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Abstract—Getting confidence regions for parameter estimates
obtained from data collected by a wireless sensor network (WSN)
is very important to assess the performance of the estimator. The
sign perturbed sums (SPS) approach has been proposed recently
to defined exact confidence regions in a centralized setting even
if only few measurements are available. SPS may be distributed
to get confidence regions at each node of a WSN. This paper
investigates a data dissemination strategy called Tagged and
Aggregated Sums (TAS), exploiting the particularities of SPS,
to efficiently provide each node with the information necessary
to evaluate locally the confidence region. TAS and flooding (FL)
algorithms have been investigated through simulations and then
implemented on commercial sensor nodes. The impact of collision
avoidance mechanisms at the medium access control (MAC) layer
is also experimentally assessed. Performance comparisons show
that TAS outperforms FL in structured networks.1

I. INTRODUCTION

A WSN consists of energy-limited sensing devices deployed

to monitor the surrounding world and estimate one or more

physical parameters (parameter vector). In a centralized setup,

a central unit collects all the information and performs the

estimation task, whereas in a distributed setup sensor nodes

exchange information and accomplish the estimation locally.

Whatever the adopted processing strategy, either centralized

or distributed, in many applications a simple point estimate

of the parameter vector of interest is not sufficient if not

associated with a confidence region to assess the estimation

uncertainty. Classically, the estimation accuracy is obtained

from Cramér-Rao-like bounds [1]. Confidence regions can

also be derived as a by-product of distributed Kalman filter-

ing [2]. However, strong assumptions on measurement noise

(typically Gaussian) are necessary and a good characterization

of confidence regions is only possible for a large number of

measurements.

The SPS [3], [4] method, instead, defines exact confidence

regions under mild conditions on the distribution of the

measurement noise even with a low number of measurements.

Provided that the regression model is linear and that the mea-

surement noise samples are independently and symmetrically

distributed, the SPS method allows the derivation, from a finite

set of measurements, of confidence regions with prescribed

confidence levels around the least squares (LS) estimate of the

1This research has been supported by the European H2020 project XCycle
(Grant no. 635975) and by the RFO (Univ. of Bologna) awarded by G.
Pasolini.

parameter vector. Initially proposed for centralized estimation,

SPS has been shown in [5] to be amenable to distributed

estimation in a WSN.

A. Main Contributions

This paper addresses the distributed evaluation of confi-

dence regions as defined by the SPS approach, for implemen-

tation in WSNs. In [5] we showed that confidence regions,

as defined by SPS, may be evaluated in a distributed way:

the nodes share their local information with each other and

the confidence region computation is performed locally. The

information diffusion strategy, in addition to network topology,

determines the amount of data exchanged, which needs to

be restrained. On this regard, a novel information diffusion

strategy, named TAS, is presented in this paper.

It exploits the peculiarities of the SPS approach to distill

and aggregate the information to be transmitted by each node,

with the objective to reduce the total amount of data exchanged

within the WSN. Its performance, in terms of generated traffic

load, is compared with that of the classical FL algorithm that,

conversely, does not perform any aggregation.

The performance of both algorithms has been firstly in-

vestigated through simulations and then measured on a real

WSN. Simulations and experimental results show that TAS

outperforms FL in structured networks. Analytical investiga-

tions have been carried out as well, which are reported in an

extended version of this paper [6].

II. PROBLEM FORMULATION

Consider some spatial field described by the following

parametric model

y (x, θ) = ϕT (x) θ, (1)

where x ∈ R
nx is some vector of experimental conditions

(time, location. . . ) under which the field is observed, ϕ (x)
is the regressor function, and θ is the vector of unknown

parameters, belonging to the parameter space Θ ⊂ R
np .

Measurements are taken by a network of n sensor nodes,

spread at random locations xi ∈ R
nx , i = 1, . . . , n. Node i

collects the scalar measurement yi according to the local

measurement model

yi = y (xi, θ
∗) + wi = ϕT

i θ
∗ + wi, (2)



where ϕi = ϕ (xi) is the np × 1 deterministic regressor

vector at xi; θ∗
is the true value of the np × 1 parameter

vector; wi represents the measurement noise at Node i. As in

[4], the random variables with realizations wi, i = 1 . . . , n
are assumed to be statistically independent and to follow a

symmetrical distribution. We consider the worst case in which

the value of ϕi is assumed known only by Node i. Moreover,

the regressors are such that detQn 6= 0, where

Qn =
1

n

n∑

i=1

ϕiϕ
T
i . (3)

The purpose of the network is to let each node capable of

computing locally the confidence region of the estimate of θ∗

with the lowest impact on network traffic.

The centralized SPS approach [3], [4] assumes all measure-

ments and regressors to be known at the central processing

unit. It defines an exact confidence region around the least

squares estimate θ̂ of θ∗, obtained as the solution of the

normal equations
∑n

k=1 ϕk

(
yk −ϕT

k θ
)
= 0. For that pur-

pose, as in [4], consider the unperturbed sum as the following

function over Θ

s0(θ) = Q−1/2
n

n∑

k=1

ϕk

(
yk −ϕT

k θ
)

(4)

and the m−1 sign-perturbed sums, defined ∀j = 1, . . . ,m−1
as the following functions over Θ

sj(θ) = Q−1/2
n

n∑

k=1

aj,kϕk

(
yk −ϕT

k θ
)
, (5)

where aj,i ∈ {±1} are realizations of independent random

signs.2 For each θ ∈ Θ, one considers the elements of the set

Z(θ) =
{
zj(θ) = ||sj(θ)||

2
2

}
j=0,1,...,m−1

, (6)

and lists them in increasing order, giving rise to a permutation

πθ(·) : {0, . . . ,m− 1} → {0, . . . ,m− 1}. One defines the set

Σq =
{
θ ∈ Θ | πθ(0) ≤ m− 1− q

}
(7)

which contains all θ ∈ Θ for which the rank of z0(θ) in the

ordering is among the m− q smallest.

In [3], [4], it was proven that

Prob(θ∗ ∈ Σq) = 1−
q

m
. (8)

As a consequence, by properly setting the parameters m and

q, it is possible to define Σq as a non-asymptotic confidence

region with exact confidence level 1− q/m.

In the following, the distributed computation of Σq is ad-

dressed considering different information diffusion strategies.

2A random sign is a symmetric ±1 value random variable taking both
values with the same probability.

Figure 1: Time scheduling management

III. INFORMATION DIFFUSION ALGORITHMS

In this section, concurrent procedures for information dif-

fusion applicable to any network topology are considered.

The purpose is that each node collects the largest amount of

information with the lowest amount of data exchanged in the

network so that it is able to compute locally the confidence

region of the LS estimate for any θ∗.

In the following we propose a novel information diffusion

strategy, named TAS, aimed at efficiently disseminating the

information required by the SPS approach for the distributed

computation of confidence regions.

The main idea of TAS, which will be detailed in Sec-

tion III-B, is to let each node aggregate data before trans-

mitting them to the other nodes, exploiting the fact the SPS

approach does not require the knowledge of each single

measurement and regressor but, rather, the knowledge of their

aggregation in the form of the sums reported in (4) and (5).

In order to assess the effectiveness of such strategy, the

FL algorithm has been considered as a benchmark, as it does

not perform any data aggregation. Although it is true other

information diffusion strategies exist [7], [8], they are tailored

to specific network topologies, either flat or hierarchical (tree,

clusters, ...) or require some side information. TAS is, instead,

agnostic, as it is meant as a general purpose solution. For

this reason, the FL algorithm, which is agnostic as well, is its

natural term of comparison.

Obviously, given a fixed network topology, it is always

possible to design an ad-hoc information diffusion algorithm

that minimizes the amount of exchanged data (even TAS

could be customized to specific topologies). However, we are

interested in designing procedures that are not tailored to any

specific network configuration.

Before entering into the details of TAS and FL, few words

on the time axis management are required, which hold for both

algorithms: We assume that the WSN is operated for a time

interval of T seconds, denoted measurement period, which is

divided into nr rounds of equal duration tr =
T
nr

(see Fig. 1).

TAS and FL operations take place according to such timing

organization, as detailed hereafter.

A. Flooding algorithm

Data may be disseminated via FL algorithm, used as a

benchmark in this paper. At round r = 1, Node i broadcasts

its own privy pair (ϕi, yi), along with a tag containing its

identifier, and receives data from its neighbors. The privy data

consists of dFL = np + 1 real values, corresponding to its

measurement and np regressors, whereas the transmission cost

dTAG for the tag vector, which indicates the indexes of the

nodes whose measurements are present in the packet, depends



Round From Node Data Tag vector

0 1 δ1 1 0 0 0 0 0 0

1
2 δ2 0 1 0 0 0 0 0
3 δ3 0 0 1 0 0 0 0

2
2 δ4,7 C 0 0 1 0 0 1
3 δ4,6 C 0 0 1 0 1 0

3
2 δ5,6 0 0 C 0 1 1 0
3 δ5 0 C 0 0 1 0 0

Table I: Table R(1) for Node k = 1 using TAS in the network

of Figure 2; C indicates elements that have been removed from

the tag vector and partial sums during the distillation phase

on the way it is represented, e.g., as a list of integers, in which

case it is of variable length with r, or a constant-size vector

of binary flags. The latter is considered in this work.

The dimension of data broadcast by Node i at successive

rounds is an integer multiple of dFL, possibly zero.

On successive rounds, Node i has possibly received new

data from its neighbors and broadcasts previously received

pairs that it did not transmit before, along with the respective

identifiers. Retransmission of already sent data is avoided

keeping trace of previously transmitted information in a local

runtime table. Provided that no transmission error occurs, at

the end of the information diffusion phase, each node has the

whole set {(ϕi, yi)}∀i needed to evaluate (7).

Ideally, transmission rounds are repeated until all nodes

collect all the information, e.g., by checking the tag vector is

full of ones. Upon completion, each node is able to compute

(4) and (5), for any θ, and to locally derive the confidence

region using the full set of data. In practice, transmission

rounds may stop when the measurement period T expires or

when all nodes do not detect any transmitted information from

their neighbors over a given time interval. In the latter cases,

the local confidence region characterization may be performed

on a reduced, possibly different across nodes, set of data.

B. Tagged and aggregated sums (TAS) algorithm

The TAS algorithm is based on the following consideration.

Expanding (4) and (5) one gets,

s0(θ)=Q−1/2
n

(
n∑

k=1

ϕkyk −

(
n∑

k=1

ϕkϕ
T
k

)
θ

)
(9)

sj(θ)=Q−1/2
n

(
n∑

k=1

aj,kϕkyk−

(
n∑

k=1

aj,kϕkϕ
T
k

)
θ

)
. (10)

The evaluation of (9) and (10) for any value of θ ∈ Θ does not

necessarily require the knowledge of each term in the sums

but rather of

δ1...n=

{
n∑

k=1

ϕkyk ,
n∑

k=1

ϕkϕ
T
k ,

np real values n
2
p real values

{ n∑

k=1

aj,kϕkyk

}m−1

j=1

,

{ n∑

k=1

aj,kϕkϕ
T
k

}m−1

j=1

}

np(m − 1) real values n
2
p (m − 1) real values

(11)

The main idea of the TAS algorithm is to propagate data

structures similar to (11), composed of partial sums not

necessarily ranging from k = 1 to n, but covering a subset of

{1, . . . , n}. At each transmission round, Node k generates and

transmits partial sums built from data previously received from

neighbors and stored in a local table R(k). The main challenge

of the TAS algorithm is to determine a way to organize the

content of the transmitted partial sums so that each node is

able, after the termination of the transmission phase, to build

the complete sums (11), or to compute partial sums with the

maximum number of elements using the received partial sums.

The main advantage of TAS with respect to FL is that the

transmitted data sets are of constant size, independently of the

transmission round. The size of the data sets is

dTAS = m

(
np + np

np + 1

2

)
(12)

real values, independently of the number of elements in the

partial sums. The evaluation of dTAS takes into account the

fact that ϕkϕ
T
k is symmetric3. As in FL, the tag vector has

to be transmitted along with the data set at each transmission

round. For TAS we adopted the same representation of the tag

vector used by FL. This means that its transmission cost is the

same for both algorithms.

The TAS algorithm consists of six phases, namely, i)

initialization, ii) reception, iii) distillation, iv) aggregation, v)

transmission, and vi) wrap-up. They are introduced hereafter.

i) Initialization phase. As in the FL algorithm, the transmit-

ted packet is formed by a data set and by a tag vector. During

the initialization phase, Node k, ∀k ∈ {1, . . . , n} creates the

packet
(
t
(k)
1 ,d

(k)
1

)
to be sent in round r = 1. The tag vector

t
(k)
1 flags only Node k. The data set d

(k)
1 contains the local

quantities related to Node k

d
(k)
1 =

{
ϕkyk,

{
ϕkϕ

T
k

}
,{aj,kϕkyk}∀j ,

{
aj,kϕkϕ

T
k

}
∀j

}
. (13)

After initialization, the reception, distillation, aggregation, and

transmission phases are sequentially repeated until a termina-

tion condition is met.

ii) Reception phase. At each round r, Node k collects

the messages containing the partial sums transmitted by its

neighbors (according to the given logical topology), whose

set is denoted N (k).

iii) Distillation phase. At the end of the reception phase

of round r, Node k compares the incoming tag vectors

t
(j)
r , j ∈ N (k) to the previously received tag vectors, to

detect whether the packets received at round r contain new

information. If possible, partial sums received during round r
are cleared of partial sums previously received. The cleared

partial sums are then stored in R(k). This phase reduces the

number of contributors to each partial sum, so that the different

3Since
∑n

k=1
ϕkϕ

T
k

is symmetric, instead of transmitting all its np
2

elements, it is sufficient to transmit np values for the diagonal plus
∑np−1

d=1 d =

np(np−1)

2
values for the upper (or lower) part, that gives

np
np+1

2
. The same holds for the (m− 1) terms

{
∑n

k=1
aj,kϕkϕ

T
k

}m−1

j=1
.
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Figure 2: Toy network example

partial sums can be more easily recombined in the following

aggregation phase, with each contributor counted no more than

once.

Example 1 (Distillation phase): Consider the network of

Figure 2 and the evolution of R(1) given in Table I. For r = 0,

Node 1 only holds its own data and forms partial sums from

these data stored in

δ1=
{
ϕ1y1,

{
ϕ1ϕ

T
1

}
, {aj,1ϕ1y1}∀j ,

{
aj,1ϕ1ϕ

T
1

}
∀j

}
.

During round r = 1, Node 1 broadcasts these partial sums

and receives partial sums formed with the privy data from

Node 2 and partial sums formed with the privy data from

Node 3. During round r = 2, Node 1 receives a packet

containing partial sums combining data from Nodes 1, 4, and

7, forwarded by Node 2, as well as a packet containing partial

sums combining data from Nodes 1, 4, and 6, forwarded by

Node 3. The content of these two packets is stored in R(1),

after having removed the contribution related to Node 1 from

each previously received partial sum (this is indicated by a C

in the tag vector in Table I). Node 1 thus gets

δ4,6 =





∑

k∈{4,6}

ϕkyk,
∑

k∈{4,6}

ϕkϕ
T
k ,




∑

k∈{4,6}

aj,kϕkyk





∀j

,




∑

k∈{4,6}

aj,kϕkϕ
T
k





∀j



 (14)

and δ4,7. At the end of round r = 3, Node 1 receives a packet

with partial sums combining data from Nodes 3, 5, and 6,

forwarded by Node 2, as well as a packet with partial sums

combining data from Nodes 2 and 5, forwarded by Node 3.

iv) Aggregation phase. To create the packet to be broadcast

at round r, Node k aggregates the partial sums available in

R(k) at round r−1 and which were not previously aggregated.

This is done by summing the available partial sums to produce

d
(k)
r and merging the related tag vectors to produce t

(k)
r . In

order to avoid duplication of terms in the sums, rows i and

j of R(k) can be merged in
(
d
(k)
r , t

(k)
r

)
iff the intersection

of i-th and j-th row tag vectors is empty. If this condition is

not met, only the row with smallest index is aggregated in a

transmitted packet.

Example 2 (Aggregation phase): Consider the evolution of

R(2) for Node 2 given in Table II. At the end of round r = 1,

Node 2 holds partial sums related to the data from Nodes 1,

2, 4, and 7, stored in δ1, δ2, δ4, and δ7. A packet containing

δ2 has already been transmitted in round r = 1. The other

Round From Node Data Tag vector

0 2 δ2 0 1 0 0 0 0 0

1
1 δ1 1 0 0 0 0 0 0
4 δ4 0 0 0 1 0 0 0
7 δ7 0 0 0 0 0 0 1

2
1 δ3 0 C 1 0 0 0 0
4 δ6 0 C C 0 0 1 0
7 δ5 0 C 0 0 1 0 0

Table II: Table R(2) for Node k = 2 using TAS in the network

of Figure 2; C indicates elements that have been removed from

the tag vector and partial sums during the distillation phase

tag vectors do not intersect, as a consequence, the aggregated

sums will involve δ1, δ4, and δ7. The packet containing the

aggregated sums is received by Node 1 and cleared of δ1.

v) Transmission phase. The message obtained at the end

of the aggregation phase is broadcast to all neighbor nodes.

After the last transmission phase, the objective for Node k
is the computation of the local confidence region, using

the data collected so far and aggregated in the final partial

sum δ
(k)
F , evaluated in the wrap-up phase. The information

diffusion process stops for Node k when it has collected all

the information from other nodes or, more realistically, when

the measurement period T has expired.

vi) Wrap-up phase. The wrap-up phase can be performed

by a Node whenever it needs to compute the confidence

region during or at the end of the information diffusion

process. Ideally, Node k evaluates a linearly weighted sum

δ
(k)
F =

∑
l b̂

(k)
l δ

(k)
l , where δ

(k)
l contains the partial sums at

the l-th row of R(k) and b̂(k) is the solution of the following

constrained optimization problem

b̂(k) = argmax
b

bTT(k)1, (15)

with the constraints

c
(k)
i =

∑

l

bl t
(k)
l,i ∈ {0, 1}, i = 1, 2, . . . , n. (16)

det
∑

l

bl

(
∑

k∈t
(k)
l

ϕkϕ
T
k

)
6= 0. (17)

Here, the binary vector b̂(k) selects the rows of R(k) to be

combined in the partial sums. In particular, the positions of the

elements of b̂(k) equal to 1 select the corresponding rows of

R(k). Moreover, t
(k)
l,i are the elements of the tag matrix T(k)

of R(k), with l and i denoting the row and column indexes,

respectively. The constraints (16) are related to the presence

indicator of the quantities associated to Nodes i = 1, . . . , n.

Imposing c
(k)
i ∈ {0, 1} in (16) ensures that all measurements

contribute similarly to the final sign perturbed sums, with

some measurements possibly not contributing at all. In the

latter case, one obtains a confidence region associated to the

LS estimate of θ∗
involving only the corresponding subset

of sensor measurements. The constraint (17) is introduced to

allow the computation of an approximation of Q
−1/2
n relying

on possibly less than n terms.



Once a satisfying solution has been found, Node k can

locally compute an exact confidence region based on δ
(k)
F ,

from which the following quantities are evaluated

s̃
(k)
0 (θ)=Q̃−1/2

n∑

i=1

c
(k)
i ϕi

(
yi −ϕT

i θ
)

(18)

s̃
(k)
j (θ)=Q̃−1/2

n∑

i=1

c
(k)
i aj,iϕi

(
yi−ϕT

i θ
)
∀j=1, . . . ,m−1,

(19)

with

Q̃ =
1

∑n
i=1 c

(k)
i

n∑

i=1

c
(k)
i ϕiϕ

T
i . (20)

If several satisfying solutions for (15-16) have been found,

the one maximizing (17) should be selected to get the smallest

confidence region, as in D-optimal experiment design [9].

Remark 1: The TAS algorithm is inspired from network

coding. The main difference is that Node k does not need to

recover the privy data of all nodes, but the decoding of their

partial sums suffices.

Remark 2: The efficiency of TAS with respect to FL comes

from the fact that the size dTAS of the data sets exchanged does

not increase as the number of rounds increases, as it happens

in FL.

IV. SIMULATION RESULTS

Simulations results presented in this section have been

obtained considering sensor nodes randomly deployed over

a square of side of one measurement unit, which transmit

information over lossless links (i.e., no transmission errors and

no packet collisions). Confidence regions have been evaluated

with the interval analysis techniques described in [10] and

the Intlab library [11] for interval computations. Data are

generated considering the model (1), with randomly generated

parameters and regressors using realizations of independent

zero-mean unit variance Gaussian variables.

Due to lack of space only random trees are considered

in this paper.4 In particular, we build a spanning tree on

top of a random unstructured network, setting the inter-node

communication range dcomm =
√

log2 n
2n . According to [12],

this range guarantees almost sure connectivity of a network of

n nodes, deployed on a unit area.

For the SPS approach, we chose q = 1 and m = 10 to be

able to characterize 90% confidence regions according to (8).

For each n (see the horizontal axis in Figure 3), 100 random

tree realizations are instantiated. TAS and FL are compared

in terms of the required number of data to be transmitted

in each network realization. The success rate of TAS is the

percentage of network realizations that proved favorable to

TAS, i.e., for which less measurements need to be exchanged

to get all information required by the SPS approach reaching

all nodes of the network.

4A complete investigation, considering different network topologies as well
as further analytical and simulation results, is presented in [6].
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Figure 3: Percentage of network realizations favorable to TAS,

in terms of required data exchanges, compared to FL, as a

function of n and np.

Parameter Symbol value

Number of nodes n 52

Maximum number of children of each node nmax 5

Measurement period T 2 s

Number of rounds nr {2, 3, . . . , 30}

Number of neighbours nn {2, 4, 8, 17, 33}

Number of parameters to be estimated np 1

Number of sign perturbed sums m 10

Table III: Parameters of the experimental setup

Figure 3 shows this success rate as a function of n, for

several values of np. We can observe that there always exists

a threshold value of n, depending on np, above which TAS

outperforms FL, i.e., the percentage closes to 100%.

Supported by such results, we also implemented both TAS

and FL on a real network in order to compare their perfor-

mance in a real scenario, in the presence of interference and

possible MAC issues. This experimental test-bed is presented

in the following section, along with its outcomes.

V. EXPERIMENTAL RESULTS

This section describes the practical implementation of both

TAS and FL on commercial sensor nodes deployed in a real

scenario. These experiments aim at:

• revealing critical issues that could arise when operating

TAS on real networks;

• investigating possible interactions between TAS and the

networking protocol stack, with particular reference to

the MAC strategy adopted by commercial devices;

• providing a truthful performance comparison between

TAS and FL.

The experimental setup and the outcomes of the measurement

campaign are described in the following. For the reader’s

convenience, the most significant symbols and their meaning

are recalled in Table III.

A. Experimental setup

1) Sensor nodes: Both TAS and FL have been imple-

mented on EMB-Z2530PA sensor nodes [13] equipped with
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Figure 4: Average percentage of information received by a

node. The legend entries and the curves in the right-hand part

of the figure are in the same order

temperature sensors. These devices are compliant with the

IEEE802.15.4 standard, thus adopting the carrier sense mul-

tiple access with collision avoidance (CSMA/CA) protocol at

the MAC layer. Different setups have been adopted in terms

of transmission power, in order to control the average number

of neighbors nn, ranging from 2 to 33.

2) Network topology: The random tree topology has been

considered in this paper, thus a tree structure is randomly

established by the nodes themselves at each run.

3) Network setup and data management: The tree construc-

tion starts from the root (level 0), which randomly selects the

number nc of children with uniform (discrete) distribution in

[1, 2, ..., nmax]. Provided that a sufficient number of nodes is

available within the coverage range of the root, nc of them are

randomly selected as its children. Otherwise, all (thus less than

nc) available nodes are joined to level 1. The same procedure

is repeated by each node of level 1 and then iterated at all

levels, until all nodes join the tree.

Once the network has been established, the information

diffusion algorithm, either FL or TAS, is started, beginning

from the leaves up to the root and then in the opposite direc-

tion. In our experimental setup, the information transmitted

by a node to its father is not overheard by its children, to

reflect the typical behavior of energy efficient routing protocols

that put in the sleep mode nodes not involved in the current

transmission phase.

For FL, each payload contains the amount of data transmit-

ted, measurements and regressors, and a unique tag vector

that identifies the contributing nodes. For TAS, payloads

contain partial aggregated sums and a tag vector indicating

the contributing nodes. In both cases the tag consists of a

vector of dTAG bits, with 1s at the positions corresponding to

the indexes of the contributing nodes.

4) Time scheduling management: Nodes are allowed to

transmit only during the round pertaining to the tree level they

belong to. Data (measurements and corresponding regressors

for FL or aggregated sums for TAS) are then exchanged

beginning from the leaves up to the root and then in the

opposite direction.

To emulate the time jitter in nodes operations caused by

local clocks drift in a distributed network as well as to avoid

all nodes access the channel simultaneously, thus congesting

the MAC, each node defers the measurement phase, and

therefore also the beginning of the information diffusion

algorithm, by locally choosing a random delay ∆i ∈ [0, tr],
with i = 1, 2, ..., n.

All nodes stop data dissemination once nr rounds have been

completed. The amount of data transmitted/received by each

node are then collected to allow the analysis of the behavior

of the TAS and FL algorithms.

Remark 3: A trade-off is expected between nr and tr. In fact,

for a given degree of connectivity, nr should be large enough

to allow the diffusion of data over the whole network, hopping

from one neighbor to the other. A the same time, tr should be

large enough to reduce as much as possible collisions with

neighbors’ transmissions within the same round. Since the

product nrtr is equal to the measurement period T , the values

of nr and tr should be jointly and properly chosen for the given

(application dependent) T , in order to maximize the amount

of information received by nodes.

This aspect, that arises from the interplay between the

information diffusion strategy and the MAC protocol, will be

investigated in the following section.

B. Measured Performance

A network of n = 52 nodes performing simple temperature

measurements has been considered, thus np = 1. The temper-

ature θ∗ is assumed constant in the area where the nodes are

deployed.

The data to be transmitted by the FL algorithm are collec-

tions of pairs (ϕi, yi), consisting in this case of dFL = 2 real

values (which may be quantized) in the first round and that

might grow in the subsequent ones.

Also in the experimental test-bed we chose q = 1 and

m = 10 to be able to characterize 90% confidence regions

according to (8). Therefore, the amount of data transmitted at

each round by TAS is dTAS = 20 real values (which may also

be quantized) and remains constant.

In such conditions (n = 52, np = 1, m = 10) TAS should

outperform FL, as suggested by simulation results in Fig. 3.

The measurement period is taken as T = 2 s. nr ranges

from 2 to 30 and, therefore, tr varies from 1 s down to 67 ms.

Finally, the tag size dTAG is 7 Bytes, and the maximum number

of children of each node of the tree is nmax = 5.

For each chosen setup (transmit power, nr), we performed

the measurement campaign over 100 network realizations and

we derived the average (over the 100 resulting networks)

amount of information received by each node and the average

amount of data transmitted in the whole network.

Figure 4 shows the average proportion ρ of data reaching a

given node in a tree topology for various nr and nn.

The value of nr that maximizes the average amount of

received data depends on nn. For low values of nr, the

performance is limited by the constraint on the maximum



Neighbors FL TAS

2 2047 1330

4 2022 1331

8 1978 1322

17 1400 1042

33 1256 972

Table IV: Average amount of transmitted data (scalars) within

the whole network in the case nr = 15.
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Figure 5: Average width of the 90 % confidence region as a

function of the proportion ρ of measurements collected by a

node with FL or TAS.

number of allowed hops (that is coincident with nr), that

might not be sufficient for a particular data to reach all nodes

in the network. On the contrary, for large values of nr the

performance is limited by the MAC, as a small tr increases

the collision probability.

From the same figure one can also see that better perfor-

mances are obtained when the network is characterized by a

low degree of connectivity nn, provided that a sufficiently high

number of rounds can be allocated within the measurement

period. In fact, large nn, i.e., high power levels, generate more

interference among nodes that leads to critical conditions at

the MAC level. This suggests that a proper power control

strategy able to keep nn at minimum values for connectivity

is beneficial both for network performance as well as to save

energy.

Figure 4 shows that FL and TAS perform similarly in all

conditions, hence they are equivalent from the viewpoint of

the amount of received information. They differ, instead, in

terms of amount of transmitted information, as evident in

Table IV, which reports the average amount (over 100 network

realizations) of transmitted data (scalars) within the whole

network in the case nr = 15.

As can be observed, TAS outperforms FL, managing to

reduce the amount of transmitted information and being an ef-

fective solution to mitigate the network burden for distributed

confidence region evaluations.

To evaluate the influence of the proportion of measurements

received by each node on the quality of the confidence region

that can be derived, a temperature measurement has been

performed by each of the n nodes of the network. For different

target proportions ρ ∈ [0, 1] of measurements reaching some

node of the network, 100 random selections of a subset of

measurements have been considered and a 90 % confidence

region evaluation has been performed. Figure 5 describes the

evolution of the average width of the 90 % confidence region

as a function of the proportion of measurements collected by

a given node. From Fig. 4 and 5, one may deduce the width of

the confidence interval that may be obtained with FL or TAS,

when not all measurements have reached some node. One can

for example see that even if only 80 % of the measurements

have reached a node, the width of the confidence region is

only 10 % larger than that obtained from all measurements.

VI. CONCLUSIONS

In this paper we have proposed and investigated a novel in-

formation diffusion strategy, namely TAS, especially designed

for the distributed evaluation of non-asymptotic confidence

regions in WSNs with the SPS approach. The TAS algorithm

has been compared with the classical FL in terms of average

transmitted information in a real scenario using experimental

data. Both algorithms have been implemented on off-the-

shelf sensor nodes organized according to a tree topology.

The impact of the MAC strategy has been highlighted and

discussed. The contribution has shown that, on tree topologies,

the proposed TAS algorithm outperforms the FL algorithm.
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