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Abstract - This paper extends recent results by Garcia et al. on event-triggered communication to reach consen-
sus in multi-agent systems. First, it studies the effect of two types of additive and bounded state perturbations
on the consensus and on the communications. Second, it describes an improved agent state estimator as well
as an estimator of the state estimation uncertainty to trigger communications. Convergence to consensus is
studied. Simulations show the effectiveness of the proposed estimators in presence of state perturbations.

Index Terms - consensus, distributed event-triggered control, multi-agent system.

1. Introduction

Consensus is an important problem in cooperative control, see [2, 7, 8, 15, 19]. In such problem, several agents have
to be synchronized to the same state. For example, [10, 17] study application of consensus to solve the problem of
time synchronization in wireless sensor networks (WSN), when the communication delay is negligible. When the
control is distributed, consensus usually requires significant exchange of information between neighbouring agents
so that each agent can properly evaluate its control law.
Communication may either be permanent [15, 19], with continuous-time exchange of information, or performed at
discrete time instants, which is more practical. In the latter case, agents may broadcast information at a constant
period Tc [7], usually slotted to avoid message collisions. This method requires a good clock synchronization among
agents. Alternatively, communications may be triggered only when necessary, to save communication energy.
With distributed control based on event-triggered communications, each agent estimates the state of its neighbours to
evaluate its control law [9]. Each agent also estimates its own state with the information available to its neighbours.
As soon as the error between this estimate and its actual state reaches some threshold, a communication is triggered.
In [5], the agent dynamic is a single integrator and the considered threshold decreases with time while reaching
the consensus. This implies an increase of the frequency of communications. In [18], the dynamic is a double
integrator and the communication triggering condition (CTC) depends on a state-independent threshold exponentially
decreasing with time. The communication frequency reduces compared to [5] but still increases close to consensus.
General linear dynamics are considered in [6, 8, 20]. State-dependent thresholds are then considered to ensure some
convergence property for the system. These previous approaches were developed for noise-free dynamics and prove
sensitive to perturbations. This issue has been partly addressed by [3, 12] who propose an event-triggered method to
mitigate the impact of perturbations in the case of dynamics described by simple integrators.
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This paper addresses the problem of distributed event-triggered communications for consensus of a multi-agent
system with both general linear dynamics and state perturbations. This work extends results presented in [6, 8]
by analyzing the effect of state perturbations on the consensus and on the communications. Moreover, to reduce
communications, this paper proposes an improved estimator of the agent states, derives an estimator of the estimation
error, and introduces an adapted communication protocol. By taking into account the control input of the agents, the
proposed estimator allows to obtain a consensus with much less communications than with the approach in [6, 8]. The
proposed technique is thus well-suited to applications where communications should be minimized, e.g., to improve
furtivity, reduce energy consumption, or limit collisions between transmitted data packets. Application examples
with such constraints are exposed in [13, 14] for the case of a fleet of vehicles, or in [1] where agents aim at merging
local feature-based maps.
With this approach, estimates of the states of all the agents (not only neighboring ones) are required to evaluate all
control laws. More estimates are performed, but this reduces the communication frequency. A convergence analysis
is achieved while considering state perturbations composed of two components: one common to all agents, and one
agent-specific.
After introducing some notations in Section 2, the problem is formulated in Section 3. The CTC, presented in
Section 4, requires a new state estimator, described in Section 5, along with a communication protocol. A second
estimator is exposed in Section 5.4 to obtain an implementable distributed event-triggering strategy presented in
Section 6. Section 7 compares the performance of the proposed approach to state-of-the-art results from [6, 8]. The
main notations are provided in Table 1.

xi state of Agent i.
yji estimate of the state xi performed by Agent j.
yj vector gathering the estimates performed by Agent j of the states of all agents.

y vector
[

(y11)
T

. . .
(
yNN
)T ]T of estimates performed by each agent of its own state

vi common estimate of yi performed by all agents.
eji estimation error between xi and yji .
tj,k transmission time of the k-th message sent by Agent j.
tij,k reception time by Agent i of the k-th message sent by Agent j.
ti` reception time by Agent i of the `-th message, whatever the sending agent.

Table 1 Main notations

2. Preliminaries

Classical notations introduced in what follows are taken from [4].
Consider a network of N agents which topology is described by an undirected graph G = (N , E) , where N =
{1, 2, ..., N} is the set of nodes and E ⊂ N × N the set of edges. The set of neighbours of an Agent i is Ni =
{j ∈ N| (i, j) ∈ E , i 6= j}. Ni is the cardinal number of Ni. The weighted adjacency matrix of G at time t is
A = [aij]N×N with non-negative elements aij . The graph is balanced or undirected iff ∀ (i, j) aij = aji , else it is
directed. An edge εij ∈ E if and only if its weight aij = 1 and represents an ordered pair of nodes (i, j), where i and
j are respectively the parent and child nodes. A graph is connected when there is a path linking any pair of vertices.
When aij (t) = 1, Node i is able to send information to Node j at time t. If this is not possible, aij (t) = 0.
Let 1N = [1, 1, ..., 1]T ∈ RN×1 be the all-one vector and IN ∈ RN×N be the identity matrix of size N . The
Laplacian matrix is L. L is symmetric iff G is undirected. In all cases, L satisfies L1N = 0 and has only one
null eigenvalue λ1 (L) and all its non-zeros eigenvalues λ2 (L) ≤ λ3 (L) ≤ . . . ≤ λN (L) are strictly positive.
The smallest eigenvalue, the smallest strictly positive eigenvalue, and the maximum eigenvalue of a matrix M are
respectively denoted λmin (M), λmin>0 (M) , and λmax (M).

2



Finally, the Kronecker product is denoted as ⊗.

3. Problem statement

As in [8], the communication graph is assumed to be fixed, undirected, and connected. Moreover, the dynamic
equations of an Agent i are

ẋi (t) = Axi (t) +Bui (t) + di (t) (1)

ui (t) = c1F
∑
j∈Ni

(
yii (t)− yij (t)

)
. (2)

In (1), xi ∈ Rn is the state of Agent i, ui ∈ Rm is its control input evaluated using yij ∈ Rn, the estimate of the state
of Agent j performed by Agent i as described in Section 5. A ∈ Rn×n and B ∈ Rn×m. One has c1 = c + c2 with
c = 1/λ2 (L) and c2 ≥ 0 a design parameter. F = −BTP where P is a symmetric positive semi-definite matrix,
solution of the Riccati equation

PA+ ATP − 2PBBTP + 2αP < 0, (3)

with α > 0.
Remark 1. It can be noted than the parameter c is related to the Laplacian matrix L, which requires the knowledge
of the communication graph G by each agent to evaluate its control input (2). Since G is fixed, it can be assumed
that the communication graph is initially known by all agents, or that a flooding method like exposed in Section 5.3
can be intiated at t = 0 to deduce it. Thus, L and c can be computed by each agent and the control input ui can be
evaluated in a fully distributed way.

Contrary to [8], one considers here additive perturbation di ∈ Rn. This perturbation is assumed to be such that

di (t) = m (t) + si (t) , (4)

where m (t) ∈ Rn is a bounded time-varying perturbation with ‖m (t) ‖ ≤Mmax identical for all agents and si (t) ∈
Rn is a bounded agent-specific perturbation with for all i = 1, . . . , N ‖si (t) ‖ ≤ Smax, where Mmax ≥ 0 and
Smax ≥ 0 are known bounds. This two-parts additive perturbation model can be used, e.g., to represent the combined
effect of a uniform wind field on a fleet of aircrafts and specific attitude-dependent turbulences affecting differently
each aircraft.
The vector of all state perturbations is then

d (t) = 1N ⊗m (t) + s(t) (5)

with s(t) =
[
s1 (t)T . . . sN (t)T

]T
.

The problem considered here consists in designing a distributed control scheme, robust to perturbations, to drive the
agents to a bounded consensus, while limiting the communications between agents. For that purpose, communication
time instants are chosen locally by Agent i using an event-triggered approach introduced in Section 4.

Definition 1. The network of agents reaches a bounded consensus iff there exists some ε > 0 such that

lim
t→∞
‖xi (t)− xj (t) ‖ 6 ε (6)

for all pairs of agents (i, j) ∈ E .

In this paper, as in [8], we suppose that there is no communication delay and agents know perfectly their own state.
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4. Event-triggered consensus

This section introduces an event-triggered strategy to reduce the number of communications in Theorem 1. For that
purpose, we assume that the estimates yji for all i and j, are perfectly known by all agents in the network. This
imposes strong constraints on the estimators embedded in each agent and on the communication protocol. These
constraints will be relaxed in Section 5.3 to allow a practical implementation of the proposed technique.
Let L̂ = L⊗ P , L = L̂Ac + ATc L̂, Ac = A+B1 , A = IN ⊗ A, B1 = c1L⊗ (BF ) , M = PBBTP, and

β =
λmin>0(−L)

λmax(L̂)
. (7)

It is proven in [8] that L is semi-definite negative. In the following theorem, the initial states are considered to be
known by all agents.

Theorem 1. Assume that (A,B) is controllable and that the communication graph is connected and undirected with
a fixed topology described by the Laplacian matrix L. Consider some design parameter η > 0. Agents with dynamics
(1) achieve a bounded consensus with

∀ (i, j) lim
t→∞
‖xi − xj‖2 ≤

N3η

βλmin (P )
(8)

if the bound on the agent-specific perturbation satisfies

Smax ≤

√
α ‖c2λ2 (L)M‖

λmax (P )

√
Nη

λmin (P ) β
(9)

and if communications are triggered when
δ̄i ≥ ρzTi Θzi + η (10)

with Θi = (2c2 − biNi (c2 − c))M , 1 ≥ ρ > 0, and

δ̄i = c1

[(
zi −Nie

i
i

)T
M
∑
j∈Ni

∆ij +
Ni

2bi
eiTi Meii

+

(
1 +

bi
2

)
Ni

∑
j∈Ni

(
∆T
ijM∆ij

)]

+2 (c2 − c)Niz
T
i Meii +

[
2c (Ni)

2 (1 + bi) +
c2 − c
bi

Ni

+cNi (N − 1)

(
bi +

3

bi

)]
eiTi Meii (11)

where zi =
∑

j∈Ni

(
yii − yij

)
, eii = yii − xi, ∆ij = yji − yii , 0 < bi <

2c2
(c−c2)Ni

if c2 > c, bi > 0 otherwise.

The proof of Theorem 1 is in Appendix A.1.
From (8) and (10), one sees that η can be used to adjust the trade-off between the bound on the consensus error and
the amount of triggered communications. If η = 0 and if there is no perturbation, the system achieves an asymptotic
consensus.
The CTC (10) mainly depends on eii and ∆ij . A communication is triggered by Agent i when the estimate yii of its
own state xi is not satisfying, i.e., when eii becomes large. It is also triggered when the discrepancy ∆ij between this
estimate and that made by other agents yji with their available information is large.
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The two perturbations have a direct impact on eii and thus on the frequency of communications. The sufficient
condition (9) on Smax to have a consensus depends on η and on the measure of connectivity λ2 (L) of the graph.
Systems with more connected graphs are more robust to perturbations. Mmax does neither influence the quality of
the consensus, nor its convergence.
To reduce the number of communications triggered, one has to keep δ̄i as small as possible. This is done by keeping
eii and ∆ij small, which is achieved by building accurate estimates yii and yji , as described in Section 5. Then, since
in a distributed context, the yji s cannot be easily made available to all agents, the CTC introduced in Theorem 1 is
difficult to implement. This issue is addressed in Section 5.4.

5. Agents state estimation and communication protocol

In what follows, the time instant at which the k-th message has been sent by Agent j is denoted tj,k. Let tij,k be the
time at which the k-th message sent by Agent j has been received by Agent i. Since in this paper, one has assumed
that there is no communication delay between agents, tij,k = tj,k for all i ∈ Nj . The time of reception by Agent i of
the `-th message is ti`, whatever the sending agent.

5.1. Agents state estimation

In [8], the estimate yij (t) is evaluated as

yij
(
tij,k
)

= xj
(
tij,k
)
, (12)

ẏij (t) = Ayij (t) , tij,k ≤ t < tij,k+1. (13)

Let yi =
[
yiT1 , y

iT
2 , . . . y

iT
N

]T ∈ RNn be the vector gathering the estimates of the states of all agents performed by

Agent i. The vector yT =
[

(y11)
T

. . .
(
yNN
)T ] ∈ RNn gathers the estimates performed by each agent of its own

state. Similarly, let eT =
[

(e11)
T

. . .
(
eNN
)T ] ∈ RNn.

Here, the estimate yij (t) is evaluated as

ẏij (t) = Ayij (t) +Bũij (t) , tij,k ≤ t < tij,k+1 (14)

ũij (t) = c1F
∑
p∈Nj

(
yij (t)− yip (t)

)
(15)

yij
(
tij,k
)

= xj
(
tij,k
)
, (16)

where (14) takes into account the control input of the agents. Considering all the agents, (14)-(16) can be rewritten
as

ẏi (t) = Acy
i (t) (17)

yij
(
tij,k
)

= xj
(
tij,k
)
, (18)

where Ac = A+B1 , A = IN ⊗ A , and B1 = c1L⊗ (BF ).
To determine the control inputs applied by Agent j, Agent i needs to perform an estimate of the state of all the
neighbours of Agent j. As the communication graph is connected, Agent i will have to evaluate the state of all agents
in the network to determine the control inputs applied by all other agents.
Remark 2. If there is no perturbation, i.e., Mmax = 0 and Smax = 0, the estimate error eii vanishes. Moreover, in
absence of perturbation, if for some time instant tk, yi (tk) = yj (tk) for all (i, j) ∈ N , then yi (t) = yj (t) for all
(i, j) for all t > tk. As a consequence, ∆ij (t) = 0 and eii (t) = 0 for all (i, j) for all t > tk. No communication will
be triggered for t > tk.
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5.2. Communication protocol: fully-connected graph

In this section, the communication graph is assumed as fully connected. As in [8], the message broadcast by an
Agent i at ti,k contains the state xi (ti,k) of Agent i. Agent j ∈ Ni = N uses it to update its estimate yji according to
(16).
With a fully connected graph, the information transmitted by some agent is received without delay by all other agents
in the network. As a consequence, one has yii (t) = yji (t) and ∆ij = 0 for all (i, j) ∈ N 2.
In this case, the CTC in Theorem 1 can be evaluated. Communications are triggered mainly due to the state pertur-
bations.

5.3. Communication protocol: not fully-connected graph

From now, the communication graph is no more fully connected. Assume first that a message broadcast by Agent i
at ti,k contains only its state xi (ti,k). Only neighbouring agents receive the message and use xi (ti,k) to update their
estimates yji , j ∈ Ni, according to (16).
A relaying is necessary to allow other agents updating yji , j /∈ Ni. Two strategies are discussed in what follows.

5.3.1. Flooding Method: With the first strategy, a message received by an agent is immediately retransmitted to
its neighbours.
When an Agent broadcasts a message at ti,k, this message contains ti,k and the state xi (ti,k) of Agent i. When some
Agent j, neighbour of Agent i, receives this message, it broadcasts ti,k and xi (ti,k) to its own neighbours if it has not
done it previously. This message is further broadcast by the neighbours. This is a typical flooding strategy [11, 16],
which enables all the network receiving the message.
Since there is no communication delay, one has yii (t) = yji (t) and ∆ij = 0 for all (i, j) ∈ N 2 as in Section 5.2.
With this method, each time a communication is triggered for a given agent, the same message is broadcast up to N
times, depending on the topology. This technique is not competitive compared to that presented in [8].

5.3.2. Delayed flooding method: With the proposed alternative strategy, when a message is received by some
agent, this agent waits until its CTC is satisfied to broadcast its own state as well as updated estimates of the states
of all agents in the network evaluated from information in the messages received from its neighbours. This requires
to store and broadcast a vector containing the time instants at which the communication has been triggered for each
agent.
Thus, when a communication is triggered at ti,k, Agent i first updates yii (ti,k) = xi (ti,k). Then, instead of transmitting
only ti,k and xi (ti,k), it broadcasts the vector yi and a vector

T i =
[
t1,k1 , . . . , ti−1,ki−1

, ti,k, ti+1,ki+1
. . . tN,kN

]
of time instants, where each tj,kj represents the time at which the triggering condition of Agent j has been satisfied.

When some Agent ` receives the message from Agent i, it compares the time instants in T i with those of its own T `.
Each components of y` such that ti,k > t`,k, i.e., corresponding to a more recent triggering instant, are replaced by
those of yi. The vector T ` is updated accordingly.
Example 1 illustrates this information diffusion strategy.

Example 1. In Figure 1(a), the CTC is satisfied at t1,1 for Agent 1. It updates its own estimate y11 = x1 and the
first component of T 1 with t1,1. Then it broadcasts T 1 and y1. Its neighbours, Agents 2 and 5, receive this message.
Agent 2, since the first component t1,1 of T 1 is more recent than that of T 2, updates y21 as y21 = y11 . The first
component of T 2 is now t1,1. Agent 5 performs the same updates.
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In Figure 1(b), the CTC is satisfied for Agent 2 which performed the update y22 = x2 and sets the second component
of T 2 to t2,1. It broadcasts then T 2 and y2. Agent 3, once it receives this message, using T 2, knows that its estimates
of the states of Agents 1 and 2 are outdated and performs the updates y31 = y21 and y32 = y22 . The two first components
of T 3 are now t1,1 and t2,1. Agent 1 updates only y12 = y22 and the second component of T 1 to t2,1. A similar behavior
is observed in Figure 1(c).In Figure 1(d), the CTC is satisfied simultaneously for Agents 1 and 4. Since the first
components of T 1 is larger than that of T 4,i.e., t1,2 > t1,1, Agent 5 uses y11 coming from Agent 1 to update y51 . It uses
y44 coming from Agent 4 to update y54 .
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1
2
= y1

1

Save t1 1,

Update y
1

2
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1

Save t1 1,
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1
3
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2
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2
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1

1
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(a) CTC satisfied for
Agent 1.

(b) CTC satisfied for
Agent 2.

(c) CTC satisfied for
Agent 3.

(d) CTC satisfied
simultaneously for
Agents 1 and 4.

Figure 1: Example : Communication relay

The proposed communication protocol has been designed so that once a message has been sent, (i) the estimation
error eii and discrepancies ∆ij are reset to zero, and (ii) the CTC in Theorem 1, is no longer satisfied.

5.4. Estimation vi of estimate yi by Agent j

The delayed flooding protocol of Section 5.3.2 allows each Agent i having access to yij , for all j ∈ N . Nevertheless,
Agent i is not able to access yji , which is required to evaluate its CTC in Theorem 1. To address this issue, each

Agent i evaluates an additional estimates vj =
[
vjT1 . . . vjTN

]T
∈ RNn of yj for all j ∈ Ni ∪ {i}, with the constraint

that the estimates vi performed by Agents i and j ∈ Ni have to be identical. For that purpose, the estimate vi

performed by Agent i and all its neighbours j ∈ Ni is updated only when the CTC is satisfied for Agent i and when
it broadcasts a message. The vjs are thus less frequently updated than the yis and are less accurate. Both estimators
are evaluated simultaneously by each agent. Introducing vj does not require any modification of the delayed flooding
protocol. Agent i uses the vis to check the CTC and yi to evaluate the control inputs.
The dynamics of the additional estimate vi is

v̇ij (t) = Avij (t) +Būij (t) , tik ≤ t < tik+1 (19)

ūij (t) = c1F
∑
p∈N`

(
vij (t)− vip (t)

)
(20)

vi (ti,k) = yi (ti,k) (21)

vij (tj,k) = yjj (tj,k) , j ∈ Ni. (22)
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Considering all the agents, (19)-(22) can be rewritten as

v̇i (t) = Acv
i (t) (23)

vi (ti,k) = yi (ti,k) (24)

vij (tj,k) = yjj (tj,k) , j ∈ Ni. (25)

Update v1= y1

Update v1= y1

v1 y1=

1

2

3

45

v2= y2Update

v2= y2

v2= y2Update

1

2

3

45

Update v3= y
3

v3= y
3

v3= y
3Update

1

2

3

45

(a) (b) (c)

Figure 2: Update estimator vi

Example 2. In Figure 2(a), the CTC is satisfied at t1,1 for Agent 1. It updates its own estimate y11 = x1, the first
component of T 1 with t1,1, and its own additional estimate v1 = y1. Then, as shown in Figure 2(b), Agent 1
broadcasts T 1 and y1. Its neighbours, Agents 2 and 5, receive this message as seen in Figure 2(c). Agent 2, since the
first component t1,1 of T 1 is more recent than that of T 2, updates y21 as y21 = y11 and updates the additional estimate
of Agent 1 v1 = y1. The first component of T 2 is now t1,1. Agent 5 performs the same updates. Since there is no
communication delay, the additional estimates v1 evaluated by Agent 1, 2, and 5 are identical.

6. Distributed event-triggered consensus

Using the additional estimate vi introduced in Section 5.4, Theorem 2 in Section 6.1 introduces a CTC that can be
evaluated by each agent in a distributed way. Section 6.2 introduces then an implementable distributed event-triggered
consensus algorithm.

6.1. CTC in distributed context

As in Theorem 1, the initial states are considered to be known by all agents.In the experimental part, this condition
will be relaxed: Agent i will initialize the state estimators for all other agents with its own value of the state. A
communication is triggered at time t = 0 to update the estimates of the neighbours of Agent i. All other agents
behave in the same way.

Theorem 2. Assume that (A,B) is controllable and that the communication graph is connected and undirected with a
fixed topology described by the Laplacian matrix L. Consider some design parameter η > 0. Agents which dynamics
is (1) achieve a bounded consensus with

∀ (i, j) lim
t→∞
‖xi − xj‖2 ≤

N3η

βλmin (P )
(26)
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if the following condition on the perturbation bound is satisfied:

Smax ≤

√
α ‖c2λ2 (L)M‖

λmax (P )

√
Nη

λmin (P ) β
(27)

and if communication events are triggered when

δ̃i ≥ ρzTi Θzi + η (28)

with Θi = (2c2 − biNi (c2 − c))M , 1 ≥ ρ > 0, and

δ̃i = c1

[
1

2bi2

(
zi −Nie

i
i

)T
M
(
zi −Nie

i
i

)
+
bi2
2

∑
j∈Ni

Nj

(
yij − vij

)T
M
(
yij − vij

)
+
(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
vji − yii

)
+
Ni

2bi
eiTi Meii

+2

(
1 +

bi
2

)
Ni

∑
j∈Ni

[(
vji − yii

)T
M
(
vji − yii

)
+
(
yij − vij

)T
M
(
yij − vij

)]]
+ 2 (c2 − c)Niz

T
i Meii

+

[
2c (Ni)

2 (1 + bi) +
c2 − c
bi

Ni

+cNi (N − 1)

(
bi +

3

bi

)]
eiTi Meii (29)

where zi =
∑

j∈Ni

(
yii − yij

)
, M = PBBTP , 0 < bi <

2c2
(c−c2)Ni

if c2 > c, bi > 0 otherwise.

The proof of Theorem 2 is in Appendix A.2 and the proof of absence of Zeno behavior in Appendix A.3.
The difference between Theorems 1 and 2 lies in the evaluation of the CTC. The term δ̄i in (10) has been replaced by
δ̃i in (28), which mainly depends on the discrepancy between the state estimates yij and the estimates of these state
estimates vij .

When an Agent i broadcasts a message, the estimation error eii and the discrepancies yij − vij and vji − yii are reset
according to (16), (22), and (21). As a consequence, the CTC (28) in Theorem 2 is no more satisfied.

6.2. Summary of the distributed event-triggered consensus algorithm

Results of Section 5 to 6 describing the proposed distributed event-triggered consensus approach are summarized
in Algorithm 1 for some Agent i. This description is generic in the sense that all agents are controlled and trigger
communications in the same way. The main loop of this algorithm is repeated until it is stopped by some external
event.

7. Example

Consider a network of N = 5 agents with unstable dynamics taken from [8] described by the following state and
control matrices

9



Algorithm 1 Control algorithm for Agent i
%% Initialization
T i = 0n.
if x(0) is known then
yi (0)← x (0)
for j = 1...N do

if j ∈ Ni then
vj (0)← x (0)

end if
end for

else
for j = 1...N do
yij (0)← xi (0)

end for
vi (0)← yi (0)
Broadcast a message
% Message received?
for j = 1...N, j 6= i do

if a message is received from Agent j then
Update yi and T i as presented in Section 5.3.2,
vj
(
tij,k
)
← yj

(
tij,k
)
.

end if
end for

end if

%% Main loop
Measure xi
Evaluate yi from (14).
Evaluate vi from (19).

% Check communication triggering condition
if δ̃i > ρzTi Θzi + η at t = ti,k then
yii (ti,k)← xi (ti,k)
T i(i)← ti,k
vi (ti,k)← yi (ti,k)
Broadcast yi (ti,k) and T i.

end if

% Message received?
for j = 1...N, j 6= i do

if a message is received from Agent j then
Update yi and T i as presented in Section 5.3.2,
vj
(
tij,k
)
← yj

(
tij,k
)
.

end if
end for
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A =

 0.48 0.29 −0.3
0.13 0.23 0

0 −1.2 −1

 B =

 2 0
−1.5 1

0 1

 .
Solving (3) with α = 1, one obtains

P =

 4.8436 5.4783 −1.1082
5.4783 7.0514 −1.4299
−1.1082 −1.4299 0.3778

 .
The network topology is linear with Laplacian matrix

L =


1 −1 0 0 0
−1 2 −1 0 0
0 −1 2 −1 0
0 0 −1 2 −1
0 0 0 −1 1

 .

Each agent is assumed to know only its own state. The vector of initial states is

x (0) =

  8.5067
−0.6568

0

T  1.7367
−0.1855

0

T  −0.0340
−0.4651

0

T . . .

. . .

 −0.7768
−0.3803

0

T  −0.6568
1.5076

0

T
T .

The simulation duration is T = 5 s. Euler integration with a step dt = 0.01 s is used. As the system has been
discretised, the minimum delay between the transmission of two messages by the same agent is set to dt. The
perturbation d (t) is assumed of constant value over each interval of the form [kdt, (k + 1) dt[. The agent-specific
component of d (t) is si(t) = [0, si,2(t), 0]T where si,2(t) is a zero-mean Gaussian noise with standard deviation σs,
truncated at Smax = σs such that |si,2| = ‖si‖ ≤ Smax. The common component of the perturbation is m (t) =
[0,m2 (t) , 0]T . Two cases are considered: a constant value m2(t) = Mmax (see, e.g., Figure 5 (a)) or a zero-mean
Gaussian noise truncated at the standard deviation σm, such that |m2| = ‖m‖ < Mmax (Figure 5 (b)).
The parameters of the CTC are set as follows η = 0.1, c = 1

λ2(L)
, c2 = 0.1, bi = 1.36, b2i = 1 and ρ = 0.5. The

value of c is imposed, that of c2 is taken from [8]. The other values are chosen to reduce the number of required
communications.
The proposed approach is compared to that of [8], evaluating in both cases the total number of messages broadcast
Nm 6 Nm = NT/dt. The residual communication ratio

Rcom = 100
Nm

Nm
(30)

of the number of broadcast messages is expressed in %. Rcom indicates the proportions of time slots during which a
communication has been triggered. It should be as small as possible.
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Error with respect to consensus and time instants of
the broadcast messages when considering the refe-
rence estimator (13)

Error with respect to consensus and time instants of
the broadcast messages when considering the propo-
sed estimator(14).

Figure 3: Comparison between estimator (13) and new estimator (14) without perturbation. Xm = 1
N

∑N
i=1 xi. Initial

state is known (Agent 1: magenta, Agent 2: green, Agent 3: black, Agent 4: blue, Agent 5: red).

7.1. Without perturbation

Figure 3 compares the performance in terms of consensus error and number of satisfied CTC for each agent, consi-
dering both estimators (13) and (14). When the initial conditions are perfectly known by all the agents and there is
no perturbation, no communications are required when using the proposed estimator (14).
Figure 4 shows the results when each agent only knows its own initial state. When using the estimator (13) from [8],
a first communication is enough to initialize the estimates of all agents, since each agent only estimates the states of
its neighbours. With the proposed estimator (14), the CTCs are satisfied mainly at the beginning of the simulation.
The delayed flooding method allows then an update of the estimates of all agents. After a short transient regime, only
few communications are required.

7.2. With perturbations

Figure 5 shows the evolutions of Rcom as a function of Smax for different values of Mmax, when m (t) is constant
(Figure 5(a)) and when it is described by a truncated Gaussian (Figure 5(b)). With the considered parameters, the
value of the upper-bound on Smax introduced in Theorem 2 is Smax = 16.17. With this value, the sufficient condition
is satisfied for the following simulations, and one observes that a consensus is always reached.
When the level of perturbation is low the number of CTC satisfied for each agent is less with the proposed estimator
(14) than with estimator (13). When Smax or Mmax are large, the estimator (14) provides equivalent or even worse
performance in terms of CTC compared to (13). This is mainly due to the additional terms introduced in the CTC
(28).
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Error with respect to consensus and time instants of
the broadcast messages when considering the refe-
rence estimator (13)

Error with respect to consensus and time instants of
the broadcast messages when considering the propo-
sed estimator (14)

Figure 4: Comparison between estimator (13) and new estimator (14) without perturbation. Xm = 1
N

∑N
i=1 xi. Initial

state unknown. (Agent 1: magenta, Agent 2: green, Agent 3: black, Agent 4: blue, Agent 5: red).
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Figure 5: Evolution of Rcom as a function of Smax for different values of Mmax when considering the reference
estimator (13) (dashed) and the proposed estimator (14) (plain).

7.3. Choosing η in the CTC

The parameter η in the CTC allows to reach a compromise between the disagreement with respect to consensus and
the reduction in the communication requirements. Figure 6 illustrates this compromise for

η ∈
{

0.1, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5
}
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and different values of Smax for the proposed estimator and that proposed by [8].
It can be seen that the proposed estimator outperforms that proposed by Garcia in terms of number of communi-
cations, while the order of magnitude of the consensus disagreement remains relatively close. Using the proposed
estimator Rcom can be significantly reduced which is not the case using the reference estimator of Garcia up to
Smax = 1.5, with which Rcom cannot be reduced below the value of 10.
Figure 6 provides some guidelines to select the value of η when communications constraints or when some bound on
the disagreement with respect to consensus have to be satisfied.
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Figure 6: Evolution of Rcom and maxi,j∈N (‖xi − xj‖) for different values of η ={
0.1, 0.5, 0.75, 1, 1.25, 1.5, 1.75, 2, 2.5

}
with the reference estimator (13) (dashed) and the pro-

posed estimator (14) (plain) for different values of Smax. Each point corresponds to the mean value of 50
simulations.

8. Conclusion

This paper presents a distributed event-triggered communication technique to reach consensus in multi-agent systems
with a reduced need for communication compared to state-of-the-art techniques. To obtain this result, each agent has
to manage simultaneously two estimators of the states of the other agents in the network. The first provides an agent
state estimate of all agents, which does not necessarily coincide among all agents. The second estimator considers
only the neighbours of each agent and is less accurate but its value is constrained to coincide when two agents
are neighbours. Both estimators are used to trigger communications. Convergence to consensus has been studied.
Simulations have shown the effectiveness of the proposed estimators in presence of state perturbations when their
level is moderate.
Extensions of this work will focus on the case of a time-varying topology and influence of packet drops during
transmission of messages, and time delays in communications.
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A. Appendix

A.1. Consensus convergence

The system gathering the dynamics of all the agents is

ẋ (t) = Ax (t) + B̃ỹ (t) + d (t)

where x =
[
xT1 . . . x

T
N

]T , A = 1N ⊗A, B̃ = T
(
IN ⊗B1

)
, B1 = c1L⊗BF , ỹ =

[
y1T y2T . . . yNT

]T ∈ RN2n is the
vector gathering the estimates of the states of Agents 1, . . . , N performed by all agents. Define e = y − x ∈ RNn.
A matrix T ∈ RNn×N2n is also defined to extract, from vector ỹ, all terms ykk , k = 1 . . . N :

T ỹ = T
[
y1T y2T . . . yNT

]T
=

[
y1T1 y2T2 . . . yNTN

]T
= y.

This matrix can be expressed as T =
((
IN ⊗ 1TN

)
◦
(
1TN ⊗ IN

))
⊗1n, with ◦ the entrywise matrix product. One may

easily show that T ỹ (1N ⊗ y) = y.

Define the candidate Lyapunov function : V = xT L̂x, with L̂ = L ⊗ P . Since the graph is undirected and P is
symmetric, L and L̂ are symmetric and

V̇ = 2
(
xT L̂

(
Ax+ B̃ỹ

)
+ dT (t) L̂x

)
(31)

Define V̇1 = 2xT L̂
(
Ax+ B̃ỹ

)
. The next section will show that V̇1 is upper bounded by xTLx. Then introduce

V̇2 = xTLx+ 2dT (t) L̂x, where one reminds that L = L̂Ac +ATc L̂ and Ac = A+B1. An upper bounds for V̇2, also
evaluated in what follows, is then used to upper bound V̇ .

A.1.1. Upper bound for V̇1: Let ∆ij = yji − yii and define ∆ (t) =
[
∆T

11 (t) ∆T
12 (t) . . . ∆T

N,N−1 (t) ∆T
NN (t)

]T ∈
RN2n. Note first that ỹ = 1N ⊗ y + ∆ and ẽ = 1N ⊗ e+ ∆.

V̇1 = 2xT L̂
(
Ax+ B̃ỹ

)
= 2xT L̂

(
Ax+ B̃ (1N ⊗ y + ∆)

)
(32)

Since B̃ = T
(
IN ⊗B1

)
, B1 = c1L⊗ (BF ), and T (1N ⊗ y) = y, one obtains

B̃ (1N ⊗ y) = T
(
IN ⊗B1

)
(1N ⊗ y)

= T
(
IN ⊗

(
B1y

))
= B1y
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and

V̇1 = 2xT L̂
(
Ax+B1y

)
+ 2xT L̂B̃∆. (33)

Consider
V̇11 = 2xT L̂

(
Ax+B1y

)
(34)

and
V̇12 = 2xT L̂B̃∆. (35)

The expression of V̇11 can be found in [8], where it is shown that V̇11 = xTLx+
∑N

i=1

(
δi − zTi Θizi

)
with

δi = 2 (c2 − c)Niz
T
i PBB

TPeii +[
2cN2

i (1 + bi) +
c2 − c
bi

Ni

+cNi (N − 1)

(
bi +

3

bi

)]
eiTi PBB

TPeii. (36)

Using the expression of B̃ and B1, and the fact that e = y − x, V̇12 may be rewritten as

V̇12 = 2
(
L̂ (y − e)

)T
T (IN ⊗ (c1L⊗ (BF ))) ∆.

Using the property of T ,

T (IN ⊗ (c1L⊗ (BF ))) ∆ =

 c1BF
∑

k∈N1
(∆11 −∆1k)

...
c1BF

∑
k∈NN

(∆NN −∆Nk)

 .
Since ∆ii = 0, L̂ = L⊗ P , and F = −BTP one may rewrite V̇12 as

V̇12 = c1

N∑
i=1

[∑
j∈Ni

(
yii − y

j
j

)T (−PBBTP
) ∑
k∈Ni

(−∆ik)

−
∑
j∈Ni

(
eii − e

j
j

)T (−PBBTP
) ∑
k∈Ni

(−∆ik)

]
(37)

One may rewrite
∑

j∈Ni

(
yii − y

j
j

)T
as∑

j∈Ni

(
yii − y

j
j

)T
=

∑
j∈Ni

(
yii − yij +

(
yij − y

j
j

))T
= zTi +

∑
j∈Ni

∆T
ji

Inserting this expression in (37) and defining M = PBBTP , one gets

V̇12 = c1

N∑
i=1

[
zTi M

∑
k∈Ni

∆ik +
∑
j∈Ni

(∆ji)
T M

∑
k∈Ni

∆ik

−Nie
iT
i M

∑
k∈Ni

∆ik +
∑
j∈Ni

ejTj M
∑
k∈Ni

∆ik

]
. (38)
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Using xTy ≤ 1
2bi
xTx+ bi

2
yTy for any bi > 0, one obtains∑

j∈Ni

(∆ji)
T M

∑
k∈Ni

∆ik =
∑
j∈Ni

∑
k∈Ni

(∆ji)
T M∆ik

≤
∑
j∈Ni

∑
k∈Ni

[
1

2bi1
∆T
ijM∆ij +

bi1
2

∆T
ikM∆ik

]
≤

∑
j∈Ni

Ni

[(
1

2bi1
+
bi1
2

)
∆T
ijM∆ij

]
and ∑

j∈Ni

ejTj M
∑
k∈Ni

∆ik =
∑
j∈Ni

∑
k∈Ni

ejTj M∆ik

≤
∑
j∈Ni

∑
k∈Ni

[
1

2bi
ejTj Mejj +

bi
2

∆T
ikM∆ik

]
≤

∑
j∈Ni

Ni

[
1

2bi
ejTj Mejj +

bi
2

∆T
ijM∆ij

]
Using these upper bounds in (38), one gets

V̇12 ≤ c1

N∑
i=1

[(
zi −Nie

i
i

)T
M
∑
k∈Ni

∆ik +Ni

∑
j∈Ni

(
1

2bi1
+
bi1
2

)

×∆T
ijM∆ij +

∑
j∈Ni

Ni

[
1

2bi
ejTj Mejj +

bi
2

∆T
ijM∆ij

]]
.

Choosing bi1 = 1, one gets

V̇12 ≤ c1

N∑
i=1

[(
zi −Nie

i
i

)T
M
∑
k∈Ni

∆ik +
Ni

2bi
eiTi Meii

+
∑
j∈Ni

Ni

(
1 +

bi
2

)
∆T
ijM∆ij

]
. (39)

Inserting (39) in V̇1 and one obtains

V̇1 ≤ xTLx+
N∑
i=1

(
δ̄i − σzTi Θizi

)
,

where

δ̄i = c1

[(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
yji − yii

)
+
Ni

2bi
eiTi Meii

+

(
1 +

bi
2

)
Ni

∑
j∈Ni

((
yji − yii

)T
M
(
yji − yii

))]
+ δi. (40)

Since L is semi-definite negative, V̇1 ≤ 0 if, for i, j = 1 . . . N , the communication events are triggered when
δ̄i > ρzTi Θzi with 0 < ρ ≤ 1.
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Remark 3. With δi > ρzTi Θzi and no perturbation, V1 (t) converges asymptotically to zero. In order to reduce the
number of broadcast communications, a threshold η can be introduced so that δ̄i ≥ ρzTi Θzi + η.

A.1.2. Upper bound for V : Assuming that there is no perturbation, one is now interested in bounding ‖xi − xj‖
when the CTC (28) is satisfied.
First note that xT L̂x ≥ 0, so

xT L̂x ≤ λmax

(
L̂
)
xTx

and that xTLx ≤ 0, so
−xTLx ≥ λmin>0

(
−L
)
xTx.

Combining these results, one obtains

xT L̂x
1

λmax

(
L̂
) ≤ xTx ≤ −xTLx 1

λmin>0

(
−L
)

and thus

xTLx ≤ −βxT L̂x,

where β =
λmin>0(−L)
λmax(L̂)

.

With the triggering condition defined in Theorem 1, one obtains

V̇ (t) ≤ xTLx+
N∑
i=1

(
δi − ρzTi Θizi

)
≤ −βV (t) +Nη (41)

from which one deduces that V (t) ≤ V (0) e−βt + Nη
β

. Consequently,

lim
t→∞

V (t) ≤ Nη

β
. (42)

V (t) may be rewritten as

V (t) = xT L̂x

=
N∑
i=1

(
xTi P

∑
k∈Ni

(xi − xk)

)

=
N∑
i=1

∑
k∈Ni

(
xTi P (xi − xk)

)
=

1

2

N∑
i=1

∑
k∈Ni

2
(
xTi Pxi − xTi Pxk

)
As the graph is undirected, V (t) becomes

V (t) =
1

2

N∑
i=1

∑
k∈Ni

(
xTi Pxi − 2xTi Pxk + xTkPxk

)
=

1

2

N∑
i=1

∑
k∈Ni

(xi − xk)T P (xi − xk) . (43)
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Since the graph is connected, each term (xi − xk)T P (xi − xk) appears twice in (43). Thus, from (42) and (43), one
has

lim
t→∞

V (t) ≤ Nη

β

lim
t→∞

N∑
i=1

∑
k∈Ni

‖xi − xk‖2 λmin (P ) ≤ Nη

β

∀k ∈ Ni, lim
t→∞
‖xi − xk‖2 ≤

Nη

βλmin (P )
(44)

The graph is connected, thus for any pair of agents (i, j), there exists a path between them linking neighboring agents,
the indexes of these agents are k1, k2,...,km and

‖xi − xj‖ ≤ ‖xi − xk1‖+ ‖xk1 − xk2‖+ . . .+ ‖xkm − xj‖
≤ N max

k∈N , `∈Nk

‖xk − x`‖ . (45)

Combining (44) and (45), one gets

∀ (i, j) ∈ N , lim
t→∞
‖xi − xj‖2 ≤

N3η

βλmin (P )
.

The perturbations terms do not appear in δ̄i and Θi, but they impact the estimation error and the communication
triggering frequency.

A.1.3. Upper bound for V̇2: Since L1N = 0 one has

(L⊗ P ) (1N ⊗m) = ((L1N)⊗ (Pm)) = 0

and one deduces

V̇2 = 2xT L̂d+ xTLx

= 2xT (L⊗ P ) (1N ⊗m+ s) + xTLx

= 2xT L̂s+ xTLx.

Let V̇21 = 2xT L̂s and V̇22 = xTLx. Then, considering a sequence of bi > 0, i = 1, . . . , N, one has

V̇21 = 2
N∑
i=1

(∑
j∈Ni

(xi − xj)T Psi

)

≤ 2
N∑
i=1

∑
j∈Ni

(
bi
2

(xi − xj)T P (xi − xj) +
1

2bi
sTi Psi

)

≤
N∑
i=1

∑
j∈Ni

(
bi (xi − xj)T P (xi − xj) +

1

bi
λmax (P )S2

max

)
. (46)
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To bound V̇22, using the expression of L, one gets

V̇22 = xT
[
L⊗

(
PA+ ATP

)
− (LL)⊗

(
2c1PBB

TP
)]
x

Since M = PBBTP and L are symmetric semi-define positive matrices, one obtains

xT (L⊗M)x = xT
(
IN ⊗

(
BTP

))T
(L⊗ In)

(
IN ⊗

(
BTP

))
x

= xT
(
IN ⊗

(
BTP

))T
UTΛU

(
IN ⊗

(
BTP

))
x

where Λ is a diagonal matrix with elements Λi = λi (L⊗ In) , i = 1 . . . Nn, and U is the matrix of corresponding
eigenvectors.
Introducing q = U

(
IN ⊗

(
BTP

))
x, one obtains

xT (L⊗M)x = qTΛq

=
Nn∑
i=1

q2i λi (L⊗ In)

≤ 1

λmin>0 (L⊗ In)

Nn∑
i=1

q2i λi (L⊗ In)2 .

Since λmin>0 (L⊗ In) = λmin>0 (L)λmin>0 (In) = λ2 (L), one obtains

xT (L⊗M)x ≤ 1

λ2 (L)
qTΛ2q

≤ 1

λ2 (L)
xT
(
IN ⊗

(
BTP

))T
((LL)⊗ In)

(
IN ⊗

(
BTP

))
x

≤ 1

λ2 (L)
xT ((LL)⊗M)x

and thus
−xT ((LL)⊗M)x ≤ −λ2 (L)xT (L⊗M)x. (47)

Injecting (47) in V̇22, one gets

V̇22 = xT L̄x

= xT
[
L⊗

(
PA+ ATP

)
− 2c1 (LL)⊗M

]
x

≤ xT
[
L⊗

(
PA+ ATP − 2c1Mλ2 (L)

)]
x

Reminding that c1 = c+ c2 and c = 1
λ2(L)

, one gets

V̇22 ≤ xT
[
L⊗

(
PA+ ATP − 2

(
1

λ2 (L)
+ c2

)
Mλ2 (L)

)]
x

≤ xT
[
L⊗

(
PA+ ATP − 2M − 2c2Mλ2 (L)

)]
x.

Using (3), one obtains
V̇22 ≤ xT [L⊗ (−2αP − 2c2λ2 (L)M)]x
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and using (43), V̇22 becomes

V̇22 ≤
1

2

N∑
i=1

∑
j∈Ni

[
(xi − xj)T (−2αP − 2c2λ2 (L)M) (xi − xj)

]
(48)

Since V̇2 = V̇21 + V̇22, combining (46) and (48), one gets

V̇2 ≤
N∑
i=1

(∑
j∈Ni

[
(xi − xj)T ((bi − α)P − c2λ2 (L)M) (xi − xj)

]
+
Ni

bi
λmax (P )S2

max

)
. (49)

One now searches a condition on Smax to ensure that V2 is decreasing. Having V̇2 ≤ 0 is equivalent to

N∑
i=1

(
Ni

bi
λmax (P )S2

max

)
≤

N∑
i=1

∑
j∈Ni

[
(xi − xj)T ((α− bi)P + c2λ2 (L)M) (xi − xj)

]
. (50)

Sufficient conditions to satisfy (50) are for i = 1, . . . , N

Ni

bi
λmax (P )S2

max ≤
∑
j∈Ni

[
(xi − xj)T ((α− bi)P + c2λ2 (L)M) (xi − xj)

]
. (51)

Each inequality (51) is satisfied if the following condition holds

Ni

bi
λmax (P )S2

max ≤
∑
j∈Ni

[
(xi − xj)T (xi − xj) ‖(α− bi)P + c2λ2 (L)M‖

]
with ‖M‖ = maxi=1:n (|λi (M)|). This provides an upper bound for Smax

S2
max ≤

∑
j∈Ni

‖xi − xj‖2
bi ‖(α− bi)P + c2λ2 (L)M‖

λmax (P )Ni

. (52)

Using (44) in (52), one gets

S2
max ≤

bi ‖(α− bi)P + c2λ2 (L)M‖
λmax (P )Ni

NiNη

βλmin (P )

Smax ≤

√
bi ‖(α− bi)P + c2λ2 (L)M‖

λmax (P )

√
Nη

λmin (P ) β
.

Choosing bi = α, one obtains

Smax ≤

√
α ‖c2λ2 (L)M‖

λmax (P )

√
Nη

λmin (P ) β
(53)

Using (53) in (49), one finally gets V̇2 ≤ 0, which leads to V̇ ≤ 0. The system converges thus to a bounded consensus.
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A.2. Proof of Theorem 2

Starting from (39) in Appendix A.1.1, one has

V̇12 ≤ c1

N∑
i=1

[(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
yji − yii

)
+
Ni

2bi
eiTi Meii

+

(
1 +

bi
2

)
Ni

∑
j∈Ni

(
∆T
ijM∆ij

)]
. (54)

Expressing ∆ij as ∆ij = yji − v
j
i + vji − yii in (54), one gets

V̇12 ≤ c1

N∑
i=1

[(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
yji − v

j
i

)
+
(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
vji − yii

)
+
Ni

2bi
eiTi Meii +

(
1 +

bi
2

)
Ni

∑
j∈Ni

(
∆T
ijM∆ij

)]
(55)

Using xy ≤ 1
2bi2

xTx+ bi2
2
yTy, with bi2 > 0,

V̇12 ≤ c1

N∑
i=1

[
1

2bi2

(
zi −Nie

i
i

)T
M
(
zi −Nie

i
i

)
+
bi2
2

∑
j∈Ni

(
yji − v

j
i

)T
M
∑
j∈Ni

(
yji − v

j
i

)
+
(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
vji − yii

)
+
Ni

2bi
eiTi Meii

+

(
1 +

bi
2

)
Ni

∑
j∈Ni

(
∆T
ijM∆ij

)]
(56)

Let

V̇12a =
N∑
i=1

∑
j∈Ni

(
yji − v

j
i

)T
M
∑
j∈Ni

(
yji − v

j
i

)
V̇12b =

N∑
i=1

∑
j∈Ni

(
∆T
ijM∆ij

)
Both terms are upper-bounded in what follows.

Upper-bound for V̇12a: Using xy ≤ 1
2
xTx+ 1

2
yTy, V̇12a can be upper bounding

V̇12a ≤
N∑
i=1

∑
j∈Ni

Ni

(
yji − v

j
i

)T
M
(
yji − v

j
i

)
(57)
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As the communication graph is undirected, one gets

V̇12a ≤
N∑
i=1

∑
j∈Ni

Nj

(
yij − vij

)T
M
(
yij − vij

)
. (58)

Upper-bound for V̇12b: Introducing vji in V̇12b,

V̇12b =
N∑
i=1

(∑
j∈Ni

(
yji − v

j
i

)T
M
(
yji − v

j
i

)
+
∑
j∈Ni

(
vji − yii

)T
M
(
vji − yii

)
+2
∑
j∈Ni

(
yji − v

j
i

)T
M
(
vji − yii

))
(59)

Using again xy ≤ 1
2
xTx+ 1

2
yTy one has

2
∑
j∈Ni

(
yji − v

j
i

)T
M
(
vji − yii

)
≤

∑
j∈Ni

(
yij − vij

)T
M
(
yij − vij

)
+
∑
j∈Ni

(
vji − yii

)T
M
(
vji − yii

)
Injecting this expression in (59) leads to

V̇12b ≤
N∑
i=1

(
2
∑
j∈Ni

(
yji − v

j
i

)T
M
(
yji − v

j
i

)
+2
∑
j∈Ni

(
vji − yii

)T
M
(
vji − yii

))

As the communication graph is undirected, one gets

V̇12b ≤
N∑
i=1

(
2
∑
j∈Ni

(
yij − vij

)T
M
(
yij − vij

)
+2
∑
j∈Ni

(
vji − yii

)T
M
(
vji − yii

))
(60)
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Upper bound for V̇12: Finally, combining (58) and (60) in (56), one obtains

V̇12 ≤ c1

N∑
i=1

[
1

2bi2

(
zi −Nie

i
i

)T
M
(
zi −Nie

i
i

)
+
bi2
2

∑
j∈Ni

Nj

(
yij − vij

)T
M
(
yij − vij

)
+
(
zi −Nie

i
i

)T
M
∑
j∈Ni

(
vji − yii

)
+
Ni

2bi
eiTi Meii

+2

(
1 +

bi
2

)
Ni

∑
j∈Ni

[(
vji − yii

)T
M
(
vji − yii

)
+
(
yij − vij

)T
M
(
yij − vij

)]]
. (61)

The upper bound for V̇1 becomes

V̇1 ≤ xTLx+
N∑
i=1

(
δ̃i − ρzTi Θizi

)
with δ̃i, ρ and Θi as expressed in Theorem 2.
As a consequence, if, for i, j = 1 . . . N , the communications are triggered when δ̃i ≥ ρzTi Θzi, then V̇1 ≤ 0. The rest
of the proof is identical to the one of Theorem 2.

A.3. Proof of absence of Zeno behavior

Two cases are considered: Dmax = 0 and Dmax > 0. Consider first the case with no perturbation (Dmax = 0). In
this case, the estimate error eii vanishes. Moreover, since the initial states are assumed to be known by all agents,
yi (t) = yj (t) = vi (t) for all (i, j) and for all t > 0. As a consequence, the discrepancies yij−vij = 0 and vji −yii = 0
for all (i, j) and for all t > 0. No communication will be triggered, which excludes the possibility of a Zeno behavior.
Consider now the case with Dmax > 0 and let us proove the absence of Zeno behavior. To do so, let us show that the
inter-event time ti,k+1 − ti,k is strictly positive.
As the CTC (28) mainly depends on eii, we begin by studying the time derivative of this error. From the definition of
eii and by remarking that uii (t) = ũii (t), it can be expressed as

ėii = ẏii − ẋi
=

(
Ayii +Bũii (t)

)
−
(
Axii +Buii + di

)
= Aeii − di. (62)

Then, it can observed that the derivative of ‖eii‖ satisfies

d

dt

∥∥eii∥∥ =
eiTi ė

i
i

‖eii‖
d

dt

∥∥eii∥∥ =
1

‖eii‖
eiTi
(
Aeii − di

)
d

dt

∥∥eii∥∥ ≤ 1

‖eii‖

(
‖A‖

∥∥eii∥∥2 +
∥∥eii∥∥Dmax

)
d

dt

∥∥eii∥∥ ≤ ‖A‖
∥∥eii∥∥+Dmax, (63)
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Solving the differential equation (63) leads to∥∥eii∥∥ ≤ e‖A‖(t−ti,k)α− Dmax

‖A‖
(64)

for t ≥ ti,k with α a constant. Remind that the error eii is reset to zero when a message is broadcast by Agent i,
so‖eii (ti,k)‖ = 0. This is used to identify the value of α = Dmax

‖A‖ , and to obtain then the general solution of (63) for
t ≥ ti,k: ∥∥eii∥∥ ≤ (

e‖A‖(t−ti,k) − 1
) Dmax

‖A‖
. (65)

From the CTC (28) a new communication will be triggered when δ̃i = ρzTi Θzi + η. Introducing

δ̌i = δ̃i − eiTi Meiib̄i, (66)

a new communication is hence triggrered when

δ̌i + eiTi Meiib̄i = ρzTi Θzi + η (67)

and one has

δ̌i + λmax (M)
∥∥eii∥∥2 b̄i ≥ ρzTi Θzi + η∥∥eii∥∥2 ≥ 1

λmax (M) b̄i

(
ρzTi Θzi − δ̌i + η

)
(68)

since λmax(M) > 0 and b̄i > 0. Using (68) along with (65) evaluated at time ti,k+1, where the CTC is satisfied,
allows to obtain (

e‖A‖(ti,k+1−ti,k) − 1
)2(Dmax

‖A‖

)2

≥ 1

λmax (M) b̄i

(
ρzTi Θzi − δ̌i + η

)
. (69)

Considering the following two assumptions.

Assumption 1: ti,k+1 = ti,k According to (16), (22), and (21), δ̃i = 0 at t = ti,k. As a consequence, the CTC (28)
in Theorem 2 cannot be satisfied, which contradicts the considered assumption.

Assumption 2: ti,k+1 > ti,k According to (62), for all t ∈ ]ti,k, ti,k+1[ one has ‖eii (t)‖ > 0. Since eiTi Meii ≥
‖eii‖λmin (M) and using the fact that λmin (M) > 0 since M = PBBTP is symmetric positive, one deduces that
eiTi Meii > 0 for all t ∈ ]ti,k, ti,k+1[. This expression and (66) imply δ̌i < δ̃i and(

ρzTi Θzi − δ̌i + η
)
> 0 (70)

Then using (70) and
(
e‖A‖(ti,k+1−ti,k) − 1

)
> 0 in (69), one gets

(
e‖A‖(ti,k+1−ti,k) − 1

) Dmax

‖A‖
≥

√
1

λmax (M) b̄i

(
ρzTi Θzi − δ̌i + η

)
.
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In presence of perturbations, Dmax > 0, thus

e‖A‖(ti,k+1−ti,k) ≥ 1 +

√
‖A‖2

λmax (M) b̄iD2
max

(
ρzTi Θzi − δ̌i + η

)
ti,k+1 − ti,k ≥

1

‖A‖
ln

1 +

√
‖A‖2

λmax (M) b̄iD2
max

(
ρzTi Θzi − δ̌i + η

) . (71)

Since
(
ρzTi Θzi − δ̌i + η

)
> 0, from (71), one deduces that ti,k+1− ti,k > 0, which excludes the possibility of a Zeno

behavior.
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