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ABSTRACT
The performance in terms of minimal Bayes’ error probabil-
ity for detection of a random tensor is a fundamental under-
studied difficult problem. In this work, we assume that we
observe under the alternative hypothesis a noisy rank-R ten-
sor admitting a Q-order Canonical Polyadic Decomposition
(CPD) with large factors of size Nq ×R, i.e., for 1 ≤ q ≤ Q,
R,Nq → ∞ with R1/q/Nq converges to a finite constant.
The detection of the random entries of the core tensor is hard
to study since an analytic expression of the error probability
is not easily tractable. To mitigate this technical difficulty, the
Chernoff Upper Bound (CUB) and the error exponent on the
error probability are derived and studied for the considered
tensor-based detection problem. These two quantities are re-
lied to a key quantity for the considered detection problem
due to its strong link with the moment generating function of
the log-likelihood test. However, the tightest CUB is reached
for the value, denoted by s?, which minimizes the error expo-
nent. To solve this step, two methodologies are standard in the
literature. The first one is based on the use of a costly numer-
ical optimization algorithm. An alternative strategy is to con-
sider the Bhattacharyya Upper Bound (BUB) for s? = 1/2.
In this last scenario, the costly numerical optimization step is
avoided but no guaranty exists on the optimality of the BUB.
Based on powerful random matrix theory tools, a simple ana-
lytical expression of s? is provided with respect to the Signal
to Noise Ratio (SNR) and for low rank CPD. Associated to
a compact expression of the CUB, an easily tractable expres-
sion of the tightest CUB and the error exponent are provided
and analyzed. A main conclusion of this work is that the BUB
is the tightest bound at low SNRs. At contrary, this property
is no longer true for higher SNRs.

1. INTRODUCTION

Detection of random parameters in noise is well-known to be
a difficult problem. Indeed, the optimal Bayes’ decision rule
can often only be derived at the price of a costly numerical
computation of the log posterior-odds ratio and an exact cal-

culation of the minimal Bayes’ error probability is often in-
tractable [1,2]. This is particularly true in the context of the
under-studied tensor detection problem, i.e., when the param-
eters of interest are multidimensional and random. Specif-
ically, the context of this work is about random core ten-
sor detection when the noise-free tensor follows a Canonical
Polyadic Decomposition (CPD) [17] with large factors. Fol-
lowing the same methodology presented in [10] for the detec-
tion of one-dimensional data, we exploit well-known geome-
try information divergence [9,11]. The Chernoff upper bound
(CUB) is an upper bounds on the minimal Bayes’ error proba-
bility and the error exponent characterizes the asymptotic ex-
ponentially decay of the Bayes’ error probability. These two
metrics turn out to be useful in many problems of practical
importance as for instance, distributed sparse detection [13],
sparse support recovery [14], energy detection, MIMO radar
processing, network secrecy [15], Angular Resolution Limit
in array processing [16], detection performance for informed
communication systems, etc.. The theory of low rank CPD
is a timely and important research topic [3,12]. This class of
tensor-based model is useful to extract and analyze relevant
information confined into a small dimensional subspace from
a massive volume of measurements.
The Random Matrix Theory (RMT) provides a powerful for-
malin to study the asymptotic performance limits of a large
scale system [4,6]. While it exists a plethora of well-known
results for linear systems, there is a lack of results for struc-
tured linear systems encounter with the CPD.

2. RANDOM TENSOR DETECTION

2.1. CPD and noisy structured linear system

2.1.1. Preliminary definitions

The rank-R CPD of order Q is defined according to

X =

R∑
r=1

sr

(
φ(1)
r ◦ . . . ◦ φ

(Q)
r

)
︸ ︷︷ ︸

X r

with rankX r = 1



where ◦ is the outer product [12], φ(q)
r ∈ RNq×1 and sr is a

real scalar. An equivalent formulation using the mode product
[12] is

X = S ×1 Φ1 ×2 . . .×Q ΦQ ∈ RN1×...×NQ (1)

where ×q stands for the q-mode product, S is the R ×
. . . × R diagonal core tensor with [S]r,...,r = sr and
Φq = [φ

(q)
1 . . .φ

(q)
R ] is the q-th factor matrix of size Nq ×R.

The q-mode unfolding matrix for tensor X is given by

X(q) = ΦqS (ΦQ � . . .�Φq+1 �Φq−1 . . .�Φ1)
T (2)

where S = diag(s) with s = [s1 . . . sR]T and � stands for
the Khatri-Rao product.

2.1.2. Vectorized CPD

Assume that the multidimensional measurement tensor fol-
lows a noisy Q-order tensor of size N1 × . . .×NQ given by

Y = X + N (3)

where N is the noise tensor where each entry is assumed to
be centered i.i.d. Gaussian, i.e. [N ]n1,...,nQ

∼ N (0, σ2)
and the noise-free tensor X follows a rank-R CPD defined in
eq. (1). We assume that each diagonal entry of the core tensor
is centered i.i.d. Gaussian, i.e. [S]r,...,r = sr ∼ N (0, σ2

s ).
Let N = N1 · · ·NQ. The vectorization of eq. (3) is given by

yN = vecY(1) = x + n (4)

where n = vecN(1) and x = vecX(1). Using eq. (2) and
property vec{Adiag{c}BT } = (B�A)c, we obtain

x = vec
{
Φ1S(ΦQ � . . .�Φ2)T

}
= Φs

where Φ = ΦQ � . . .�Φ1 is a N ×R structured matrix. At
this point, it is important to note that the CPD formalism im-
plies that vector x in eq. (4) is related to the structured linear
system Φ.

2.2. Binary hypothesis test formulation for structured lin-
ear system

2.2.1. Formulation based on a SNR-type criterion

Let SNR = σ2
s/σ

2 and pi(·) = p(·|Hi) with i ∈ {0, 1}. The
equi-probable binary hypothesis test for the detection of the
random signal, s, is{

H0 : p0(yN ; Φ,SNR = 0) = N (0,Σ0) ,
H1 : p1(yN ; Φ,SNR 6= 0) = N (0,Σ1)

(5)

where Σ0 = σ2IN and Σ1 = σ2
(

SNR ·ΦΦT + IN

)
. The

data-space for the null hypothesis (H0) is given by X0 = X \
X1 where

X1 =

{
yN : Λ(yN ) = log

p1(yN )

p0(yN )
> τ ′

}

is the data-space for the alternative hypothesis (H1). In the
above test, Λ(yN ) is the log likelihood ratio test and τ ′ is the
detection threshold given by the following two expressions:

Λ(yN ) =
yTNΦ

(
ΦTΦ + SNR · I

)−1

ΦTyN

σ2
,

τ ′ = − log det
(

SNR ·ΦΦT + IN

)
where det(·) and log(·) stand for the determinant and the nat-
ural logarithm, respectively.

2.2.2. Geometry of the expected log-likelihood ratio

Consider p(yN
∣∣Ĥ) = N (0,Σ) associated to the estimated

hypothesis Ĥ. The expected log-likelihood ratio is given by

E
yN

∣∣ĤΛ(yN ) =

∫
X
p(yN

∣∣Ĥ) log
p1(yN )

p0(yN )
dyN

= KL(Ĥ||H0)−KL(Ĥ||H1)

=
1

σ2
Tr

{(
ΦTΦ + SNR · I

)−1

ΦTΣΦ

}
where

KL(Ĥ||Hi) =

∫
X
p(yN

∣∣Ĥ) log
p(yN

∣∣Ĥ)

pi(yN )
dyN

is the Kulbback-Liedbler Divergence (KLD) [9]. The ex-
pected log-likelihood ratio test admits to a simple geomet-
ric characterization based on the difference of two KLDs [2].
But, the performance of the detector of interest in terms of the
minimal Bayes’ error probability, denoted by P (N)

e , is quite
often difficult to determine analytically [1,2].

3. CHERNOFF UPPER BOUND (CUB) AND ERROR
EXPONENT

Define the minimal Bayes’ error probability conditionally to
vector yN according to

Pr(Error|yN ) =
1

2
min{P1,0, P0,1}

where Pi,i′ = Pr(Hi|yN ∈ Xi′). The (average) minimal
Bayes’ error probability defined by P (N)

e = EPr(Error|yN )
is upper bounded according to the CUB [11] such as

P (N)
e ≤ 1

2
· exp[−µN (s)] (6)

where the (Chernoff) s-divergence for s ∈ (0, 1) is given by

µN (s) = − logMΛ(yN |H1)(−s) (7)

in which MX(t) = E exp[t · X] is the moment generating
function (mgf) of variableX . The error exponent, denoted by



µ(s), is given by the Chernoff information is an asymptotic
characterization on the exponentially decay of the minimal
Bayes’ error probability. The error exponent is derived thanks
to the Stein’s lemma according to [18]

− lim
N→∞

logP
(N)
e

N
= lim
N→∞

µN (s)

N

def.
= µ(s).

As parameter s ∈ (0, 1) is free, the CUB can be tighter
thanks the unique minimizer:

s? = arg min
s∈(0,1)

µ(s). (8)

Finally using eq. (6) and eq. (8), we obtain the Cher-
noff Upper Bound (CUB). The Bhattacharyya Upper Bound
(BUB) is obtained by eq. (6) and by fixing s = 1/2 instead of
solving eq. (8). We have the following relation of order:

P (N)
e ≤ 1

2
· exp[−µN (s?)] ≤ 1

2
· exp[−µN (1/2)].

3.1. Error exponent expression based on the RMT

3.1.1. The CUB and the error exponent

In this section, we first recall in the following Lemma the
closed-form expression of the CUB for the test of eq. (5).
Next, the error exponent, µ(s), is derived in Result 3.2 in the
RMT context.

Lemma 3.1 ( [10]) The log-mgf given by eq. (7) for test of
eq. (5) is given by

µN (s) =
1− s

2
log det

(
SNR ·ΦΦT + I

)
− 1

2
log det

(
SNR · (1− s)ΦΦT + I

)
.

In the following, we assume that matrices (Φq)q=1,...,Q

are random matrices with GaussianN (0, 1
Nq

) entries, an eval-
uate the behaviour µN (s)/N when (Nq)q=1,...,Q converge to-
wards +∞ at the same rate and that R

N converges towards a
non zero limit.

Result 3.2 In the asymptotic regime whereN1, . . . , NQ con-
verge towards +∞ at the same rate and where R → +∞ in
such a way that cR = R

N converges towards a finite constant
c > 0, it holds that

µN (s)

N

a.s−→ µ(s)

=
1− s

2
Ψc(SNR)− 1

2
Ψc((1− s) · SNR) (9)

with a.s standing for ”almost sure convergence” and

Ψc (x) = log

(
1 +

2c

u(x) + (1− c)

)
+ c · log

(
1 +

2

u(x)− (1− c)

)
− 4c

x(u(x)2 − (1− c)2)
(10)

with u(x) = 1
x +

√
( 1
x + λ+

c )( 1
x + λ−c ) where λ±c = (1 ±

√
c)2.

Proof See Appendix 6.1.

3.1.2. Approximated analytical expressions for c� 1

For low rank CPD we have R � N and thus it is realistic to
assume c� 1.

Result 3.3 In this context, the error exponent can be approx-
imated according to

µ(s)
c�1
≈ c

2

(
(1− s) log(1 + SNR)− log(1 + (1− s)SNR)

)
.

Proof See Appendix 6.2.

As the second-order derivative of µ(s) is strictly positive,
µ(s) is a strictly convex function over interval (0, 1). In ad-
dition, as a strictly convex function has at most one global
minimum, we deduce that the stationary point s? is a global
minimizer and is given by zeroing the first-order derivative of
the error exponent. This optimal value is given by

s?
c�1
≈ 1 +

1

SNR
− 1

log(1 + SNR)
. (11)

We can identify the two following limit scenarios:

• At low SNR, the error exponent associated with the tight-
est CUB, denoted by µ(s?), coincides with the error expo-
nent associated with the BUB. Indeed, the optimal value
in eq. (11) admits a second-order approximation for c �
1 according to

s?
2
≈ 1 +

1

SNR

(
1−

(
1 +

SNR

2

))
=

1

2
.

Using Result 3.2 and the above approximation, the best
error exponent at low SNR and for c� 1 is given by

µ

(
1

2

)
SNR�1
≈ 1

4
Ψc�1(SNR)− 1

2
Ψc�1

(
SNR

2

)
=
c

2
log

√
1 + SNR

1 + SNR
2

.

• At contrary for SNR → ∞, we have s? → 1. So, the
error exponent associated to BUB cannot be considered
as optimal in this regime. Using eq. (11) in Result 3.3 and
assuming that log SNR

SNR → 0, the optimal error exponent
for large SNR can be approximated according to

µ (s?)
SNR�1
≈ c

2
(1− log SNR + log log(1 + SNR)) .



4. NUMERICAL SIMULATIONS

In this simulation part, we consider a cubic tensor of order
Q = 3 with N1 = N2 = N3 = 100. The factors Φ1,Φ2

and Φ3 are generated as a single i.i.d. Gaussian realization of
rank R = 20. We can check c = 2e − 5 � 1. In Fig. 1, it is
drawn parameter s? with respect to the SNR in dB. The pa-
rameter s? is obtained thanks to three different methods. The
first one is based on the brut force/exhaustive computation of
the CUB thanks to a discretization of the s parameter over a
fine grid. This approach has two drawbacks. First, s? cannot
be estimated with an accuracy depending to the grid preci-
sion. The second problem is that this exhaustive procedure
has a very high computational cost especially in our asymp-
totic context. The second approach is based on the numerical
optimization of the closed-form of µ(s) given in Result 3.3.
In this scenario, the drawback in terms of the computational
cost is mitigated but the precision drawback due to the grid
design remains. Finally, the last approach is based on the an-
alytic expression given in eq. (11) under the hypothesis that
c � 1. This last strategy has a negligible computational cost
and does not suffer from the grid precision limitation. We
can check that the three methods coincide with a high accu-
racy. We can also verify the limit values of s? given in section
3.1.2 in the small and large SNR regimes. In Fig. 2, the same
three scenarios are considered. Here again, we can observe
the good agreement of the three approaches.
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5. CONCLUSION

The derivation and the analyze of the asymptotic performance
in terms of minimal Bayes’ error probability for the detec-
tion of a random parameters is addressed in this work. More
precisely, we assume that under te alternative hypothesis, we
observe a noisy Q-order tensor following a rank-R CPD with
large factors and an unknown random core tensor of interest.
The term “large” means that the number of available measure-
ments, N , and the number of desired random parameters, R,
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grow jointly to infinity with an asymptotically constant ratio.
The CUB and the error exponent are proposed in closed-form.
In addition, it is provided analytical expressions of the opti-
mal parameter s for which the CUB is a tight upper bound on
the Bayes’ error probability.

6. APPENDIX

6.1. Proof of Result 3.2

Large random matrix theory allows to evaluate the asymptotic
behavior of µN (s)

N when Nq → +∞ for each q = 1, . . . , Q,

R → +∞ in such a way that R1/q

Nq
converge towards a

non zero constant for each q = 1, . . . , Q. In other words,
N1, . . . , NQ converge towards +∞ at the same rate (i.e. Nq

Np

converge towards a non zero constant for each (p, q)), and
cR = R

N converges towards a constant c > 0. In this con-
text, the empirical eigenvalue distribution of matrix ΦΦT

converges towards a relevant Marcenko-Pastur distribution.
More precisely, we define the Marcenko-Pastur distribution
µc(dλ) as the probability distribution given by

µc(dλ) = δ(λ) [1−c]++

√(
λ− λ−c

) (
λ+
c − λ

)
2πλ

1[λ−c ,λ
+
c ](λ) dλ

where λ−c = (1 −
√
c)2 and λ+

c = (1 +
√
c)2. The Stieltjes

transform of µc defined as tc(z) =
∫

R+

µc(dλ)
λ−z is known to

satisfy the equation

tc(z) =

[
−z +

c

1 + tc(z)

]−1

.

When z ∈ R−∗, i.e. z = −ρ, with ρ > 0, it is well known
that tc(ρ) is given by

tc(−ρ) =
2

ρ− (1− c) +
√

(ρ+ λ−c )(ρ+ λ+
c )

(12)



It was established for the first time in [6] that if X repre-
sents a M × P random matrix with zero mean and 1

M vari-
ance i.i.d. entries, and if (λm)m=1,...,M represent the eigen-
values of XXT arranged in decreasing order, then the so-
called empirical eigenvalue distribution of XXT defined as
1
M

∑M
m=1 δ(λ−λm) converges weakly almost surely towards

µc in the asymptotic regime where M → +∞, P → +∞,
P
M → c. In particular, for each continuous function f(λ), it
holds that

1

M

M∑
m=1

f(λm)
a.s−→
∫

R+

f(λ) µc(dλ). (13)

In practice, this result means that if M and K are large
enough, then the histogram of the eigenvalues of each real-
ization of XXT tends to accumulate around the graph of the
probability density of µc.
The columns (φr)r=1,...,R of Φ are vectors (φ(Q)

r ⊗ . . . ⊗
φ(1)
r )r=1,...,R. These vectors are mutually independent, iden-

tically distributed, and satisfy E(φrφ
T
r ) = IN

N . However,
the elements of Φ are not mutually independent because
the components of each column φr are not independent. In
the asymptotic regime considered in this paper, the results
of [8] (see also [5]) allow to establish that the empirical
eigenvalue distribution of ΦΦT still converges almost surely
towards µc, where we recall that R

N → c. Using (13) for
f(λ) = log(1 + λ/ρ) as well as a well-known formula that
allows to express

∫
R+ log(1+λ/ρ) µc(dλ) in terms of tc(−ρ)

given by (12) (see e.g. [7]), we obtain the following result.

6.2. Proof of Result 3.3

We have u(x)
1
≈ 1

x+
√

( 1
x + 1)2 = 2

x+1 and u(x)+(1−c)
1
≈

2
(

1
x + 1

)
, u(x)−(1−c)

1
≈ 2

x , u(x)2−(1−c)2 1
≈ 4

x

(
1
x + 1

)
.

Using the above first-order approximations, eq. (10) is

Ψc�1 (x)
1
≈ c · x

1 + x
+ c log(1 + x)− c x

1 + x
= c log(1 + x).

Using the above approximation and eq. (9), we obtain Re-
sult 3.3.
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