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GDR ISIS
”Entropies, divergences et mesures informationnelles classiques et
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The classification framework

The performance in terms of minimal Bayes’ error probability for
detection of a random tensor is a fundamental understudied difficult
problem.

The detection of the random entries of the core tensor is hard to
study since an analytic expression of the error probability is not
easily tractable.

→ Chernoff Upper Bound (CUB) and the error exponent in the doubly
asymptotic regime, i.e., tensor sizes and number of parameter of
interest grows jointly in a control way.
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Noisy rank-R CPD model with random amplitudes

Assume that the multidimensional measurement tensor follows a noisy
Q-order tensor of size N1 × . . .× NQ given by

Y = X + N (1)

where [N ]n1,...,nQ ∼ N (0, σ2), i.i.d., and

Random rank-R CPD of order Q

X =
R∑

r=1

sr
(
φ(1)

r ◦ . . . ◦ φ
(Q)
r

)
︸ ︷︷ ︸

X r

with

{
rankX r = 1
sr ∼ N (0, σ2

s ), i .i .d .
(2)
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Random structured linear system and vectorized tensor

The vectorization of Y is given by

yN = vecY = x + n, with

{
N = N1 · · ·NQ

n ∼ N (0, σ2I), i .i .d .
(3)

where

Random rank-R CPD of order Q

x = vecX = ΦQ � . . .�Φ1︸ ︷︷ ︸
Φ (N×R)

s1

...
sR


︸ ︷︷ ︸

s∼N (0,σ2
e IN )

(4)

with the q-th Nq × R factor matrix given by

Φq = [φ
(q)
1 . . .φ

(q)
R ] (5)

where N,R →∞ with a finite aspect ratio R/N → c ∈ (0, 1).
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Bayes’ theory detection

Equi-probable Gaussian distributed hypothesis detection test :{
H0 : yN |SNR = 0 ∼ N

(
0,Σ0 = σ2IN

)
,

H1 : yN |SNR 6= 0 ∼ N
(

0,Σ1 = σ2
(
SNR ·ΦΦT + IN

))
.

The error probability given yN for the above test is

Pr(Error|yN) =

{
Pr(H0|yN) if yN ∈ X1,
Pr(H1|yN) if yN ∈ X0 = X \ X1

where the data-set for the alternative hypothesis is

X1 =

yN : Λ(yN)︸ ︷︷ ︸
log -LR test

= log
p(yN |H1)

p(yN |H0)
> 0

 .
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Tightest upper bound on the minimal error probability

P(N)
e =

1

2
Emin

{
p(yN |H0), p(yN |H1)

}
≤ exp[−µN(s?)]

2
≤ exp[−µN(s)]

2

where the best exponentially decay rate is obtained for s? ∈ (0, 1).

Error Exponent (EE) for Gaussian hypothesis

Thanks to the Stein’s lemma :

− lim
N→∞

logP
(N)
e

N
= lim

N→∞,R/N→c

µN(s?)

N
def.
= µ(s?)

with

µN(s) =
1− s

2
log det

(
SNR ·ΦΦT + I

)
(6)

− 1

2
log det

(
SNR · (1− s)ΦΦT + I

)
. (7)
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The Marcenko-Pastur framework

The Empirical Spectral Measure is qN(λ) = 1
N

∑N
n=1 δ(λ− λn(AAT )).

if R is fixed and N →∞, then qN(λ) converges toward a
non-random measure associated to the Dirac density.

if R,N →∞, with R/N → c ∈ (0, 1) then qN(λ) converges (almost
surely) toward a deterministic measure qc(λ) whose density is the
well-known Marcenko-Pastur law, i.e.,

f (λ; c) =
∂qc(λ)

∂λ
=

√
(λ− λ−)(λ+ − λ)

2πλc
1[λ−,λ+](λ)

where λ+ = (1 +
√
c)2 and λ− = (1−

√
c)2.

With c = 0.7,

(40, 100) (200, 500) (800, 2000) (1600, 4000)
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Is it realistic ? YES

In massive MIMO systems, the large number of sensor (N) allows to
improve the resolvability performance, i.e., to resolve more sources
(R). Thus, the increase in N implies a larger R in a control way, i.e.,
with an asymptotic finite ratio.

In compressed sensing, an universal strategy to verify a
concentration inequality is based on random projections, i.e., the
dictionary is composed by Φ = S · B with B an orthonormal basis
and a measurement matrix S drawn from i.i.d. Gaussian entries of
zero mean and variance 1/N. For 0 < ε < 1, the inequality
concentration for dictionary Φ is

Pr
(∣∣||Φs||2 − ||s||2

∣∣ ≥ ε||s||2) ≤ exp[−cNε2] (8)

where c is a given positive constant.
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The state of art and our contribution

Knowing f (λ; c), it is possible to derive a closed-form expression for

1

N
log det

(
x ·ΦΦT + I

)
→
∫

log(x · λ+ 1)f (λ; c)dλ

We extend the standard result to our case of interest.

Extension to structured linear matrix

Let Φ = ΦQ � . . .�Φ1

1

N
log det

(
x ·ΦΦT + I

)
→ Ψc(x)

where

Ψc (x) = log

(
1 +

2c

u(x) + (1− c)

)
+ c · log

(
1 +

2

u(x)− (1− c)

)
(9)

− 4c

x(u(x)2 − (1− c)2)
with u(x) = 1

x +
√

( 1
x + λ+)( 1

x + λ−).

(10)
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Application to the EE

Analytical formula

In the asymptotic regime where N1, . . . ,NQ converge towards +∞ at the
same rate and where R → +∞ in such a way that R

N converges towards
a finite constant c > 0, it holds that

µN(s)

N
a.s−→ µ(s) =

(1− s)

2c
Ψc (SNR)− 1

2c
Ψc

(
SNR · (1− s)

)
. (11)

Approximated analytical expressions for c � 1

The EE can be approximated according to

µ(s)
c�1
≈ c

2

(
(1− s) log(1 + SNR)− log(1 + (1− s)SNR)

)
. (12)

The stationary point s? is a global minimizer of µ(s) and is given by

s?
c�1
≈ 1 +

1

SNR
− 1

log(1 + SNR)
. (13)
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Analysis of s? wrt. the SNR

We can identify the two following limit scenarios :

At low SNR, µ(s?), coincides with the EE associated with the BUB
based on

µ

(
1

2

)
SNR�1
≈ =

c

2
log

√
1 + SNR

1 + SNR
2

. (14)

At contrary for SNR→∞, we have s? → 1. So, the error exponent
associated to BUB cannot be considered as optimal in this regime.
Assuming that log SNR

SNR → 0, the EE is given by

µ (s?)
SNR�1
≈ c

2
(1− log SNR + log log(1 + SNR)) . (15)
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Numerical illustrations

In this simulation part, Q = 3 with N1 = N2 = N3 = 100. The factors
Φ1,Φ2 and Φ3 are generated as a single i.i.d. Gaussian realization of
rank R = 20. We can check c = 2e − 5� 1.
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Conclusion

1 The derivation and the analyze of the asymptotic performance in
terms of minimal Bayes’ error probability for the detection of a
random parameters is addressed in this work.

2 The term “large” means that the number of available
measurements, N, and the number of desired random parameters,
R, grow jointly to infinity with an asymptotically constant ratio.

3 The CUB and the error exponent are proposed in closed-form.

4 In addition, it is provided analytical expressions of the optimal
parameter s for which the CUB is a tight upper bound on the Bayes’
error probability.

5 A main conclusion of this work is that the BUB is the tightest
bound at low SNRs. At contrary, this property is no longer true for
higher SNRs.
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