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Distributed Non-Asymptotic Confidence

Region Computation over Sensor Networks

V. Zambianchi,Student Member, IEEH. Bassi,Member, |IEEE,
A. Calisti, Student Member, IEEHE). Dardari,Senior Member, IEEE,
M. Kieffer, Senior Member, IEEEand G. PasoliniMember, IEEE,

Abstract

This paper addresses the distributed computation of eractasymptotic confidence regions
for the parameter estimation of a linear model from obséwatat different nodes of a network of
sensors. If a central unit gathers all the data, the sigmuigestl sums (SPS) method proposed by Csaji
et al. can be used to define guaranteed confidence regions withripesconfidence levels from a
finite number of measurements. SPS requires only mild assomspon the measurement noise. This
work proposes distributed solutions, based on SPS andidoite wide variety of sensor networks,
for distributed in-node evaluation of non-asymptotic cdefice regions as defined by SPS. More
specifically, a Tagged and Aggregated Sum information siiffa algorithm is introduced, which
exploits the specificities of SPS to avoid flooding the nelweith all measurements provided by
the sensors. The performance of the proposed solutionsaisiaged in terms of required traffic
load, both analytically and experimentally on differentwark topologies. The best information

diffusion strategy among nodes depends on how structueedétwork is.
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I. INTRODUCTION

A Sensor Network (SN) consists of energy-limited sensingas deployed to collaborate
in performing a common task. Examples may be the monitorfresncenvironmental param-
eter €.g9, temperature or pressure [2]-[4]), the detection of a lyimaent [5], the estimation
of a spatial field [6], the estimation of the coordinates ofgmal source [7], etc. Depending
on the specific task requirements (fault tolerance, privasyes, energy constraints), either
a centralized or a distributed approach can be adoptedeloedhtralized setup a central unit
collects all the information and completes the task, whrenedhe distributed setup the nodes
exchange information and accomplish the task locally.

As far as the centralized estimation of physical paramagec®ncerned, maximum like-
lihood (ML) or least squares (LS) estimators [8] can be agdpboth working under the
hypothesis of having all the required observations avkilalb one central unit.

However, the scarce robustness to central unit failurespamd network scalability have
brought to consideration distributed approaches. Folantd, recursive weighted LS esti-
mation has been considered [9], [10], alongside a consdressed algorithm that allows to
incorporate information from neighbor nodes in the locaineate. A similar approach is
taken within the Bayesian framework [11]-[13], where corsses-based distributed Kalman
filtering is proposed.

Whatever the adopted processing strategy, either cer@dalbr distributed, in many ap-
plications a simple point estimate of the parameter vectonterest is not sufficient if not
associated with a confidence region to assess the estimatcantainty. Classically, the esti-
mation accuracy is investigated using Cramér-Rao-likenbis [14]—-[17]. Confidence regions
can also be derived as a by-product of distributed Kalmaerifilg [12], [13]. Nevertheless,
strong assumptions on the measurement noise (typicallgstan) are necessary and most of
the techniques provide only approximate, possibly asytigatidy tight, confidence regions.

In centralized setups, provided that the regression madihear, the derivation of con-
fidence regions in the non-asymptotic regime is possiblagusihe results in [18]-[24].
The Leave-out Sign-dominant Correlation Regions (LSCRjhoe [18], [19] and the sign
perturbed sums (SPS) method [20], [22] allow the centrat toniderive, from a finite set
of measurementgjuaranteegdnon-asymptoticonfidence regions with prescribed confidence
levels around the LS estimate of the parameter vector. @iftey from Cramér-Rao-like
bounds, SPS does not require precise statistical knowledipe noise, and works under mild

assumptions on its distribution [22], [23]. Efficient calized characterization of confidence
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regions can be obtained using interval analysis [24].

A. Main Contributions

In [1] we showed that confidence regions, as defined by SPS, beagvaluated in a
distributed way, for example in wireless sensor networksSN&). For that purpose, the
nodes share their local information with each other and trdidence region computation is
performed locally. Three information diffusion approaslidata flooding and parallel in-node
processing, distributed processing via average consgmasuls mixed flooding+consensus)
have been considered in [1] to provide each node with thenmition allowing a distributed
computation of the confidence region.

In all cases, the information diffusion strategy, in aduhtito the network topology, deter-
mines the amount of data exchanged, which needs to be restrai

In this regard, a novel information diffusion strategy, r@hTagged and Aggregated Sums
(TAS), is presented in this paper. It exploits the pecuiesiof the SPS method, leading to
a reduction of the amount of information to be exchanged @mwdes and, at the same
time, it is sufficiently general to be applied to any netwooldlogy. It is compared with
classicalgeneral purposanformation diffusion strategies, such as flooding [2], |[2hd
consensus algorithms [11], in terms of generated traffid @ well as of confidence region
volume/traffic trade-off. Performance predictions, siatidn and experimental results are

provided for various topologies, extending preliminarguks presented in [1].

B. Organization of the paper

The remainder of this work is organized as follows. Sectiofoimulates the confidence
region computation problem and recalls the SPS methodidBetit presents several in-
formation diffusion strategies. Information diffusionchaiques are compared on various
network topologies in Sections IV and V. Experimental resplesented in Section VI allow
to account for MAC layer aspects and confirm that the bestrimédion diffusion strategy

depends on the way the SN is structured. Conclusions arendraBection VII.

[I. NON-ASYMPTOTIC CONFIDENCE REGIONS

In this paper vectors are denoted by bold lowercase lettbile watrices are indicated with
bold capital letters. For the reader’s convenience, thet sigaificant symbols introduced in

the following and their meaning are reported in Table I.
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TABLE |

TABLE OF SYMBOLS AND RELATED MEANINGS

Linear regression system

np dimension of the parameter vector
© parameter space(C R"™?)
6  vector belonging to the parameter spa&gte

6 true value of thenp x 1 parameter vector

)

least squares estimate @f
x; location of Nodei
@, regressor vector at;;

yi measurement collected by Node

SPS variables

m  amount of sums considered by the SPS method
aj,, realizations of independent random signs

Q.. SPS normalization matrix

so(@)unperturbed sum

s;(@)m — 1 sign perturbed sumgi = 1,...,m — 1)

3, nhon-asymptotic confidence region

TAS information diffusion algorithm

%) tag vector to be transmitted by Nodein roundr

d® dataset to be transmitted by Nodéen round r
dras size of the dataset transmitted by TAS
d;,;,..dataset with sums involving data from Nodggj, ...

8¢ dataset at Nodé after final wrap-up

n$is amount of data transmitted by TAS in a generic tree

nSls amount of data transmitted by TAS in a binary tree

n$As amount of data transmitted by TAS in a clustered network

Flooding information diffusion algorithm

de  size of the dataset transmitted by flooding (FL)

n&’ amount of data transmitted by FL in a generic tree

nEl amount of data transmitted by FL in a binary tree

nEN amount of data transmitted by FL in a clustered network

Network setup

n  number of nodes in the network

N (k)set of neighbors of nodé

A
(¢

number of nodes at Levél (tree network)

— —

number of nodes with no children at leve(tree netw.)

~ >

number of levels of the tree network (excluding the root)

number of clusters in the clustered network

3
o

n; number of nodes (clusterhead included) in tké cluster

S0
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A. Problem Formulation

Consider some spatial field described by the following pataicy model [26]

Yy <X7 0) = (PT (X> 0. (1)

wherex € R™ is some vector of experimental conditions (time, locatiopunder which the
field is observedy (x) is the regressor function, artdis the vector of unknown parameters.
Measurements are taken by a networke@ensor nodes, spread at random locatigns R,
1=1,...,n. Node: collects the scalar measurementaccording to the local measurement
model

vi =y (x,0%) +w; = CPZ-TO* + w;, (2)

wherep, = ¢ (x;) is theny x 1 regressor vector a;; 8" is the true value of the deterministic
np x 1 parameter vector, which is only known to belong to the suBset R™; w; represents
the measurement noise at Node

As in [22], the random variables with realizations, i = 1...,n are assumed to be
statistically independent and to follow a symmetrical milisttion! Deterministic regressors
¢, are considered here, but this work may be extended to the afasssndom exogenous
regressors,e., regressorg,s that are independent on the noise terms. We consider tts¢ wor
case in which the value ap, is assumed known only by NodeMoreover, we assume that
there exists:’ < n such that for all subset of indexdscC {1,...,n} with |Z| > »/, the

regressors are such thatt Qz # 0, where

1
Q=g > el 3
1€

In what follows, Q... ,; is denotedQ,. The purpose of the network is to let each node

capable of computing locally the confidence region of thérese of 8° with the lowest

impact on network traffié.

B. Centralized SPS

The centralized SPS method [20], [22] assumes all measutsnaad regressors to be

known at the central processing unit. It defines an exact @enée region around the least

1In [23], no symmetry condition is considered, the random suesment sequence is only assumed to form an
exchangeable sequence of random variables. This worklyeadiends to this alternative assumption.

2The proposed approach readily extends to vector fields irchwtiie measurement is a vector, as well as to vectors
of measurements, provided that the noise components of @athr are independent and symmetrically distributedsThi

extension is not considered here to lighten notations.
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squares estimatof 6%, obtained as the solution of the normal equatipnis | ¢, (yk — ga;{e) =
0. For that purpose, as in [22], consider theperturbed sunas the following function over
)

s0(0) = Q. "* )i (e — 01 0) (4)
k=1
and them — 1 sign-perturbed sumglefinedv; = 1,...,m — 1 as the following functions
over© .
5;(0) = Q") ajrey (ue — #10) . (5)
k=1

wherea;; € {+1} are realizations of independent random sigror eachf € ©, one
considers the elements of the set
2(6) = {+(0) = Is @)1 , ©
§j=0,1,...,m—1
and lists them in increasing order, giving rise to a perniomatg(-) : {0,...,m — 1} —
{0,...,m — 1}. One defines the set

zq:{ee@m(mgm—1—q} 7)

which contains allp € © for which the rank ofz,(0) in the ordering is among the: — ¢

smallest, withg = 1,...,m — 1. In [20], [22], it was proven that

* q
Prob0* € ¥,) =1 — - (8)

As a consequenc®, is a non-asymptotic confidence region wiact confidence level
1 —¢/m. The values of; andm may be chosen to get the requested confidence level of the
confidence regiort, for the estimate of 6.

An extension of the SPS method is presented in [23], whiclsidens thatrg iS one of

the m! possible permutations o0& (). Letting I, be a set ofc permutations, the set

Ek:{0€@|ﬂ'9€nk} (9)
is defined, which allows one getting confidence regions shah t
; k
Pro(0* € ;) = g (10)

Notice that (8) and (10) are equivalent for= m! — qg(m — 1)L
The main advantage of the extension of SPS in [23] over th&2his that in the former the

resolution of the confidence level igm!, while in the latter it isl /m. For example, with the

3A random sign is a symmetri¢-1 value random variable taking both values with the same |itiba
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ZAMBIANCHI ET AL.: DISTRIBUTED NON-ASYMPTOTIC CONFIDENCEREGION COMPUTATION 7

approach in [23], confidence regions for levgl80%, 96%, . . ., 62.5%, . .., 8.3%, 4.2%} may
be theoretically defined for. = 4, whereas confidence regions only for levgl80%, 75%, 50%, 25%}
are defined in [22]. This difference may appear to be intergsivhen SPS is used in
a distributed version, where small values rof are of interest, to restrain communication
costs. Nevertheless, our experiments show that with theoapp in [23], when choosing
k > m!— (m — 1)!, the confidence regions are not necessarily compact.

Non-asymptotic confidence regions as defined in [22] may ber@pproximated using
ellipsoids, as in [22], boxes, or union of non-overlappiraxds as in [24].

In the following, the distributed computation &, is addressed considering different

information diffusion strategies.

. | NFORMATION DIFFUSION ALGORITHMS

This section describes the distributed computation of denfte regions as defined by
the SPS algorithm [22]. Concurrent procedures for inforomatiffusion applicable to any
network topology are considered. The purpose is that eadk nollects the largest amount
of information with the lowest amount of data exchanged m letwork so that it is able to
compute locally the confidence region of the LS estimate foyr &'

Before entering into the details of our investigation, fewrds are needed to clarify
the different roles played by thghysical logical, and processingelements that affect the
performance of the investigated strategies.

The physicalelement of a SN is given by the deployment of nodes in the gssmmario,
that defines the network layout. On this regards, the onlyditmm we assume is that all
nodes can communicate with each other, either with singlawti-hop links.

Given the network layout, a routing protocol is typicallypsipd, which defines thigical
topologyof the network, that is, the set of paths and directions whiata can flow through.
On top of the same network layout, in fact, different kindslagical topologiescan be
created, either hierarchical (tree topology, cluster logy..) or flat, depending on the
routing protocol that defines, in other words, the possibfermation pathsfor the given
deployment of nodes.

Finally, the information diffusion strategies investigdin this paper concern tipgocessing
elements. In fact, they deal with the way the information saged (aggregated and/or fused)
by a node before being transmitted to the next one(s) acuprai thelogical topology A
node can transmit, for instance, either elementary datddas by FL) or a processed version

of data (as done by consensus schemes and the proposed TEhat).

January 27, 2017 DRAFT



8TO BE CONSIDERED FOR PUBLICATION IN IEEE TRANSACTIONS ONGNAL AND INFORMATION PROCESSING OVER NETWORKS

Fig. 1. Toy network example

Obviously, given a fixed logical network topology, it is alygpossible to design an ad-
hoc information diffusion algorithm that provides the bestformance. However, we are
interested in designing procedures that are not tailoreahyospecific network configuration.

The TAS algorithm proposed in this paper is meant as a togedgmostic information
diffusion strategy, thus being a general-purpose solufian this reason, the FL algorithm,
which is topology-agnostic as well, is its natural term ofngmarison. Both information
diffusion strategies are here meant to provide each node th# information needed to
locally compute the confidence region as defined by SPS.

The behavior of the algorithms will be illustrated on the togtwork represented in
Figure 1, where circles represent network nodes and eddesde two nodes indicate that
they are able to communicate. For each algorithm the ewnlwdf the amount of information

available at a nodé is described by a tablR*).

A. Flooding algorithm

FL will be used as a benchmark [2], [25]. When implementeduqapsrt the SPS algorithm,
pure FL works as follows: during the first round, Node broadcasts its own privy pair
(¢, yk), and receives data from its neighbors, as dictated by th&dbgopology. On
successive rounds, Nodewill also broadcast any previously received pay;,y;), i # k
along with its own. In particular, at roundNode £ transmits a packe(ttﬁk), dﬁk)), in which
the tag vectortt¥ indicates the indexes of the nodes whose measurements esenplin

the packet, whereas the dat® contain the measurements and the corresponding regressors
. k
{(pso i)} Vi €t
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Usually, in order to reduce the amount of transmitted infation, actual implementations
of flooding .9, AODV [27]) do not retransmit already transmitted data. e following
we will always refer to suckenhancedalgorithm, that will be simply denoted as flooding.

In this case, Node is referenced in the tag vectof iff

1) the pair(¢;,y;) is available at Nodé at roundr — 1,
2) the pair(y,, y;) has never been broadcast by Ndde

At roundr = 1, Node k transmits dataigk) consisting of

real values, corresponding to its measurementrgneegressors. The dimension of dats
broadcast by Nodé at successive rounds (that is, for> 1) is an integer multiple of
dg, possibly zero. The transmission caghg for the tag vector depends on the way it is
representede.g, as a list of integers, in which case it is of variable lengtithw-, or a
constant-size vector of binary flags. The latter is considén this work. As a consequence,
the communication cost of the tag vector isrobinary values per communication round.

Ideally, transmission rounds are repeated until all noddeat all the information, e.g.,
by checking the tag vector is full of ones. Upon completioaglenode is able to compute
(4) and (5), for anyd, and to locally derive the confidence region using the fullfedata.
In practice, transmission rounds may stop due to informadidfusion delay constraints, or
when all nodes do not detect any transmitted informatiomftbeir neighbors over a given
time interval.

In the latter cases, the local confidence region charaatesiz may be performed on a
reduced, possibly different across nodes, set of data.

Example 1:Table Il describes the evolution of the information colésttoy Nodek = 1
in the network depicted in Figure 1, when FL is implementeefoBe any transmission has
taken placej.e, for » = 0, Node 1 only knows its own measurement and regre$gqt,y; ).

During the transmission round= 1, Node 1 broadcasts daﬂf) = (¢,v1). It receives
datad(f) = (p,,y2) and df’) = (¢5,y3) from Nodes 2 and 3 respectively, thus learning
measurements and regressors of Nodes 2 and 3.

In roundr = 2, Node 1 broadcast$§1) = {(¥:: i) }ief2,31- Moreover it receives data gener-
ated at Nodes 1, 4, and 7, forwarded by Nodd.2,, (it receivesdgz) = {(¥:: i) }ieq1,4,7y) @nd
the data generated at Nodes 1, 4, and 6, forwarded by Nokje,3i§3) = {(¥i ¥i) bicqr,a,6)-

Therefore, at the end of round= 2, Node 1 discovers the measurements of Nodes 4, 6 and 7.

January 27, 2017 DRAFT



10TO BE CONSIDERED FOR PUBLICATION IN IEEE TRANSACTIONS ONGNAL AND INFORMATION PROCESSING OVER NETWORKS

Round | From Node Data Tag vector

0 1 (p,;n) |1|0|0]|0]0]0]O

L 2 (po,92) O] 2|]0O|0O]0O|O0O|O

3 (ps,y3) O] O] 1|0O]0O|0O|O

2,3 (psy4) O] O|JO|2]0|0O|O

2 3 (peys) |0 O]0O|0|O[1]|0

2 (p7,y7) |0 0|00 0|0|1

3 2,3 (ps5,95) O] O0O|0O|O]2|0|O

TABLE 1l

TABLE R(l) OF AVAILABLE INFORMATION AT NODE k = 1 WHEN FL IS USED IN THE NETWORK OFFIGURE 1

In roundr = 3, Node 1 broadcastdgl) = {(¥i: ¥i) Yicqa6,7y, @nd receives data generated
at Nodes 3, 5, and 6, forwarded by Nodei.2,, d:(f) = {(¥:: ¥i) }icg35,6), as well as data
from Nodes 2 and 5, forwarded by Nodei3, dgg) = {(¥i: ¥i) bicg2,5- Therefore, at the
end of roundr = 3, Node 1 discovers the measurement of Node 5.

If the network is connected, and provided that sufficiermigraission rounds are allowed,
the FL algorithm diffuses the whole set of data to each nodee Tomputation of the
confidence region is accomplished locally using the cam&dl SPS algorithm. The locally
computed confidence regions will be equal only in case themgreement on the random
signs realizationga;;} used to compute the sign perturbed sums (5), as well as on the
random quantities (permutations or random perturbatif#y, [23]) used to resolve ties.

This agreement can be easily accomplished without addititpansmission costs by the

sharing of the seed of the random generators of the nodes.

B. Tagged and aggregated sums (TAS) algorithm

The TAS algorithm is based on the following consideratiorp&ding (4) and (5) one

gets,

s0(0) =Q,,"/* (Z Pryk — (Z sokcpf) 9) (12)
k=1 k=1

5;(0) =Q,, '/ (Z a1 PRYE — (Z aj,ksoks05> 9) : (13)
k=1 k=1

The evaluation of (12) and (13) for any value &fc © does not necessarily require the
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knowledge of each term in the sums but rather of

01.n= Z‘Pkyk ) Z‘Pk%og,
k=1 k=1

2

P real values

np real values n,

(14)

m—1 m—1
D aikerye 5 8D _aikprer
k=1 i=1 k=1 i1
np(m — 1) real values n2(m — 1) real values
The main idea of the TAS algorithm is to propagate data sirest similar to (14),
composed opartial sumsnot necessarily ranging from = 1 to n, but covering a subset of
{1,...,n}. At each transmission round, Nodegenerates and transmits partial sums built
from data previously received from neighbors and store@®if. The main challenge of
the TAS algorithm is to determine a way to organize the cdntérihe transmitted partial
sums so that each node is able, after the termination of #msrnission phase, to build the
complete sums (14), or to compute partial sums with the maximumber of elements using
the received partial sums. The main advantage of TAS is tleatransmitted data sets are
of constant size, and do not increase in size with the trassan round as it happens in
FL. The sizedras oOf the dataset is obtained recalling the amount of data afataponents,

reported in (14):

np+ 1

The evaluation ofitas takes into account the fact that ! is symmetri€. Note that the
size of the dataset is fixedhdependentlyof the number of elements in the partial sums.
As in FL, the tag vector has to be transmitted along with thi&a dat at each transmission
round. Notice that, with the representation chosen in tlogkwthe transmission cost of the
tag vector in the FL and TAS algorithms is the same.

The TAS algorithm, whose structure is reported in Algorithmconsists of six phases,
namely, i) initialization, ii) reception, iii) distillatn, iv) aggregation, v) transmission, and vi)
wrap-up. The detailed description of each phase is repbeeshfter, while the corresponding

pseudo codes are in Appendix A.

“Since Y }_,pwpi is symmetric, instead of transmitting all its,”> elements, it is sufficient to transmit, values for

the diagonal plusz:{p:_ll d= W values for the upper (or lower) part, that give§”p2+l. The same holds for the

(m—1) termS{ ZZzlaj,wkwf}

m—1

j=1
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Algorithm 1 TAS algorithm
1 Initialization

22 forr = 1 to MaxRound do

3: Recepti on

4: Distillation
5: Aggr egati on
6: Transm ssi on
7: end for

8: W ap-up

i) Initialization phase see Algorithm 2. As in the FL protocol, the transmitted peiclks

{1,...,n} creates the packe(ttﬁk), di”) to be sent in round = 1. The tag vectotgk) flags

only Nodek.
tY =10, ..., 0, 1, 0, ..., 0
T (10)
k1l k k+l
The data seﬂﬁk) contains the local quantities related to Ndde
k
4 = { i {erel Jlaspim oy {amerel b} (17)

After initialization, the reception, distillation, aggation, and transmission phases are se-
quentially repeated until a termination condition is meg( until a given number of rounds

have been completed, as in Algorithm 1).

i) Reception phasesee Algorithm 3. At each round, Node k£ collects the messages
containing the partial sums transmitted by its neighborxdaling to the given logical

topology), whose set is denotéd(k).

iii) Distillation phase see Algorithm 4. At the end of the reception phase of rayridoderk
compares the incoming tag vectard, j € N(k) to the previously received tag vectors, to
detect whether the packets received at rourantain new information. If it appears that a
part of the data referenced ¥ have been previously received, these redundant data are
removed from the corresponding partial sum and is updated accordingly, see Lin&s
to 6. The resulting partial sums are then storedRiff). The same procedure is applied to
already stored partial sums, see Lirfe® 9. This phase reduces the number of contributors
to each partial sum, so that the different partial sums cambie easily recombined, in the

following aggregation phasewith each contributor counted no more than once.
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Round | From Node | Data Tag vector
0 1 o1 110]]0j0j0j0]O
1 2 42 o|1/0|0|0]|0]O
3 63 | 0] 0|21]0|0|0]O
5 2 6,7 |C|0O0|0O]1|0|0]1
3 ds6 |C|O|O0O]2]|0]2|0O0
2 ds6 | O] O|C|O|1]|1|0O0
3 3 45 o|jc|oj|jo0ofl1j0]o0
TABLE 1l

TABLE R FORNODE k = 1 USING TAS IN THE NETWORK OF FIGURE 1; C INDICATES ELEMENTS THAT HAVE BEEN

REMOVED FROM THE TAG VECTOR AND PARTIAL SUMS DURING THE DISTULATION PHASE

Example 2 (Distillation phase)Consider again the network of Figure 1 and the evolution
of RM given in Table Ill. As in FL, forr = 0, Node 1 only holds its own data and forms

partial sums from these data stored in

si={ e, {ool} aemhy {aneel )y, |-

During roundr = 1, Node 1 broadcasts these partial sums and receives pamis ®rmed
with the privy data from Node 2 and partial sums formed witd grivy data from Node 3.
During roundr = 2, Node 1 receives a packet containing partial sums combideig
from Nodes 1, 4, and 7, forwarded by Node 2, as well as a packgtining partial sums
combining data from Nodes 1, 4, and 6, forwarded by Node 3. ddrdent of these two
packets is stored iR("), after having removed the contribution related to Node infesach
previously received partial sum (this is indicated by a Chim tag vector in Table IIl). Node 1

thus gets

ke{46} ke{4,6}
D aikertry A Y GkPrPh (18)
ke{4,6} Vi ke{4,6} Vi

andd, ;. At the end of round- = 3, Node 1 receives a packet with partial sums combining
data from Nodes 3, 5, and 6, forwarded by Node 2, as well as kepaath partial sums

combining data from Nodes 2 and 5, forwarded by Node 3.

iv) Aggregation phasesee Algorithm 5. To create the packet to be broadcast adroun
Node k& aggregates the partial sums availableRff) at roundr — 1 and which werenot

previously aggregated. This is done by summing the availghttial sums to produoéﬁk)
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Round | From Node | Data Tag vector
0 2 42 o0j1j01010|0/|O0
1 o1 1{0|0|0|0O|O0O]|O
1 4 6, [0jO0O|Oj1|0|O0O]|O
7 o7 0j0j(0|0|0|0]|1
1 43 ojcj1,0/0|0/|0
2 4 é [0 C|C|0O|O|1]|O
7 d5 ojcjoj011|10/|0
TABLE IV

TABLE R® FORNODE k = 2 USING TAS IN THE NETWORK OF FIGURE 1; C INDICATES ELEMENTS THAT HAVE BEEN

REMOVED FROM THE TAG VECTOR AND PARTIAL SUMS DURING THE DISTULATION PHASE

and merging the related tag vectors to prodtlféé In order to avoid duplication of terms in
the sums, rows andj of R**) can be merged ir(tﬁk),dﬁk)> iff the intersection ofi-th and
j-th row tag vectors is empty. If this condition is not met,otthe row with smallest index
is aggregated in a transmitted packet.

Example 3 (Aggregation phasefonsider the evolution oR® for Node 2 given in
Table IV. At the end of round- = 1, Node 2 holds partial sums related to the data from
Nodes 1, 2, 4, and 7, stored &, d-, 64, andd;. A packet containing), has already been
transmitted in round- = 1. The other tag vectors do not intersect, as a consequeree, th
aggregated sums will involvé,, 4, and é-.

The distillation phase facilitates the aggregation andpwrp phases. Moreover, it allows

to get sparser tag vectors, which may then be more efficieathgbined.

V) Transmission phassee Algorithm 6. The message obtained at the end of the gajgye
phase is broadcast to all neighbor nodes. After the lasstnégsion phase, the objective for
Node k is the computation of the local confidence region, using th& dollected so far
and aggregated in the final partial suﬁrﬁ), evaluated in the wrap-up phase. The information
diffusion process stops for Nodewhen it has collected all the information from other nodes

or, more realistically, when a certain time has expired.

vi) Wrap-up phasesee Algorithm 7. The wrap-up phase can be performed by awbda-
ever it needs to compute the confidence region during or arttlef the information diffusion
process. For that purpose, Notlevaluates a linearly weighted suﬁ;f) = 2@“55’“), where
6" contains the partial sums at theh row of R* andb® is a vector of weights. The
non-zero entries ob®) select the rows oR*) to be combined in the partial sums.

To obtainb®), consider the tag matri€® of R®, with elementst;", with I and i
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denoting the row and column indexes, respectivelyT(f) is of full rank n, then R®*)
contains a contribution from all nodes of the network andrasetwork coding, one may
isolate each individual contribution via Gaussian elintimra performed oril'*) and proceed
at the considered node in the same way as for the centrali2&€d S

A second case is when® columns of T®) containls and the rank of"®) is also equal
to n®). In this case, only*) nodes have contributed to the partial sums stored in the rows
of R®. SinceT® is of rankn®, it is again possible to recover via Gaussian elimination
the individual contributions of a subsétof n*) out of then nodes. Provided that*) > »’,
Qz will be invertible and one will be able to obtain a LS estimated its corresponding
confidence region from a subset of*) data. Whenn® < n’, more rounds have to be
performed.

The last case to be considered is whefl columns of T(®) containls and the rank of
T®) is strictly less tham®). In that case, one may try to search the solution of the foligw

constrained optimization problem

b = arg max b'T®1, (29)
with the constraints
=3t eqo1}, i=1,2,...n (20)
l
dethl Z oot | #0. (21)
! ket

The constraints (20) are related to the presence indicdttineoquantities associated to
Nodesi =1,...,n. Imposingcgk) € {0,1} in (20) ensures that all measurements contribute
similarly to the final sign perturbed sums, with some measergs possibly not contributing
at all. In the latter case, one obtains a confidence regioocedsd to the LS estimate of
0* involving only the corresponding subset of sensor measemnésn The constraint (21) is
introduced to allow the computation of an approximatioer;’l/Q relying on possibly less
thann terms.

The constrained integer programming problem (19)-(21) i&-Hérd in general. If the
constraint (21) is verified onlp posteriori one gets a linear cost function and (20) can be
formulated as quadratic equality constraints. A furthéaxation of (20) can be considered
imposing only thatgk) € [0, 1]. One gets then a linear programming problem, easier to solve

but that may provide a solution quite far from that of the & integer programming
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problem. More precisely, if for the solutiongk) € 10, 1], the i-th measurement will not
contribute with a unit weight. One obtains at the best a weigL.S estimate 08* and its
associated confidence region, and not the original LS etifinam equally-weighted data.

An alternative sub-optimal wrap-up algorithm is providedAppendix A, which is less
energy demanding owing to the lower computational effoqureed. The idea is closely
related to that of the aggregation algorithm. The main tbifiee is that in the wrap-up
algorithm, the rows oR™®) are first sorted by decreasing order of the weight of the rows
of the tag matrixT'®). The idea is to start aggregating partial sums starting thi¢hpartial
sums to which a maximum number of nodes have contributed.gépeto optimality of this
heuristic algorithm can be upper-bounded by consideriegitimber of columm®*) of T*)
containingls. Sincen*) represents the number of different nodes that have cotddbio
one of the partial sums stored R, the optimal wrap up performed solving (19)-(21)
cannot aggregate data from more thaf nodes. The gap to optimality is thus less than
the difference between® and the number of aggregated data from different nadesthe
number ofls in the final aggregated tag vector.

In any case, before starting the final wrap-up, a node shaad b matrixI'®) such that
n®) > n’ to have a chance wrapping-up data from enough nodes to gewartible matrix
Qz.

Once a satisfying solution has been found, Nédam=n locally compute an exact confidence

region based 0@d'" from which the following quantities are evaluated

57(0) =Q 2 3 oM (v~ oT0) @2
i=1

57(0) =Q Y cMajup (i — 010) Yi=1...om -1, (23)
i=1

with
~ 1 & k) T
G- — L 3 Wl )
D it Cgk) i=1

Various confidence regions may then be defined and evaluaisd(22) and (23).
If several satisfying solutions for (19-20) have been fquhd one maximizing (21) should
be selected to get the smallest confidence region, as in iDralpéxperiment design [28].
Remark 1:The TAS algorithm is inspired from network coding [29], [30[he main
difference is that Nodé: does not need to recover the privy data of all nodes, but the

decoding of their partial sums suffices.
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Remark 2:The efficiency of TAS with respect to FL comes from the factt tthee size
dtas Of the data sets exchanged does not increase as the numbmrnalsrincreases, as it

happens in FL.

C. Consensus algorithm

Given that the SPS algorithm does not require the single desppearing in (12) and
(13) but rather their sum, a possibility to compute (12) ab8) (in a distributed way, is to
launch an average consensus algorithm [31]-[34], cornertp (14), as proposed in [1].
For this information diffusion strategR*) is always composed of a single row, storing the
consensus state vector. Further details can be found if31L]};[34]. Consensus algorithms
will be considered in the numerical results section, anywaywill not put more emphasis
since they showed a poor performance in terms of generaadftt ttoad and convergence

speed, as investigated in [1].

IV. TRAFFIC LOAD ON VARIOUS NETWORK TOPOLOGIES

In this section, the amount of transmitted data for disteduconfidence region charac-
terization is analyzed for both FL and TAS. Their performesare compared on different
logical topologies, with particular reference to generic treeaf th trees with an arbitrary
number of children for each node (Section IV-A), binary sr¢8ection IV-B) and clustered
networks (Section IV-C), that are the most commonly usedltmpes in practical applications
[4]. Section V considers also completely unstructured oekts/

Remind thatdg, given by (11), denotes the numbers of real-valued scalaoss(bly
guantized) that a single data (measurement and vector ofds®gys) is composed of when
the FL algorithm is used. With the FL algorithm, a packet liguzontains several data, and
thus an integer multiple of scalars. Similarlydras, given by (15), is the fixed amount of
(possibly quantized) real-valued scalars that are catned packet transmitted by a given
node when considering the TAS algorithm.

The transmission cost of the tag vector, consisting difinary values, is the same across

transmission rounds, and whatever the information difiustrategy.

A. Tree Topology

The tree topology is one of the most common logical topologgoeintered in WSNSs. It
might be the consequence of a particular physical deployroEnodes or the result of a

spanning tree routing procedure.
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Fig. 2. Generic tree topology with = 4, whereA(0) =1, A(1) =2, A\(2) =4, A(2) =1, A(3) =8, A(3) =6, A\(4) =

A(4) = 3.

Usually, tree topologies resulting from routing algorithspecifically designed for WSNs
introduce some constraints in the way data travel, accgrtirenergy saving strategies. For
instance, only nodes at a single level of the tree may be atlot® transmit during each
round and nodes belonging to that level can communicate witty nodes belonging to the
successive level [35], as all the other nodes argaep stateFor this reason, the generic tree
topology addressed in this section will be investigateduiamiisg that a message broadcast
by a node in the forward phase is only exploited by its par&his hypothesis will be
removed in Section IV-B, addressing the particular caseidrly trees, that discusses also

what happens when children nodes can overhear transnmssséoried out by their parents.

Consider now a generic tree topology., a tree where each node has an arbitrary, yet
known, number of children, possibly zero. Denote wiilf) the number of nodes at Levél
and with \(¢) the number of nodes at Levélthat have no children, witli ranging from
¢ = 0 (the root) to/ = L (the leaves). Of coursg(0) = 1, since the tree is single rooted.
The total number of nodes forming the network is therefore >, A (¢). An example of

these networks is depicted in Figure 2.

1) FL algorithm: The amount of data that needs to be transmitted in the forpheate
from Level L to Level L —1is f -1 = A (L) de. Whenl < ¢ < L, this amount, from Level
¢to Levell —1,is fro-1 = (A (L) +---+ A({)) dr. In the backward phase, the amount of
data that needs to be transmitted from Le¥db Levell is by; = ndg. Whenl < ¢ < L,
from Level ¢ to Level ¢ + 1, it is b1 = (A (€) — A (0)) ndk.

Finally, the amount of data that has to be transmitted withEh algorithm to share all
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data between nodes in the network is

nEJz()\ (L)AL AL =)+ +> A (E)) de

tnde+ )

(=1

= (3 () - X () ndr
=Ln dg— )\(0)+(A(0)+)\(1))+---+X_:A(€)>dp

L—1
+n?dg — X (L) ndg — (ZX (f)) nde. (25)

=0

2) TAS algorithm: In the forward phase, the TAS distillation and aggregatidvases
take place after each transmission round. The data reatchmgoot corresponds to the
elements required to evaluate the unperturbed and pediras that would be obtained in
a centralized version of the algorithm. This way of opetmsures thus an exact retrieval
of the entire sums (4) and (5). In the backward phase, thmnmédtion is spread over the
tree without any further processing. As already mentiomadidjata packets have a constant
Size dras.

The amount of data to be transmitted in the forward directiom Level/ to Level/ — 1
is A (¢) dras. In the backward direction, from Levélto Level/+ 1, itis (A (¢) — X (€)) dras,

since nodes without children do not transmit further. Actng for both phases, one gets

n?ATs:<Z A (@) dras + i (A () = A(0)) das
:(271 — 1>dTAS — )\(L)dTAs— (ix (£)> dTAS- (26)

Starting from the general expressions (25) and (26), ini@edV-B we investigate the

amount of data transmitted by FL and TAS in the significaneaafsbinary trees.

B. Binary Tree Topology

Consider asingle-rooted complete binary tregith L + 1 levels. In this case,

A0 =2°, (27)

X)) =0 for¢=0,1,..,L -1, (28)
L

n=>Y M) =21, (29)
/=0
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1) FL algorithm: Using (27), (28), and (29) in (25), the amount of data tramisaiby

FL in a generic tree can be specialized for the binary tree,dasget

nE[:<(” ! DA <log2 (n41)— g) (n + 1)+3> d

~ ; DI (30)

for n sufficiently large.

If we remove the hypothesis that nodes enter shegp statat the end of their transmission
round (thus allowing bidirectional communications), ittige that a message transmitted by
a node in the forward phase can be processed also by itsehil@his property can be used
in the backward phase by FL (denoted in this case FL-B) toaedbhe amount of data to

propagate. In this case (25) boils down to

nglg = ((n+ 1) % (n—1)+ 1) dr

(n+1)2
2

d|: — nd,:. (31)

One observes that2] > nE ;. As expected, accounting for data overheard by children in
the forward phase reduces the amount of data to be trandnffive large networks, however,
both (30) and (31) scale quadraticallynnthus making the bidirectional tree not convenient,
as it is more power consuming.

2) TAS algorithm:The amount of data transmitted by TAS in the binary tree casebe
derived using (27), (28), and (29) in (26), thus obtaining

3
TL%IS = 5 (TL — 1) dTAS- (32)

With the TAS algorithmnfis scales thus linearly with.

3) Comparison:When comparing (30), (31), and (32), asymptotically, theSTélgorithm
is the most efficient, since the amount of data to be exchaogete network scales linearly
with the number of nodes, where it scales im? with the other algorithms. Nevertheless,
for small values ofn, the fact thatdras > de can make the TAS algorithm less efficient.

On a binary tree, TAS is more efficient than FL-B when
(3n — 3)dtas < (n* + 1)dr.
Using (15) and (11) one obtains the following condition

(n®+1) Ky —3n+3 >0, (33)
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Fig. 3. Critical valuenfas~g., as a function ofp, on binary trees, for several valuesaf

where K = — "t

(anrnp 3 )m
m. Moreover, whem is larger than

. For sufficiently largen, (33) is always satisfied, for ait, and

. 34+ /9 —4K; (3+ K1)
NTASSFL = \/ 2K, ) (34)

TAS is more efficient than FL. Figure 3 represent{gs. as a function ofz,, considering
m = 10, m = 20, andm = 40. The behaviour is not exactly linear, but whengrows large,

~ 2 * ~ 3

C. Clustered Topology

Consider a clustered network, formed byodes, structured on a single level of hierarchy,
as depicted in Figure 4. The network is hence assumed to leedin n. clusters. The-
th cluster comprises a random number of nodésincluding the clusterhead, that is the
special node responsible for aggregating the local datésaans. The subnetwork formed
by clusterheads is considered to be fully connected: Qluséels can directly communicate
with each other. Moreover, each node in a cluster is assumedéctly communicate with

its clusterhead (and vice-versa).

1) FL algorithm: All nodes in a cluster can overhear broadcast transmissipesated

by the corresponding clusterhead. Therefore, the amoumatd to be transmitted when
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&

Fig. 4. A clustered topology. Clusterheads are indicatectth

employing the FL algorithm is

ngt = ((n —ne) +n+ (ng — 1)n) de

= (n — Ne + TLCTL) dE. (35)

This is because all nodes, apart from clusterheads, igiti@nsmit their local information to
clusterheads, leading @ — n¢)dr transmitted scalar data. Then clusterheads broadcast the
received data and their own, this forming a total flowdf scalar data. At this point, all nodes

in each cluster are completely informed about data relaigtidir respective cluster. Finally,
there is a backward transmission during which each cluséeths transmitting towards its
cluster all thendr scalar data except the ones that it previously transmitesatjing to
further (ne — 1) ndr transmitted scalars, composedrefclusterheads transmitting nat but

(n — nf)de scalar datai.e, a total of )", (n — nf) de = (nc — 1) nde.

2) TAS algorithm:On this topology, the TAS algorithm transmission phasesbmorga-
nized as follows. At the beginning, each node, with the ettoapof clusterheads, transmits
the partial sums calculated with its own data, correspandindras real values per node.
Then each clusterhead aggregates the local data of all nodiés cluster. Successively,
clusterheads transmit to all other clusterheads theiremgged data. Since the network of
clusterheads is fully connected, a single broadcast tressson for each of the clusterheads
suffices for all clusterheads being capable to constructtimepletely aggregated data. The

amount of scalar data, that has to be transmitted, is thus
n'cl':A\IS - ((TL - TLC) + ne + nc) dTAS = (n + nc) dTAS-
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This accounts for the initiak — n transmissions and the subsequent actions of clusterheads,
that should broadcast to each other the partially aggrdgdta and then broadcast, towards
nodes forming their cluster, the completely aggregated.dat

3) Comparison:TAS is better than FL when$Ys < n&, i.e., when

(n —ne+nen) de — (n 4 ne) dras > 0

(1 L neln = 2>) e (36)

n —+ ne dTAS

With n sufficiently large, one has

TLC(TL — 2)) dF dF
1+ ~ (ne+1)—.
( n+ ne dtas (e >dTAS

This implies that TAS is better than FL when

Remark 3:In Section Ill we indicated that the TAS algorithm proposedthis paper is
meant as a topology-agnostic information diffusion stygteéOf course, given the network
topology, specialized information diffusion strategies ®e designed, likely providing better
performance. For instance, in the case of the clustereddgpdere considered, one could
imagine a mixed FL+TAS approach in which, during the firsh&mission phase, each node of
a cluster conveys to the clusterheaiddata, composed by its privy data with no aggregation
(as done by FL). Then, the tagged and aggregated sums araidhby the clusterheads,
that make data circulate as dictated by TAS. In this caseatheunt of scalar data that has
to be transmitted is

CN
NEL+Tas = (10 — ne) dr + 2ncdras,

which is always lower thamgls. Morevover one hasi s < nf' as soon as > 29,

V. SIMULATION RESULTS

In this section, all simulations results have been obtacmusidering sensor nodes ran-
domly deployed over a square of side of one measurementwimith transmit information
over lossless linksi.g., no transmission errors and no packet collisions), whilefidence
regions have been evaluated with the interval analysisntqals described in [24] and the
Intlab library [36] for interval computations. Data are gested considering the model (1),
with randomly generated parameters and regressors usafigateons of independent zero-
mean unit variance Gaussian variables. The noise corgigata is also zero-mean Gaussian,

with a variance adjusted to get a signal-to-noise ratio otiB5
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Fig. 5. Behavior of the TAS algorithm with a random unstruetlitopology, as a function of the round index.

A. Behavior of the TAS algorithm

One considers here a random unstructured topology to seeirffommation propagates
within the network with the TAS algorithm. Figure 5 descslbie evolution as a function
of the number of rounds of the average rank of the tag matribesaverage number of data
wrapped-up with the suboptimal wrap-up described in Aldponi 7, and that obtained using
linear programming, see Section IlI-B. With the latter aygmh, two plots are reported, one
is showing the average number of data contributing to thd 8oen with a weight within
the interval[0.95, 1], the second is the average number of data contributing,evbatheir
strictly positive weight. Finally, the average valuerdf) is provided. Averages are taken over
all nodes. For the considered simulation, a networkeef 100 nodes is investigated. The
corresponding graph is connected with an average node ctivibeof 6.38 and a diameter
of 13.

One observes first that the average rank increases slowerrifia The sum of the
contributions of all nodes may thus be obtained before olrtgieach individual contribution.
Second, the wrap-up via linear programming is able to colieast of the data, even if their
weight is not necessarily one in the final sum. The suboptinrap-up algorithm performs
somewhat worse than the wrap-up via linear programmingjsable to gather an amount
of data close to that contributing with a weight close 1tan the wrap-up using linear

programming. Moreover, all these quantities increase ifaghe first rounds and slower
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Fig. 6. Percentage of network realizations favorable to ,TiSerms of required data exchanges, compared to FL, as a
function of the number of nodes forming a random tree topplimy different values ofnp. 100 random tree realizations

are considered for each value of

after several rounds. This is due to the fact that at the Inégiy each packet contains
new information, whereas packets in the last rounds comaiy limited new information.
Moreover, the aggregation phase has more difficulties toeggdge tag vectors received in the
last rounds, which contains already many contributionsfidifferent nodes and are likely
to contain at least partly similar contributions. When thetwork is more structured, this
phenomenon does not appear and the aggregation can benpeifonore efficiently.
Considering the diameter of the network, with a FL algorithmithout packet size lim-
itation, all data would have reached all nodeslihrounds. On this unstructured topology,
TAS is clearly less efficient, since with the suboptimal wrap about65% of the data have
been gathered, whereas with wrap-up using linear progragniietweerc0% of the data

are contributing with a weight close tband90% with a non-zero weight.

B. TAS vs FL

In order to compare the TAS and the FL algorithms, we consi@®idom trees and random
unstructured topologies, with the same order of magnitadernms of number of nodes.

For what concerns the analysis on random trees, we build ansgatree on top of a

random unstructured network, setting the inter-node comaation rangedcomm = \/1"52”.
According to [37], this range guarantees almost sure cdiwitgcof a network ofn nodes,

deployed on a unit area. For eagh(see the horizontal axis in Figure 6), 100 connected
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Fig. 7. Average volume, across nodes and 100 random treeatahs, of the 90% confidence region. Simulation pararsete

are set ton = 100, np = 2,¢ = 1, andm = 10.

network realizations are instantiated. TAS and FL are coetpan terms of the required
number of data to be transmitted in each network realizafide success rate of TAS is
the percentage of network realizations that proved faverad TAS, i.e,, for which less
measurements need to be exchanged to get all data reachimgdek of the network.

Figure 6 shows this success rate as a function, 8br several values af,. As foreseen in
the theoretical analysis in Section 1V, there always exastireshold value of, depending
on np, above which the TAS outperforms the FL algorithing,., the percentage closes to
100%.

We now investigate the trade-off between the confidenceonegolume and the amount
of data transmitted by each node. Figure 7 shows the averalgeng of 90% confidence
region as a function of the average amount of data that is aomuated by each node.
The volume and data amount are averaged across all nodescevss 400 random tree
realizations, while simulation parameters are sebjo= 2, ¢ = 1, n = 100 andm = 10.
Figure 7 helps in determining the amount of data that needi® tvansmitted by each node
on average to obtain a given confidence region average vol@me can observe that the
TAS algorithm outperforms the FL to achieve meaningful $rmmalume values, in terms of
the average amount of data transmitted by each node.

Finally, consider a random unstructured network, setting 100 andn, = 3. As shown
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Fig. 8. Average volume, across nodes, of the 90% confidergierreA random unstructured network of 100 nodes is

considered.

in Figure 8, the FL algorithm behaves better than TAS, progdower volume values
for the same amount of data. For comparison, it is also shoevn loth the FL and the
TAS algorithm outperform the state-of-the-art consendgsrahms, independently of the
considered consensus matrix (Metropolis [31] or Perrof)[11

This section confirms the general behavior that was higtédim Section IV: On structured
topologies, such as random trees there is an advantage ioygngpthe TAS algorithm when
the network dimension is sufficiently large. On unstruatunetworks of comparable size, the
FL produces the best results, but, in any case, the absohdara of data transmitted by each
node is much larger than in structured networks. This suggée adoption of structured
networks, together with the TAS algorithm for the distriditcomputation of confidence

regions, when the network traffic load for data diffusion &tgularly critical.

VI. EXPERIMENTAL RESULTS

This section describes the practical implementation ofi &S and FL on the commercial
sensor nodes EMB-Z2530PA [38] deployed in a real scenatis implementation allows

to account for the impact of the MAC layer.
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A. Experimental setup

1) Network topologies:Two network topologies have been considered, nam@glyhge
flat network topology, where nodes can directly communitgteneans of broadcast trans-
missions with their neighbours (that is, the nodes withiairticoverage region), andi)
the random tree topology, in which a tree structure is rarigastablished by the nodes
themselves at each run. For both topologies, the transmigsdwer and the positions of
nodes are managed in order to vary their connectivity ldweparticular, for each network
topology different measurement campaigns were carried vaunying the level of transmit
power (the same for all nodes) in order to control the aver@yer then nodes of the
network) numbem, of neighbors of each node.

2) Network setup and data managemehRbr both topologies, a network coordinator is
introduced for monitoring and network setting purpose$ait compromising the distributed
nature of the algorithms. At the beginning, the coordinatards astart message that triggers
the network setup (in the tree topology case), and the irdtion diffusion algorithm, either
FL or TAS.

For the tree topology, the tree construction starts fromrdiee (level 0), which randomly
selects the numbei,, of its children with uniform (discrete) distribution if1, 2, ..., nmay-
Provided that a sufficient number of nodes is available withe coverage range of the root,
nen Of them are selected as its children. Otherwise, all (thss fean,) available nodes are
joined to level 1. The same procedure is repeated by each afddgel 1 and then iterated
at all levels, until all nodes join the tree.

Once the network has been established, the informationsiiifi algorithm, either FL or
TAS, is started, beginning from the leaves up to the root &ed in the opposite direction.
In our experimental setup the information transmitted byédento its father is not overheard
by its children.

In the flat network case, instead, no network-setup phasedded. Hence either the FL
or TAS execution is triggered as soon as thart packet is received.

For FL, each payload contains the amount of data transmitteshsurements and re-
gressors, and a unique tag vector that identifies the caoititigp nodes. For TAS, payloads
contain partial aggregated sums and a tag vector indicétiagcontributing nodes. In the
proposed implementation, the tag consists of a vectatrgf bits, with 1s at the positions
corresponding to the indexes of the contributing nodesceSthe same tag is used for TAS
and FL algorithms, the difference in the transmission cegtethds only on the amount of

data transmitted.
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3) Time axis managemen#t the beginning of each measurement period of durafipn
the coordinator awakens all nodes, initiating the networkvay. Whatever the network
topology, the measurement period is divided intaounds of equal duratiot}y = nlr

In the flat network case each node performs a measurementdandg each round,
attempts to transmit.In the tree network case, insteadesiade allowed to transmit only
during the round pertaining to the level they belong to. Bataasurements and corresponding
regressors for FL or aggregated sums for TAS) are then egelablpeginning from the leaves
up to the root and then in the opposite direction.

To emulate the time jitter in nodes operations caused by Idoaks drift in a distributed
network as well as to avoid all nodes access the channel tsinadusly, thus congesting the
medium access control (MAC), each node defers the measuotgrhase, and therefore also
the beginning of the information diffusion algorithm, bycllly choosing a random delay
A; € [0,t], with i = 1,2, ..., n.

All nodes stop data dissemination oneerounds have been completed. The coordinator
collects then the amount of data transmitted/received loh @@de to allow an analysis of
the behavior of the TAS and FL algorithms.

B. Results

A network of n = 52 nodes equipped with temperature sensors has been cousidéee
transmission power and the position of each node are chostéraseach node has an average
number of neighbours, ranging from2 to 33.

Simple temperature measurements are performed. The tatopEt* is assumed constant
in the area where the nodes are deployed. The correspondéagurement model ig =
©:0*+w;, whereyp; is known by each nodeandé* is the parameter to estimate. Thys= 1
and the data to be transmitted by the FL algorithm are cadlestof pairs(y,, v;), consisting
in this case ofdr. = 2 real values (which may be quantized). For the SPS algorithme,
choosesn = 10, andq = 1 to be able to characteriz®)% confidence regions according to
(8). Therefore, the amount of data transmitted at each roynBAS is das = 20 real values

(which may also be quantized) and remains constant.

®Here, for simplicity, we choose; = 1 Vi. However, this choice does not affect the outcomes of ougsitigations.
With a larger number of sensors it would be possible to eséimraiso spatial variations of the temperature, but the gmpl

example here considered is enough for the purpose of thisrpap
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Parameter Symbol value
Number of nodes n 52
Maximun number of children Nmax 5
(tree topology only)
Measurement period T 2s
Number of rounds nr {2,3,...,30}
Number of neighbours Tn {2,4,8,17,33}
Number of parameters to be estimategd  np 1
Number of sign perturbed sums m 10
Size of data sets with FL dr 2 Bytes
Size of data sets with TAS das 20 Bytes
Size of the tag vector (both TAS and FL) dmac 7 Bytes

TABLE V

PARAMETERS OF THE EXPERIMENTAL SETUP

The measurement period is taken’Bs= 2 s. n, ranges from 2 to 30 and therefotg
varies from 1 s down to 67 ms. The parameters adopted for quaremental campaign are
summarized in Table V.

Given the network topology (either generic tree or flat nekvand for each chosen setup
(transmit powerp,), we performed the measurement campaign over 100 netwalikagons
and we derived the average (over the 100 resulting netwarksunt of information received
by each node and the average amount of data transmitted wwhbke network.

1) Flat network: Figure 9 shows the average proportion (expressed in pagenof data
reaching a given node in a flat topology for variaysand n,.

The value ofn, that maximizes the average amount of received data depends. ¢-or
low values ofn,, the performance is limited by the constraint on the maxinmumber of
allowed hops (that is coincident with), that might not be sufficient for a particular data to
reach all nodes in the network, especially for low degreesoahectivityn,,. On the contrary,
for large values ofi, the performance is limited by the MAC, as a smalincreases the
collision probability.

From the same figure one can also see that better performaneesbtained when the
network is characterized by a low degree of connectivjtyprovided that a sufficiently high
number of rounds can be allocated within the measuremertidoén fact, largen,, i.e., high

power levels, generate more interference among nodesethds ithe MAC to collapse. This
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Fig. 9. Flat network: average proportion of the total infation received by nodes as a functionrgffor variousn,. The

legend entries and the curves in the right-hand part of thedigre in the same order.

Neighbors| FL Experimental| TAS Experimental

2 5236 14337

4 5171 12770

8 4197 8770

17 2832 4860

33 1705 2561
TABLE VI

FLAT NETWORK: AVERAGE AMOUNT OF TRANSMITTED DATA (SCALARS) WITHIN THE WHOLE NETWORK IN THE CASE

ng = 15.

suggests that a proper power control strategy able to kgegt minimum values to keep
connectivity is beneficial both for network performance adl\as to save energy.

FL and TAS perform similarly in all conditions, hence theg aquivalent considering only
the amount of received information. They differ, insteadferms of amount of transmitted
information, as seen in Table VI, which reports the averagwmumt (over 100 network
realizations) of transmitted data (scalars) within the kwhwetwork in the case, = 15.

When operated in a flat topology, FL outperforms TAS as it regua lower amount
of transmitted information. With such topology, in factetinformation efficiently diffuses
within the network, up to the maximum extent permitted by trensmission power and

without back and forth paths (that occur, instead, in the topology), hence the aggregation
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Fig. 10. Generic tree topology: Average percentage of m&dion received by a node. The legend entries and the curves

in the right-hand part of the figure are in the same order.

carried out by TAS is not sufficient to compensate the largdues of dras with respect to
dpy.

2) Generic tree topologyFigure 10 provides for the tree topology the average praport
(expressed in percentage) of data reaching a given node wsctoh of n, for variousn,,.
Here it can be noticed a limited sensitivity of the optimuntueaof n, to n,,, as the average
number of children of each node only slightly depends on thmnectivity degree. In fact, for
the tree topology in this example we upper boundediy = 5 the number of children of
each node to avoid the generation of 'fat’ trees. Thereflmrea given node only a fraction of
its neighbors are actually involved in data diffusion. Asoagequence, increasing the number
of neighborsn, does not increase the amount of information diffused, bterdanes higher
levels of interference and packet collisions.

This makes power control less critical in tree topologieghwespect to flat topologies. In
general, better data dissemination is observed whes large compared to flat topologies
since transmissions happen level by level and only a smdllgbahe network tries to access
the channel at the same time. On the contrary, with smalleghf n,, data disseminate
only to a limited part of the network due to the depth of theetwehich may be largér

than1 + n,/2. Similarly to the flat topology, even in this case FL and TAS gery similar

Swith n, rounds the maximum number of levels of a tree that allows apbete dissemination of data from the leaves

up to the root and back is+ n/2.
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Neighbors | FL analytic ‘ FL exp. ‘ TAS analytic ‘ TAS exp. ‘

2 2179 2047 1427 1330

4 2144 2022 1420 1331

8 2087 1978 1409 1322

17 1802 1400 1353 1042

33 1705 1256 1334 972
TABLE VII

GENERIC TREE TOPOLOGYAVERAGE PROPORTION OF TRANSMITTED DATA REACHING A GIVEN NODRS A FUNCTION

OF nr FOR VARIOUSNy.

in terms of amount of received data. Table VII reports theraye amount of transmitted
data within the whole network when, = 15. Now, TAS outperforms FL when operated

on a tree topology. Table VII also compares the analyticat@ues, derived feeding (25)
and (26) with the parameters corresponding to each netvealikzation and averaging over

all realizations, and the respective averages of expetaheesults. When the number of
neighbors is small{, = 2,4,8) a good agreement between analysis and measurements is
observed both for TAS and FL. The experimental values arayavess than the analytical
ones because, as can be observed in Figure 10, the amourteofeck information never
reaches 100%, even in the considered case; of 15.

This phenomenon is emphasizedrgsincreases(, = 17, 33), which further reduces the
amount of received data (Figure 10) and hence the amounttaftdansmitted by nodes with
respect to the ideal (no collisions) situation describedHgyanalysis.

We can conclude, therefore, that the analytical framewank be usefully exploited to
provide performance predictions in not congested netwarkd a performance bound in
MAC limited networks.

To evaluate the influence of the proportion of measuremesived by each node on the
guality of the confidence region that can be derived, a teatper measurement has been
performed by each of the nodes of the network. For different target proportigns [0, 1]
of measurements reaching some node of the network, 100 masédtections of a subset of
measurements have been considered afd @ confidence region evaluation with = 10
and ¢ = 1 has been performed. Figure 11 describes the evolution o&¥beage width of
the 90 % confidence region as a function of the proportion ochsueements collected by
a given node. Figure 11 (right) shows that the width deceaggroximately ad/,/pn,

which is consistent with what is observed when maximumiillc®d estimation is carried
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Fig. 11. Average width of the 90 % confidence region as a fonctif the proportiorp (left) of measurements collected
by a node with FL or TAS and as a functidn,/pn (right).

out assuming an additive Gaussian noise [8], although thothesis on the noise is not
considered here. From Figures 9 or 10 and 11, one may dedeceidth of the confidence
interval that may be obtained with FL or TAS, when not all meaments have reached some
node. One can for example see that even if dtly% of the measurements have reached
a node, the width of the confidence region is omhly % larger than that obtained from all
measurements. This means that if one tolerates evaluatiogfalence region from a reduced
subset of the data, the constraints on the data dissemrmndtication may be significantly

relaxed, with beneficial effects in terms of time and energyirsys.

VIlI. CONCLUSIONS

This paper investigates the distributed evaluation of asymptotic confidence regions
at each node in a sensor network. It presents the TAS algorithd its comparison with
other information diffusion algorithms on structured antstuctured topologies. The TAS
algorithm has been designed to efficiently exploit the padties of the distributed evaluation
of confidence regions via SPS. Simulation results providaaacterization of the trade-off
for the achievable average confidence region volume as d@idanaf the required amount of
data that each node should transmit on average. The camnbushow that, on structured
networks, the proposed TAS algorithm is able to outperfon@ EL when the network
dimension is sufficiently high, this independently of thedfic dimension of the parameter
space, as investigated in the theoretical and numeric§fzesa as well as on an experimental

setup.

DRAFT January 27, 2017



ZAMBIANCHI ET AL.: DISTRIBUTED NON-ASYMPTOTIC CONFIDENCEREGION COMPUTATION 35

APPENDIX A
TAS Pseubo CoDE

The pseudo-codes for each phase of the TAS algorithm areteebim Algorithms 2 to 7.
The TAS algorithm is run similarly at each node of the netwdrke superscript®) is thus

omitted to lighten notations. All variables are assumedd@lmbal.

Algorithm 2 Initialization

>Get local sensor measuremaent

1: y, < Perfor mveasur enent

>Format data and transmit to neighbars
2: create tag vectot according to (16)

3: create data vecta¥ according to (17)

4: Transmi t ToNei ghbor s (t,9)

>Initialize R with local infosa
5 RT=t
6: RD=6

Algorithm 3 Reception
>Get node indexes from which packets are received

1. idx <+ Get Nodel dx

>>Update reception structud@x with the tags and partial sums received from neighbors
stored inNode(i).t and Node(i).0<

2: for i=1 to | ength(i dx) do

3 Rx.T + [Rx.T; Node(idx(i)).t]

4: Rx.D < [Rx.D; Node(idx(7)).d]

5. end for
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Algorithm 4 Distillation
>Distillation of new and already stored infas

1. for | x=1 to NbRows(Rx.T) do
2: for =1 to NbRows(R.T) do

3 if RT(l ) ¢ Rx.T(l x) then
>Clear received packet from already stored data
4: Rx.T(l x) + Rx.T(l x) — R.T(l )
5: Rx.D(l x) + Rx.D(I x) — R.D(l)
6: end if
7: if Rx.T(l x) C R.T(l) then
>>Clear already stored data from received data
8: R.T(l )+ R.T(I ) — Rx.T(l x)
9: R.D(l ) «+ R.D(l ) — Rx.D(l x)
10: end if

11: end for

>Any distilled received data is appendedRo<
12: if Rx.T(lx) # 0 then

13: R.T «+ [R.T; Rx.T(l x)]
14: R.D + [R.D;Rx.D(l x)]
15: end if

16: end for

>>Clear reception structure of current nede

17: clear Rx
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Algorithm 5 Aggregation
> Perform aggregation of Tags and partial sums. Using bodlagnvectorAgd, already

aggregated infos are no more considered for aggregationhbisesjuent rounds
1:t+0 > Initialize aggregated tag vector
226« 0 > Initialize aggregated data vector
3: for =1 to NbRows(R.T) do

4: if Agd(l )= falsethen

5: if R.T(I )Nt =0 then

6: t—t+R.T()

7: 0~ d+RD()

8: Agd(l) = true > | -th row of R.T flagged as aggregated
o: end if

10: end if

11: end for

Algorithm 6 Transmission
1: if t #£ 0 then

2: Transmi t ToNei ghbor s (t,6)

3 end if

Algorithm 7 Wrap-up
>>Sorts lines ofR by decreasing weight of lines d&t.T<

> Perform aggregation of tags and partial swms.

1:t+0 > Initialize wrapped-up tag vector
226+ 0 > Initialize wrapped-up data vector
3: for =1 to NobRows(R.T) do
4: if R.T(I )Nt =0 then

5: t+—t+R.T()
6: 0+~ d+RD()
7: end if

8: end for
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