(0,5,®). We have Y2 3 = 1 and ¥ is the
covariance matrix of n. Since n,; ~ CN(0,7,,€2) and with
the independence property, we obtain the following block-
diagonal expression for ¥

¥ = bdiag{m129Q, ..., T(ar—1)m 2}

(20)

21

Let us note w = [wi,...,wh]T the complete data vector,
whose covariance matrix, denoted as =, has the following form

E = bdiag{A1 ¥, ..., 3p T} (22)

With [62, p. 36], and after some calculus, the expression of
the conditional expectation is given by

w; = E{w;|x;0, 7,92}

D
= w(0;) + Bs (X - Zul(al)> - (23)
=1
2) M-step: The goal of this step is to estimate 6,. Once
w; are computed for ¢ € {1,..., D}, the estimated complete
data vector w can be evaluated. The M-step is an optimization
problem based on the following likelihood function where w;
are independent

f(w]0,7,9) =
% exp { (\fv - u(QS’))HE*1 (W - u(O)) } =

ﬁﬁ exp { = (w5 = wi(0) " (50) (3 — wi00) }.
=1 (24)

To obtain an estimation of 0;, we need to minimize the
following cost function

$i(0;) = (Wz - uz'(é’z'))H(ﬂi‘I’r1 (Wz - uz(ez)) (25)

To decrease even more the complexity cost of the proposed
robust calibration scheme, we use the BCD algorithm [40,41]
in the M-step. Consequently, we obtain analytical solutions for
each single source sub-problems in (25), as shown below.

B. Use of the BCD algorithm to minimize (25)

In (25), the optimization is performed w.r.t. 8;. However,
this unknown parameter vector can be partitioned according
to the antennas, as expressed in (19). In the following, we
perform the optimization of the cost function w.r.t. each 6;,,
(p-th antenna), given the current estimates of all the other 8; ,
with ¢ # p. This leads to a closed-form expression of éiyp
as function of 8; , for ¢ # p and the optimization process is
repeated for each component vector 6, , for p € {1,..., M}.

If we want to minimize (25) w.r.t. block-coordinate vector
0;,, we notice that only a subset of u;(;) is actually



dependent on ; ,, i.e., {u; pe} for ¢ >p, ge{l,...,M}
and {u; 4} for ¢ < p, ¢q € {1,...,M}. Therefore, (25)
reads

0i(05,p) =

M

q=1
q>p
M

q=1
q<p

Constant. (26)

By Constant, we mean the expressions independent of 8, ,,.
We show in Appendix B that it is possible to write u; pq
directly as a function of 8, , i.e.,

Wi pq(0ip) = 2i q0ip. (27)
In the same way, we have
Wi qp(0ip) = Y40, (28)

Notation and calculations being introduced in Appendix B, we
only present here the results obtained, i.e., the expression of
the estimated entries of the Jones matrix associated with the
path from the i-th calibrator source to the p-th sensor which
is given by

(BHALS + YA T x
0. - (EfIAipri,p + Tf{Ai,pfvi,p) for 1<p<M
e (Efléi,pzi)_lzf]-@i,pwz',p for p=1
(YHA ,X) ' YEA, Wiy for p=M
29
Therefore, 0;, for p € {1,...,M} are estimated in an

iterative loop. With (25) and (29), it can be proven that the
BCD algorithm leads to unique solutions and thus, conver-
gence to at least a local maximizer, is ensured [63]. If the
M-step is performed exactly (i.e., the BCD gives the exact
minimizer of (25) and consequently, the M step is exactly
solved), convergence of the EM algorithm to a stationary
point is ensured (to avoid the unusual case of convergence
to a saddle point, a proper initialization is required) [30],
with a theoretical infinite number of iterations. Finally, in
this case, convergence of the concentrated MLE is guaranteed
for an infinite number of iterations since the value of the
cost function at each step can either improve or maintain
but cannot worsen [64]. In practice, only a finite number of
iterations is considered in each loop, so we might not attain
local convergence. However, we show in section VI-A the
relatively good numerical stability of the algorithm.

The scheme of the proposed algorithm is described in
Algorithm 1.

V. STRUCTURED JONES MATRICES

We recall that the output of Algorithm 1 is the estimate
of each Jones matrix denoted by J; ,, for i € {1,..., D} and
p €{1,..., M}. In the following, we consider the data model
in (7) for the specific 3DC calibration regime, and intend to
estimate the unknown parameter vector of interest €3°C in a

Z (thq - ui,pq(eim)) H(ﬁiquQ)_l (Wi,pq — Wipg (ai,p)) +

Z (wi’qp - uiyqp(ei,p))H(ﬂiquﬂ)il (Wiyqp - ui,qp(0i7p>)+

Algorithm 1: Relaxed concentrated ML based calibration
algorithm

input : D, M, B, C,, 5;, x

output : 0

initialize: Q <« Qinic, 7 ¢ Tinits 0 < Oinit
1 while stop criterion unreached do

2 while stop criterion unreached do

3 E-step: w; obtained from (23), i € {1,...,D}

4 M-step: 6; obtained as follows, i € {1,..., D}

5 while stop criterion unreached do

6 éi,p obtained from (29),
pe{l,...,M}

7 end

8 end

9 | Obtain €2 from (16) and (17),

10 Obtain 7 from (12)

11 end

sequential manner. To do so, we use an iterative estimation
procedure by optimizing a cost function w.r.t. one parameter
while fixing the others.

1) Estimation of g,: The diagonal elements of the gain
matrix are given by

g, = argmin k(gp) (30)

gp

D s
where r(gp) = Zi:l [[Jip —
rewrite the cost function as

Gp(gp)HLpZi,pFiH%' We

() = sz 7 (3,,-Gylg)Ro) (31 Gylg)Ry) )

(3D
in which R; , = H, ,Z; ,F;. The derivation of x(g,) w.rt.
the k-th element [g,];; leads to

Ok (gp)
olgplk

D
=S Tr{ — erel R, 37+ epel Ry R G }

P
i=1

X (32)
Let us denote X; , = R;,J/7 and W;, = R; ;R . From
(32), we deduce the equation satisfied by the gain matrix

D D

Z[Xz’,p]k,k = Z[Wi,pérf]k,k

=1 7

Il
—

(Wi plk e [Goli.k (33)

I
\Mb

<,
Il
-

for k € {1, 2}, since G, is a diagonal matrix. Therefore, each
complex gain element is estimated as

&l = (i[w;p]k,k) SO

i=1 i=1

(34)

2) Estimation of o;: We first need to estimate ;, (we
recall that ¢; , = n;u, + (vp). This is done as follows
$i,p = argmin £(y; p) (35)

Pi,p



where #(pip) = ||ji,p — GpHi pZip(¢ip)Fi||%. Taking the
derivative of &(y; ) W.I.t. ©; , and setting the result to zero,

we obtain
Tr{j exp IPir J; FHHf{pr — jexpl®in GpHi,pFijfp}

=0 (36)

which leads to

exp {2jpip | = 37)

where M, = J; ,FI/H! G
In the case of a compact array, we can write for the i-th
source

p; =& A (38)

where @; = [@i1,...,Pim]’ and A = UMY
s UM

uy,
. . . . . Ul Y
Therefore, estimation of the directional shifts due to propaga-
tion in the ionosphere is given by

M
oI AH Z?M 1 Z - 2%121 UpUp
T ‘ Zp 1 UpUyp szl uf,
a; = . (39)

i M
Zp LU Zp 1 V5 (Zp:l Uupvp)?

3) Estimation of ¥;: We consider the following minimiza-
tion problem

M
’l§i = argminz ||’jL[) - GI)HLI)Z%PFl(’ﬂL)”%' (40)
94
i p=1

We assume a large number of antennas M while the number
of calibrator sources D is relatively reduced, such that ob-
servations outnumber unknown parameters. For each source,
the 1D optimization in (40) can be computed in a reasonable
computational time through a classical data grid search or a
Newton type algorithm.

Finally, the proposed algorithm for the structured Jones
matrices case regarding 3DC calibration regime is given in
Algorithm 2.

