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Distributed Faulty Node Detection in
Delay Tolerant Networks: Design and Analysis

Wenijie Li, Student Member, IEEE, Laura Galluccio, Member, IEEE,
Francesca Bassi, Member, IEEE, and Michel Kieffer, Senior Member, IEEE

Abstract—Propagation of faulty data is a critical issue. In case of Delay Tolerant Networks (DTN) in particular, the rare meeting events
require that nodes are efficient in propagating only correct information. For that purpose, mechanisms to rapidly identify possible faulty
nodes should be developed. Distributed faulty node detection has been addressed in the literature in the context of sensor and
vehicular networks, but already proposed solutions suffer from long delays in identifying and isolating nodes producing faulty data. This
is unsuitable to DTNs where nodes meet only rarely. This paper proposes a fully distributed and easily implementable approach to
allow each DTN node to rapidly identify whether its sensors are producing faulty data. The dynamical behavior of the proposed
algorithm is approximated by some continuous-time state equations, whose equilibrium is characterized. The presence of misbehaving
nodes, trying to perturb the faulty node detection process, is also taken into account. Detection and false alarm rates are estimated by
comparing both theoretical and simulation results. Numerical results assess the effectiveness of the proposed solution and can be

used to give guidelines for the algorithm design.

Index Terms—Delay Tolerant Networks; Fault detection; lterative algorithms; Distributed estimation; Equilibrium analysis.

1 INTRODUCTION

Delay Tolerant Networks (DTN) are challenging networks
characterized by dynamic topology with frequent discon-
nections [1]. Examples of DTNs include Vehicular DTNs
(VDTNSs) [2] where two nodes can communicate with each
other only when they are closely located. This connection is
intermittent as the nodes are moving vehicles. Due to this
sparse and intermittent connectivity, inference and learning
over DTNs is much more complicated than in traditional
networks, see, e.g., [3]-[8].

This paper considers the problem of distributed faulty
node detection (DFD) in DTNs. A node is considered as
faulty when one of its sensors frequently reports erroneous
measurements. The identification of such faulty nodes is
very important to save communication resources and to
prevent erroneous measurements polluting estimates pro-
vided by the DTN. This identification problem is quite
complicated in DTNs when interactions are mainly between
pairs of encountering nodes. Most of the classical DFD
algorithms are using measurements of spatially-correlated
physical quantities collected by many nodes to determine
the presence of outliers and identify the nodes producing
these outliers. In case of pairwise interactions, mismatch
between measurements provided by two different nodes
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can still be detected, but identifying directly which node
produces erroneous measurements is not possible.

This paper presents a fully distributed and easily im-
plementable algorithm to allow each node of a DTN to
determine whether its own sensors are defective. We assume
as in [9] that nodes are not aware of the status (good or
defective) of their sensors, while their computation and
communication capabilities remain fine, even if some of
their sensors are defective. Most of the nodes of the DTN
are assumed to behave in a rational way and are willing to
know the status of their sensors. Some nodes, however, may
be misbehaving, trying to perturb the detection process.

As in [9]-[13], a Local Outlier Detection Test (LODT)
is assumed to be able to detect the presence of outliers in
a set of measurements, without necessarily being able to
determine which are the outliers. This is a typical situation
when only pairwise interactions are considered, where mea-
surements from sensors of only two nodes are compared.
The generic LODT is characterized by its probabilities of
detection and false alarm. When two nodes meet, they
exchange their local measurements and use them to perform
the same LODT. The LODT results help both nodes to
update their estimate of the status of their own sensors.
When, for a given node, the proportion of meetings during
which the LODT suggests the presence of outliers is larger
than some threshold, this node decides its sensors may be
defective. In this case, it becomes silent. Accordingly, it does
not transmit any more its measurements to its neighbors,
but keeps collecting measurements from nodes met and
updates the estimate of the status of its sensors. It may then
have the opportunity to change its estimate and communi-
cate again. Although the LODT considered here are those
of [9], this work differs significantly from [9] due to the
communication conditions of DTNs, which require a totally



different DFD algorithm. The analysis of the properties of
the algorithm is also totally different. This paper shows
that the behavior of the proposed DFD algorithm can be
described using Markov models and tools borrowed from
control theory and population dynamics.

More in depth, the belief of each node about the status
of its sensors is quantized. The evolution of these quan-
tized beliefs are then shown to follow two Markov chains.
A continuous-time approximation of the evolution of the
proportion of nodes with similar beliefs is then derived.
Sufficient conditions on the decision parameters to ensure
the existence and uniqueness of an equilibrium of the DFD
algorithm are then provided. Given the characteristics of
the LODT, upper and lower bounds of the detection rate, i.e.,
proportion of nodes which have effectively identified their
sensors as defective, and of the false alarm rate, i.e., propor-
tion of nodes which believe that their good sensors are in
fact defective, are also obtained. The impact of misbehaving
nodes, trying to perturb the results of the DFD algorithm, is
also taken into account. These results provide guidelines to
properly choose the parameters of the DFD algorithm.

The rest of the paper is organized as follows. Section 2
discusses some related work. Section 3 presents the system
model and basic assumptions. Section 4 details the DFD
algorithm for DTNs. Section 5 introduces the Markov model
describing the behavior of the DFD algorithm and describes
the transition probabilities between the node states. Sec-
tion 6 develops the theoretical analysis of the macroscopic
evolution of the proportion of nodes in different states.
Section 7 analyzes the properties of the equilibrium obtained
from the continuous-time state equations by approximating
the stochastic evolution of the proportions of nodes with
similar beliefs. Section 8 discusses the effect of having
misbehaving nodes in the system. Section 9 provides some
numerical results as well as a comparison with an alterna-
tive DFD algorithm and Section 10 concludes this paper.
Notations are presented in Table 1. Proofs of propositions
and lemmas are available in the Appendix.

2 RELATED WORK

DFD is a well-investigated topic when considering Wire-
less Sensor Networks (WSNs) (see [14]-[16] and references
therein). The WSNs considered in most of the papers are
dense and have a static topology. DFD in DTNs is much
less investigated. Classical DFD algorithms usually consist
of two phases. First, an LODT is performed using data
collected from neighboring nodes. LODTs (based on ma-
jority voting [10], the median [11], or the mean [12] of the
measurements, the modified three-sigma edit test [13], etc.)
aim to decide which data is erroneous. Second, the outcomes
of the LODTs are disseminated to improve the decision
accuracy.

Nevertheless, when LODTs have to process measure-
ments from two or three nodes only, it becomes difficult
to identify the defective nodes. It may, however, still be
possible to detect inconsistencies among measurements due
to the presence of a node producing outliers. This is a
typical situation in DTNs when there are mainly pairwise
interactions: two nodes meet, take measurements, and share
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these measurements. Applying directly classical DFD algo-
rithms in DTNs may thus be quite ineffective. Moreover,
usually the performance of DFD algorithms is characterized
experimentally. A theoretical analysis of the equilibrium
and convergence properties of these algorithms is seldom
performed.

In the context of distributed estimation via consensus in
a WSN, [17]-[20] have considered the simultaneous estima-
tion of a common quantity from measurements corrupted by
different levels of bias or of variance. A distributed ranking
among nodes is performed according to the performance of
their sensor. The proposed solution allows an identification
of defective nodes with sensors producing measurements
of high bias or high variance. Nevertheless, the proposed
solution highly relies on the measurement models and on
the communication conditions.

A problem related to DFD in DTNs has been considered
in [21] in the context of VDTN. A large number of sensor
nodes are fixed and some vehicles, called mobile carriers
(MCQ) collect data from these sensors. The sensor nodes can
only communicate with the MCs in their vicinity. A MC
needs to collect enough measurements to perform a test
to decide which have been produced by defective sensors.
Once a node is deemed defective by a MC, it is added to
its blacklist. The MC provides information to sensors about
their status. MCs also exchange their blacklists to accelerate
the faulty node detection.

In [22], a related problem of distributed malware detec-
tion in DTN is addressed. Each node evaluates after a meet-
ing with another node whether the latter has performed
suspicious actions (malware transmission trial). When after
several meetings with Node j, Node i detects for a given
number of times suspicious activities, a cut-off decision
is performed against Node j, which is ignored in next
meetings. The main drawback of this approach is the long
time required to identify and isolate misbehaving nodes.
Misbehavior detection in DTNSs is also considered in [6],
[23], where the DTN is perturbed by routing misbehavior
caused by selfish or malicious nodes. The identification
approach in [6] is not distributed, since a trusted author-
ity periodically checks the forwarding history of nodes
to identify possible misbehavior. A collaborative approach
is proposed in [23], where each node can detect whether
the encountered node is selfish using a local watchdog.
The detection result is disseminated over the network to
increase the detection precision and to reduce the delay.
Trust/Reputation management is another important aspect
to help DTNs to resist various potential threats. For exam-
ple, [24] provides an iterative trust management mechanism
to fight against Byzantine attacks in which several nodes
are totally controlled by the adversary. In [25], a defense
against Sybil attacks [26] is introduced, which is based on
the physical feature of the wireless propagation channel. A
trust model in the scenario of underwater acoustic sensor
networks is presented in [27] to take into account several
trust metrics such as link trust, data trust, and node trust.

In this paper, differently from previous works in the
field, we consider that in a distributed way each node
performs a self-determination on whether its sensors are
producing outliers in the context of DTNs. In this case, new
issues arise, mainly related to the limited proximity time



TABLE 1
Symbols used in this paper

So, S1, S2 sets of good, defect., and misbehav. nodes
ng number of nodes
0; status of node ¢
0; estimate of 6;
ng number of nodes with status 6
Do proportion of nodes with status 6
p?0 proportion of nodes with status ¢ and
estimating their status as 6
700 value of p?? at equilibrium
;‘;ﬁg approximate value of p?? at equilibrium
A inter-contact rate
v decision threshold
t time
Yi outcome of a LODT performed by node 7
qp detection probability of a LODT
qrA false alarm probability of a LODT
Cm,i number of LODTs performed by node %
cd,i number of LODTs by node ¢ resulting in a
detection of outliers
M number of previous LODT results
considered for the decision
X; state of node i, containing 6;, cm s, and cq 5
wgm"sd (t,cm,cq) | transition probability from state (6, cm, c4)
to state (6, cm + Om, ¢4 + 4)
xgm proportion of nodes of actual status 6 with
state x; = (0, cm, ¢4)
Xm expected value of X
X value of X;™ at equilibrium
Xgme approximate value of Xy™“ at equilibrium

of DTN nodes and the sporadic contacts which call for the
consideration of the history of contacts in the identification
process. Also, we provide a mathematical characterization
of the problem and prove the convergence of the algorithm.

3 SYSTEM MODEL

Consider a set S of ng moving nodes equipped with sensors.
S can be partitioned into three subsets, Sy, S1, and Sa.
Sp contains all nodes with good sensors. S is the subset
of nodes with defective sensors producing outliers, i.e., mea-
surements corrupted by a noise which has characteristics
significantly different from those of the noise corrupting
measurements provided by good sensors. Finally, Sy rep-
resents the set of misbehaving nodes, trying to voluntarily
perturb the behavior of the network.

The status of node ¢ is 0;(t) = 0 (good node) if all its
sensors are good, 0;(t) = 1 (defective node) if at least one of
them is defective, and by convention 6;(t) = 2 (misbehaving
node). The proportion and number of nodes with status 6
are respectively py and the number of nodes in status 0
is ng = pens, with po + p1 + p2 = 1. All nodes, except
misbehaving nodes, are not aware of their own status. In
what follows, we assume that over the time horizon of
the experiment, the status of sensors does not change, i.c.,
0:(t) = 6.

Misbehaving nodes aim at disrupting network opera-
tions by causing congestion along paths, unreliable packet
delivery, or erroneous data delivery [6], [24], [28]. Here, we
assume that misbehaving nodes always transmit data to
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their neighbors indicating that their sensors are good. More-
over, they try to provide measurements to the encountered
nodes so that the LODTs performed by these nodes lead to
the outcome of identifying outliers.

Our aim is (i) to design a distributed algorithm so that
each node i rapidly evaluates an accurate estimate 6; of its
own status 6; despite the presence of misbehaving nodes,
(if) to provide a theoretical analysis of the behavior of this
algorithm.

3.1 Communication model

Nodes can exchange information only during the limited
time interval in which they are in vicinity. As in [7], [8], [23],
[29], we assume that the time interval between two succes-
sive meetings follows an exponential distribution with an
inter-contact rate A\. Moreover, we assume that each meeting
involves only two nodes. When more than two nodes meet
simultaneously, processing is performed pair-by-pair.

3.2 Local outlier detection test

As in [9], we consider a family of LODTs able to detect
the presence of outliers in a set of n data measurements
M = {mq,...,my,} but unable to identify which data is
an outlier. Denote y (M) the outcome of the LODT, ie.,
y (M) = 1 if data corresponding to outliers are detected
within M, otherwise, y (M) = 0.

LODTs can take various forms (see [9] and Example 1
below). The LODT is characterized by a false alarm probability
gra (the probability of having y (M) = 1 under the condi-
tion that none of the data in M are produced by defective
sensors) and by a detection probability gp (the probability of
having y (M) = 1 under the condition that some data in M
are really produced by defective sensors). In M, let ng be
the number of data produced by good sensors and n; be the
number of data coming from defective sensors. We further
assume that both ¢p and gpa in average depend only on the
number of data involved in the LODT. As a consequence,
we can denote gra as gga (no) and ¢p as ¢p (ng,n1). Each
node performing a LODT on a set of data has not to know
ng and n;, but the performance of the LODT will depend
on the actual values of ng and ny, which are used in the
analysis of the DFD algorithm.

Example 1. This example introduces a LODT inspired from
bounded-error parameter estimation problem (see, e.g., [30]-
[32]). It assumes that only pairwise interactions occur. Con-
sider some sensor nodes taking temperature measurements
in the same room, e.g., with actual value ¢t = 25°C. For a
non-defective sensor, suppose that its measurement error
is bounded, e.g., £1°C. Assume that two sensors provide
t1 = 25.6°C and t; = 23.5°C respectively. Assuming
that none of the sensors is defective, and considering the
bounded measurement noise, one deduces that ¢t € t; =
[t1 — 1,1 + 1] = [24.6,26.6] and t € t, = [22.5,24.5]. Since
t1 Nty = B, there exists at least one outlier, but one is unable
to determine which sensor has produced an outlier.

3.3 Detection scenario

We assume that during each meeting of a pair of nodes
(i,7) € S, the nodes collect data with their sensors. Each



node may or may not transmit its data to the other node,
as detailed in the DFD algorithm description. If a node has
received data from its neighbor, it may run a LODT involv-
ing its own data and those received from its neighbor. We
assume that the spatial and temporal correlation between
data is such that only data collected during the meeting of
two nodes can be exploited by a LODT. Therefore, previ-
ously collected data are not exploited. As a consequence,
contrary to [9], where ny and n; may be large, in the
DTN scenario, a LODT will involve ng,ny € {0,1,2}, with
ng + n1 = 2. In this paper, one furthermore assumes that
gra (2) < gp (1,1) < gp (0,2), which is reasonable, since the
outcome of a LODT is more likely to be 1 as the number of
outliers involved increases.

4 DFD ALGORITHM

In the proposed DFD algorithm, each (good or defective)
node ¢ manages two counters cm ;(t) and cq;(t) initialized
at 0 at t = 0. Using ¢ 4(¢), node i counts the number of
meetings during which it has received data from its neighbor,
and has been able to perform a LODT. Using cq4 ;(t), it counts
the number of LODT resulting in the detection of outliers.
When cq4;(t)/cm,i(t) > v, where v is some constant deci-
sion threshold, node ¢ considers itself as carrying defective
sensors, i.e., it sets its own estimate 0; (Q = 1. Otherwise, it
considers that its sensors are good, i.e., ; (t) = 0.

When a node with 6; (t) = 1 encounters another node, it
still takes measurements, but it does not send these data to
the other node to avoid infecting the network with outliers.
Any node, upon receiving data from another node, performs
a LODT and updates ¢y ;(t) and cq,;(t). As a consequence,
a node which meets another node considering itself as
defective, transmits its data, but since it does not receive
any data, it does not update ¢y, ;(t) and cqi(t) at the end
of the meeting. Algorithm 1 summarizes the proposed DFD
technique for an arbitrary reference node <.

The vector x;(t) = (0;,cm,i(t),cq,i(t)) represents the
(microscopic) state of each node i. As ¢ — oo, one has
Cm,i(t) — oo, which leads to an infinite number of possible
values for x;(t) and the global (macroscopic) behavior of
the algorithm is difficult to analyze. To limit the number of
possible states, we have chosen to consider the evolution
of cm i (t) and cq 4(t) over a sliding time window containing
the time instants of the last M meetings during which node ¢
has performed a LODT. Algorithm 2 is a modified version of
Algorithm 1 accounting for this limited horizon. It involves
an additional counter p for the number of LODT performed
by node . As long as u < M, (5) is equivalent to (3).

Algorithm 2 is analyzed in the next sections.

5 EVOLUTION OF THE STATE OF A NODE

In this section, to simplify the presentation, the presence of
misbehaving nodes is not taken into account. The impact of
such nodes on the behavior of Algorithm 2 will be detailed
in Section 8.

Consider the state x; (t) = (6;, ¢m,i (t) , ca,; (t)) of node .
Since ¢y (t) € {0,...,M} and cq; (¢t) € {0,...,cms (8)},
the number of values that may be taken by the state of a

Algorithm 1 DFD algorithm for node i

1) Initialize at t? = 0, §; (t9) = 0, cm s (t9) = cas(t9) =
0,k =1.
2) Do

Cm,i (t) = Cm,i (tf_l) 5 (1)

t=t+ 6t )

until the x-th meeting occurs at time ¢t = ¢ with
Node j* € S\ {i}.

3) Perform local measurement of data m; (£f).

4) 1If 6; (t) = 0, then transmit m; (tf') to node j*.

5) If data mj~ have been received from node j~, then

a) Perform a LODT with outcome y; (¢f).
b) Update ¢y ; and cq,; according to

Cm,i(tf) = Cm»i(tjil) +1 (3)
cai(t) = cai(t777) + wi (¢7)
c¢) Update 8; as follows
= ky _ 1 ifcqi(t7)/emi(tF) > v,
6:(t7) = {O else. @
6) k=kr+1.
7) Goto 2.

Algorithm 2 Sliding-Window DFD algorithm for node 7

1) Initialize {0 = 0, 6; (£2) = 0, ¢ (t?) = cq.4(t?) = 0,
k=1and p = 0.

2) Do (1)-(2) until the s-th meeting occurs at time ¢
with Node j* € S\ {i}.

3) Perform local measurement of data m; (£f).

4) 1If 6; (t) = 0, then transmit m; (t{') to node j*.

5) If data m;~ have been received from node j~, then

a) ,uH: u + 1. Perform a LODT with outcome
b) %il:;date Cm,; and cq; as
em,s() = min {1, M},
{Cd,z‘(t?) = an:max{l,u—Mﬂ} yi" ®)
c¢) Update 51 using (4).

6) k=kr+1
7) Go to 2.

node is (M + 1) (M + 2) /2. The evolution of x; (t), condi-
tioned by its status 6;, follows a Markov model with state
transition diagram of the kind shown in Figure 1 for M = 4.

In particular, there are two chains, one conditioned
by 6; = 0 and the other conditioned by 6; = 1. Both
are characterized by a transient phase for state values
with ¢ ;(t) < M; then, a permanent regime starts when
Cm,i(t) = M. With ¢ ; () = cm and cq; (t) = cq, the tran-
sitions from State (0, ¢, cq) to State (0, ¢}, ¢};) are analyzed
in the following.
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Fig. 1. Example of Markov model for the evolution of the state
(6, cm,i (), cq,i (t)) of a node when M = 4.

5.1 Analysis of some random events

In order to estimate the transition probability from a generic
state of the Markov chain to another, one first calculates
the probability a given node meets an other node believing
its status good or its status is bad. One also evaluates the
probability to perform a LODT outcome concluding in the
absence or in the presence of outliers.

5.1.1 Probability of meeting a node believing its status is
good/defective

Assume that at time ¢, some reference node 7 meets an other
node which index is represented by the random variable J

and define the random event & (t) = {5 J ()= O}, repre-

senting the event that the node met believes its status is
good. As illustrated in (4), among the nodes with status 6,
the proportion of nodes that believe themselves as good is!

>

em>0,c4:¢q/em<v

" (1) =257 (1) + SOF ©)
where p'® (t) is in fact the non-detection rate (NDR) of the
nodes with defective sensors at time ¢ and X;™“ () repre-
sents the proportion of nodes in state (6, ¢y, c4) defined as

Xgm (1) = [Zgm™ (8) /e, @)
where
Zgme(t) = {i i € Sp,0; = 0, Cmi(t) = cm,cai(t) = cal},

and | - | denotes the cardinality of a set.

Assuming that the nodes are randomly spread, the
probability that node J believes it has only good sensors
conditioned to its true status is

p” () =P (01 () = 016, (1) = 6), ®)

and then
P{& ()} = pop™ (t) + p1p™ (). ©)

Similarly, introduce &5 (t) = {6, (t) = 1}, representing
the event that the node met believes its status is defective.
Among the nodes with sensors in status 6, the proportion of

nodes with §j (t)=1is

P’ (t) =

>

em>0,cq:cq/cm 2V

X (1), (10)

1. For the sake of simplicity, the dependency of p?° (t) in v is omitted,
as v is constant during the DFD algorithm.
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where p°! (¢) and p'! (¢) represent the false alarm rate (FAR)
and the detection rate (DR) respectively. From (10), one gets

P{ES(t)} = pop”" (t) +pip'" (¢). (11)

5.1.2 Probability of detecting the presence of an outlier

Since node i performs an LODT only when it meets a node J
with 6 (£) = 0, one introduces the random event £{(t) =
{Y; (t)=116;=0,0,(t) = O}, for the reference node with

actual status 6. As discussed in Section 3.2, the statistical
properties of the outcome Y; (¢) of the LODT depend only
on ¢; and 6;. For example, when node ¢ has good sensors,
one has

P{Sg(t)}:ZIP’{Yi(t):1,9J:<p|9i:0,§J(t):O}

@ ZP{Yi(t):1|9z-=0,9J:¢}]1»{9J:¢|5J(t):0}

®) pogra (2)p* (t) +prgp (1,1) ' (t)

; pop® () + p1p'° (t) '
In (12-a), one uses the fact that the LODT outcome is not
influenced by the estimate of the status of a node and that
inP {GJ = |0;=0,0,(t) = 0}, the status of node J, does
not depend on 6;. In (12-b),

(12)

P{Y;(t)=1]6;=0,0; =0} =qra (2), (13)
P{Yi (1) =1]6:=0,0;, =1} = qp (1,1)
Moreover,
P{os =0 (1) =0}
) P{@, (t):0|ejz¢}n»{9] =eb |
2;:011»{% (t)=0|0jz¢}1P>{9J — gy Pop™ () +p1p'® (1)
If node 7 has defective sensors, one has
p{el(n) = Lo (L D™ (0) +paap (0.2p° (1) gy

pop®® (t) + p1p™0 (¢)

Similarly, one may introduce the random event &5 (t) =
{Yi t)=0]60;,=6,0,(t) = 0}, and show that

P {5§(t)}

{ po(1—gra(2)p°° () +p1 (1—ap(1,1))p*° ()

popP0(¢)+p1p10(¢) , f0=0,
Po(1=ap(1,1)p% (1) +p1 (1-ap(0,2)p*%(t)  jrp _ 1
popY0 (¢)+p1p10(¢) ’ :

(15)

5.2 Transition probabilities

One evaluates now the transition probabilities for the
state of a node. More specifically, define as ﬂgm’5d
the transition probability from State (0,cm,cq) to
State (0, c¢m + Om,cd + 04), where § € {0,1}. One has
dm € {0,1} since ¢, may either increase (6, = 1) in the
transient regime or remain constant (6, = 0) in the perma-
nent regime. One has d4 € {—1,0,1}, depending on the
value of the last LODT outcome and on the value of the
M + 1-th last LODT outcome, which is no more considered
in the permanent regime.



Thus, (0m,da) € {(0,0),(0,1),(0,—-1) (1,0), (1,
Note that 772’“’6d depends on the current state of the reference
node, but also on the current proportion of active (good
and defective) nodes. Therefore, the transition probabilities
are denoted as wg‘"’éd (t, cm, ca), where t is the time instant,
Cm,i(t) = em, and ¢q4(t) = c4. Depending on the value of
Cm, two different cases are considered in Section 5.2.1 and
in Section 5.2.2, respectively corresponding to the transient
and permanent regimes.

52.1 Casel, cy(t) <M

In the transient regime, when ¢y ;(t) < M, cm,(t) and
cq,i(t) are updated according to (3) whenever node J with
by (t (t) = 0 is met. The only possibility that leads to m

is the event &, i.e., node i meets node J with OJ (t) =1. As
a consequence, no LODT is performed by node 7. Therefore,
for any 0 € {0,1},

=P {5f (t)} = pop01

where p?! (t) is defined by (10).
A state transition occurs with (dm,dd) = (1,1) when

node i with status 6; = 6 meets node J with 6;(¢) = 0
and when the LODT yields y; (t) = 1. Since the two events
are independent, one has

7t emy ) = P {Yi (t) =1,8, (t) = 0[6; = 9}
—P{& (t)}]p{gg (t)}.

Depending on the value of §;, using (9), (12), and (14
may rewrite (17) as

), (16)

7"3’0 (t, em, ca) (t) +p1p11

17)

), one

1,1 _ Jpogea (2) p™ (t) + p1gp (1, 1) p*° (t), if 6 =0,
o (t,cm,cq)= 00 10 e

pogp (1,1) p™° (t) 4+ pigp (0,2) p° (t) , if 6 = 1.

(18)

Finally, 7 (¢, m, ca) = P{Yi (£) = 0,0, (1) = 0l6; = 0} is
obtained similarly from (15)

ﬂ—é’o (t7 Cm7 Cd) =

po (1 —ara (2)p™ (t) +p1 (1 —ap (1,1))p" (), if6 =0,
po (1 —ap (1,1))p” () +p1(1 - o (0,2))p'" (), if 6 =1.
(19)

522 Casell, ¢y (t)=M

In the permanent regime, ¢y, ;(t) = M and does not increase
any more, thus dy, = 0. In Algorithm 2,  is the number of
LODTs performed by node ¢ up to time ¢. When p > M, only
the last M LODT outcomes are considered: LODT outcomes
y* with m < 4 — M are no more considered.

To determine the value taken by 4 € {—1,0, 1} after the
p-th LODT, consider the random event

Cd} )

p—1
Ei(t) = {Y#‘M =1 > v"=
m=pu—M
which corresponds to a situation where one knows that
ca LODTs where positive among the last M tests and the
LODT that will be ignored, once the new LODT outcome
is available, also concluded in the presence of defective
sensors. P {&} (t)} is relatively complex to evaluate, since
P{Y* = 1} is time-varying according to (12-14). In what
follows, we assume that LODT outcomes with Y;" = 1

(20)

1) ’ (L -1

6

)are independently distributed over the time horizon corre-
sponding to m = u — M, ..., — 1. One obtains then

P{el(t)} =4,
{etw) =3 @1)
This approximation is exact in steady-state, when the X;™“s

do not vary any more.
Similarly, define

E1(t) = {YJ‘M =0 (22)

p—1
ooyt = Cd} :

m=pu—M

Considering the same assumption used to get (21), one has

M

Assume that the (i — M)-th LODT performed by node 4
occurred at time £, then yf_M can also be denoted as y; (i)
and the transition related to cq; is such that §q = y; (t) —
y; () € {-1,0,1}.

To have (0, dq) = (0, 1), three independent events have
to occur: 1) the encountered node J believes it is good at

time ¢, ie., &1 (t); 2) y; (t) = 1, e, E () (t); 3) yi (t) = O,
ie., E{ (t). Thus the transition probability may be expressed

P& ()} =1-P{& (¢ (23)

as
! (8, M, ca) = P{Ex ()}P{E] ()}P{EX (1)}, (29)
Using (9), (12), (14), and (21) in (24), one gets
myt (t, M, cq)
~J(poara(2) p™ (t) + prap(1,1) p™° (1)) M, if 6 = )
" (poan(1,1) p™ (t) + p1ap(0,2) p'° (1)) M2, if 6 =

Consider now (dm,d4) = (0, —1). To have such transi-
tion, the three following independent events should occur:

1) &1 (1);2) yi (t) =0, ie., E5 (1) (1);3) wi (1) = 1, ie., E (1)
Thus, the transition probability is

Mo (8, M, ca) = P{E: ()}P{E3 ()}P{Es ()}

~ J(po(1—qea (2)) p*° (t) + p1(1—gp (1,1)) p' (t)) 52, if 6 =0,
| (po(1—gp (1,1)) p™ (¢) + p1(1—qp (0,2)) p'° () &,if 6 = 1.
(26)

Finally, by substituting egs. (25-26) it is possible to calcu-
late 7% (t, M, cq) which is given by

790 (t, M, cq) =1 — 7" (t, M, cq) — g~ (t, M,cq) . (27)

In this section, we have so far completely characterized
the transition probabilities between any possible pair of
states in the Markov chain. Accordingly, we are now able
to completely describe the evolution of the DTN state com-
ponents and, thus, the expected proportion of nodes in a
specific state.

6 MACROSCOPIC EVOLUTION OF THE DTN STATE

All node state transition probabilities evaluated in Section 5
are now used to determine the evolution of the proportion
of nodes in state 0, i.e.

o ()= (X" (0, %5° (1), X" (0 X" (1), XM (1)
and the corresponding expected values

Xo (0= (X570, X5° (1), X3 (©), . X" (1), XM (1)



Proposition 2. The evolution of the DTN state components, i.e.,
the expected proportion of nodes X ;" (t) in the states (0, ¢, cq),
with 6 € {0,1}, ¢, =0,..., M, nd ¢4 < ¢y is described by

By W A () 0.0) 1 0,0).
axsmO (b c
cgt ( ) ( X " ( Cm, +7Té’1 (0;7170))
+X§"”1 Oy (em — 1,0)),
axg" " (o) \ Cmsem (1,0
dt = (7X6 (71”0 (cm,cm) +7T9 (Cmacm))
+Xcm_1 sem—1 é 1 (Cm —1,em— 1)) 7
dx M0 (d) M 7 M ’
o A (=X3H0m) (M 0) + X' 0my® (M = 1,0)
FXMAR0T (M, 1)) :
ax MM ©) (L MM_0.—=1 e Ary o xMM-L 01 e g
—a o T (M, M)+X, my (M, M—1)
+ Xéw—l,]\/f—lﬂ_é,l (M —1,M — 1)) 7

(28)
forany ¢,y = 1,..., M—1, with the initial conditions X3° (0) =
Land X7 (0) = 0, Ve, cq # 0.

Proof: See Appendix A O

Kurtz’s theorem [33], [34] can then be used to show that
for all € > 0, there exists a; > 0 and as (¢) > 0 such that

<>||>a) oy exp (—az (€) ng)

As a consequence, ¥y (t) converges in probability to Xy (t)
as ng goes to infinity. This is typically the approximation
performed in the seminal work [35] where the SIR model
was proposed. This model is the one used to characterize
most widely studied classes of epidemic models. Accord-
ingly, analogously to what was presented for example in
[7], [35]-[40], the proposed system consists of ordinary dif-
ferential equations approximating jump Markov processes.

The state equations in (28) are nonlinear, since each 7r9 m:0d
depends on X;™“, see (6) and (10).

P X
(o 0 () -

7 ANALYSIS OF THE DTN STATE EQUATIONS

In what follows, the asymptotic behavior of the DTN state
equations (28) is characterlzed Algorithm 2 may drive
X§™ to an equilibrium X" at which the proportions
of nodes in different states X,™“ (¢) do not vary any more.
As a consequence, p%° (t) defined in (6) also tends to an
equilibrium 7%

7.1 Equilibrium of X ;™

One investigates first the evolution of X;™“ (t) when ¢y <
M. As shown in the following proposition, the DTN state
always reaches the permanent regime.

Proposition 3. Forany ¢,, < M and ¢; <
0.

Cos tli{gngWCd (t) —

Proof: See Appendix B. O
From Proposition 3, the only p0551ble value at equilib-
rium of X ™ (t) when ¢y, < M is 0. Thus p?° may be

written as . e
= > Xy (29)
cqicq/M<v
Denote p = (p*°,p'?) € Py with
Po = {(z,y) € [0,1] x [0,1] and (z,y) # (0,0)}  (30)

and consider the functions

B 9) 5% 1+ 1,1)5%
TR LR
— _ Pogp (1,1) ™ + p1gp (0,2) 5'°
h1 (p) - pOf?OO +p1ﬁ10 P (32)
[Mv]—1 M
F(®)= ) (cd) (ho () (1—ho (B)™ ", (33)
cq=0
and F (p) = (Fy (P),F1(P)). The following proposition

provides a non-linear equation that has to be satisfied by p.
. M, 1o .

The various X “at equilibrium are easily deduced from

the solutions of the mentioned equation.

Proposition 4. Assume that the dynamzc system described by
(28) admits some equilibrium X", then D € Py is the solution

of
p=F(p), (34)
and for any 6 € {0,1} and ¢z < ¢,
~CmsCd 07 Vem < M,
T {(if) (ho () (1 —ho B, en=01. &
Proof: See Appendix C. O

7.2 Existence and uniqueness of the equilibrium point

Now we investigate the existence and the uniqueness of the
solution of (34), which is rewritten in detail in (36) at the top
of the next page.

For that purpose, using fixed-point theorems, one may
alternatively show that for all p (0) = (p° (0),p'°(0)) €
Po, the discrete-time system

{ p” (n+1) = F (p*°

(n),p" (n)),
pIO (n+ 1) — Fl pOO 1

(n),p'" (n)).

converges to a unique equilibrium point (p%°, p'°), which is
then solution of (36).

One first shows the existence of an equilibrium using
Brouwer’s fixed-point theorem [41] in the following propo-
sition.

(39)

Proposition 5. Forany v € [0, 1], (36) always admits a solution,
which is an equilibrium point of the dynamical system (28).

Before proving Proposition 5, one first shows that p° (n)
and p'Y(n) are contained in intervals with lower (and
upper) bounds increasing (resp. decreasing) with n.

Lemma 6. Foranyn € N* and 0 € {0, 1}, one has
Ponin (1) < " (n) < Phox (n)

wlth pIIllIl (0) - 0 pmax (0) = 1/ and

Phm (0 + ) Fy (pmm (n ) pﬂr?ax (n)), VneNt, (40)
Moreover,
Posin M+ 1) > poin (), Powax (R4 1) < pooax (n) . (41)

Proof: See Appendix D. O

Using Lemma 6, one can now prove Proposition 5.
Proof: Fyy and F} are both continuous functions. For
some n > 0, consider the set Pn = [po2, (n),p% (n)] x

(PR (n),pio, (n)], where p%2, (n) and pfo, (n) are defined



p 0. p M A (2)P" +p1ap(1,1)p"° | “ 1—gea (2)5%°+p1 (1—gp(1,1))5°° \ M~
pOO :FO (pOO’pIO) - ZCd:Cd/M<I/ (cd) (PO‘IFA(p)OZ% +ppll‘%31(0 P ) (pO( and za)fp +pP11(P il u y (36)
700 10\ Cd 500 _ 10 —cd
P = () (S (et
_ (17 ) qFA (2))p0p1pg?ax (n)prlr?ax (n)
colter 2 a0 OB a4 bl =6 )+p1pmm<n>>(<1—qFA<2>>pop23n<n> (- o@Dprm)
_ ap (0,2) — gp (1,1)) pop1Pinax (1) Prvax (1)
s a0 (02) a0 (LN = G o T o (L 11— o0y O

. 07F
E
>" g6l —— M=4.q (1L)=08
 M=4,q,(1,1)=0.5
051 qp(L,1)
— M=10,q,(1.1)=08
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Fig. 2. Upper bounds of v to satisfy (42), with ¢ea (2) = 0.05, ¢p (0,2) =
0.9, gp (1,1) € {0.5,0.8}, M € {4,10}, and p; € [0.05,0.5].

in (40). For any p = (pOO, pw) € Py, one can prove using
Lemma 6 that F (p) € P,,. Thus F maps P,, to P,,. Applying
Brouwer’s fixed-point theorem, F admits a fixed point and
Proposition 5 is proved. O

Sufficient conditions on pg, p1, ¢p, gra, M and v are then
provided to ensure the uniqueness of this equilibrium by
applying Banach’s fixed-point theorem [42].

Proposition 7. If there exists some N', such that V0 € {0,1}
and ¥'n > N', one has

CG(QFA(2)7QD(O7 2)7QD (171)’P17M7 v, n)< 1, (42)

where co and ¢y are defined in (37-38), then the discrete-time
system (39) converges to a unique equilibrium point and the
solution of (36) is unique.

Proof: See Appendix E. O

Due to the monotonicity of p?% (n) and pf%,  (n) shown

in Lemma 6, ¢y decreases with n. Hence, if a given v satisfies

(42) for some N’, then v will satisfy (42) for all n > N’

and the equilibrium is unique. If the values of pi, ¢p, gra,

and M are fixed, then one may deduce sufficient conditions

on the value of v to have a unique equilibrium point. See
Example 8.

Example 8. Consider g¢ga (2) = 0.05, ¢p(0,2) = 0.9,
go (1,1) € {0.5,0.8}, M € {4,10}, and p; € [0.05,0.5].
One verifies whether (42) is satisfied considering n = 10
for different values of v. One obtains that (42) holds if
0 < v < Vmax, Where v depends on the values of pq,
gp, gra, and M. See Figure 2 for the numerical values of
Vmax 1N each case.

7.3 Equilibrium pointas M — oo

Both 7°° and 7' can be seen as functions of M. As M — oo,
Algorithm 2 turns into Algorithm 1. In this situation, if v is

properly chosen, the probabilities of false alarm and non-
detection tend to zero, as shown in Proposition 9.

Proposition 9. If gra (2) < v < gp (1,1), then (36) has a
unique solution and

— im 0 —
Proof: See Appendix F. O

7.4 Approximations of the Equilibrium

Closed-form expressions for p%° and p'0 are difficult to

obtain from (36). This section introduces an approximation
of (36) from which some insights may be obtained on the
way v should be chosen.

Since p'¥ represents the expected proportion of nodes
with defective sensors that have not detected their status,
the value of p'° should be small. From (31-32) one sees that
1imﬁ1o_>0 ho = QFA (2) and limﬁlo_m h1 = gp (1, 1), thus one
may consider the following approximations

ho %}NLO = gFA (2)7

Therefore, (36) may be rewritten as

]300 = ch:cd/]\/1<u (N) (gra (2)) (1 — qra (2))M_cd )
PO =3 nrew (1) (a0 (1, 1)) (1 — g (1,1))M 5.
(45)
from which one deduces approximate values X X)Te of
X, Thed at equilibrium from eq. (35)

Xo"e = (1) (ara (2)) (1 — qra (2))M7,
X = (1) (ao (1, 1) (1 = g (1, 1))

hi =~ hy =qp(1,1). (44)

(46)

For any fixed value of M, gpa (2), and ¢p (1,1), the
values of detection rate (p*') and false alarm rate (*01) at equi—
11br1um can be predicted using (45), since p°! = 1 — p°° and

= 1—7p'%. Consider for example M = 10, gpa (2 ) = 0.05,
and qo (1,1) = 0.8. Figure 3 presents p'! as a function of p°!
for different values of v. This figure is helpful to ch